Hyperspherical Harmonic (HyperSPHARM) Representation

Size: px
Start display at page:

Download "Hyperspherical Harmonic (HyperSPHARM) Representation"

Transcription

1 Hyperspherical Harmonic (HyperSPHARM) Representation Moo K. Chung University of Wisconsin-Madison October 10, 2017, Florida State University

2 Abstracts Existing functional shape models such as the widely used spherical harmonic (SPHARM) representation assume topological invariance, so are unable to simultaneously parameterize multiple disconnected structures. In such a situation, SPHARM has to be applied separately to each individual structure. We present a novel surface parameterization technique using 4D hyperspherical harmonics (HyperSPHARM) in representing multiple disjoint objects as a single analytic form. The underlying idea behind HyperSPHARM is to project an entire collection of disconnected 3D objects onto the 4D hypersphere and simultaneously parameterize them with the 4D hyperspherical harmonics. Hence, HyperSPHARM allows for a holistic treatment of multiple disconnected structures. Although HyperSPHARM may yields similar reconstruction performance as SPHARM, HyperSPHARM can parameterize using much fewer basis functions and projection to 4D dimension obviates SPHARM s burdensome surface flattening. In addition, HyperSPHARM can handle any type of topology. The method is applied in modeling hippocampi and amygdalae of the human brain. The talk is based on paper Hosseinbor et al., 2015 Medical Image Analysis 22:89-101

3 ! Acknowledgements Pasha Hosseinbor, Nagesh Adluru, Ross Luo, Houri Voperian, Seth Pollack, Andrew Alexander, Hill Goldsmith, Richard Davidson University of Wisconsin-Madison NIH funding: EB022856, MH098098, MH061285

4 !!! Preliminary

5 Parametric shape models Fourier descriptors Spherical harmonic representation Laplace-Beltrami eigenfunction expansion

6 White matter fibers Up to half million tracts Each tract consists of about 300 control points.

7 l=0 Cosine series representation y parameterization x y x Any tract can be compactly parameterized with only 60 coefficients. basis expansion z x y z (x, y, z) = 19 β l cos(lπt)

8 Cosine series representation at various degrees

9 Tract matching Tract averaging Average of 5 tracts MATLAB: autism vs. controls wisc.edu/~chung/tracts

10 Question: Parameterize the whole white matter fibers using a single parameterization.

11 Surface parameterization 3T MRI Surface segmentation Surface flattening Spherical angle based coordinate system

12 Spherical harmonic of degree l and order m

13 Weighted-Spherical harmonics (SPHARM) Surface flattening v 1 v 2 v 3

14 SPHARM with different degrees Chung et al., 2007 IEEE Transactions on Medical Imaging 26:

15 Weighted-SPHARM heat kernel bandwidth, diffusion time Matlab: weighted-spharm/weighted-spharm.html

16 Laplace Beltrami eigenfunction expansion A C f = λf Cψ = λaψ MATLAB:

17 Laplace-Beltrami eigenfunctions on mandible

18 Heat kernel = probability distribution on manifold σ =0.2 σ = 10 K σ (p, q) = e λ jσ ψ j (p)ψ j (q) j=0

19 Heat kernel smoothing K σ X(p) = β j = j=0 e λ jσ X j ψ j (p) X(p)ψ j (p) dµ(p) X K σ X Chung, Qiu et al Medical Image Analysis 22:63-76

20 !!! Limitations

21 Existing parametric shape representations do not work for different topology Cancer growth Stroke lesions in brain Bone fusion

22 Hyoid bone fusion DS: down syndrome TD: typically developing

23 Bessel Fourier Reconstruction (BFOR)

24 2D cortical thickness Yellow: outer cortical surface Blue: inner cortical surface Chung et al NeuroImage 18:

25 Bessel Fourier reconstruction (BFOR) on cortical thickness Chung et al ISBI k=22, j=5 k=10, j=22

26 f(r, θ, ϕ) k l=0 l m= l j n=1 β lmn Z lmn (r, θ, ϕ) Z lmn (r, θ, ϕ) = S l ( λ ln r)y lm (θ, ϕ) S l (x) = π 2x J l+1/2(x)

27 Multi-shell reconstruction in diffusion weighted imaging 5 shells, 126 data points P 0 image Hosseinbor et al NeuoImage 64:

28 Hyper Spherical Harmonic (SPHARM) Representation

29 Flatland by Edwin A. Abbott, 1884 Disconnected Connected in in 3D 2D Question: Connect disconnected structures

30 Disconnected Connected in 3D 4D Question: Connect disconnected structures

31 3D stereographic projection 4D stereographic projection β (β, θ, φ) θ θ S = (S 1, S 2, S 3 )

32 4D stereographic projection

33 Hyper Spherical harmonic representation 3D coordinates S = (S 1, S 2, S 3 ) S i = N n n=0 l=0 m nl(β, θ, φ) =2 l+1/2 l m= l C i nlm Z m (β,θ,φ) nl (n + 1)Γ(n l + 1) πγ(n + l + 2) Spherical angles of a hypersphere Γ(l + 1) sin l β C l+1 m n! l (cos β) Yl (θ, φ) Gegenbauer polyonomials! 2π 0! π 0! π 0 Z m nl(ω)z m n l (Ω)sin 2 β sin θdβdθdφ = δ nn δ ll δ mm Hosseinbor et al., 2015 Medical Image Analysis 22:89-101

34 1764 parameters 140 parameters

35 Multi-shell reconstruction in diffusion weighted imaging 5 shells, 126 data points 14 parameters 30 parameters P 0 image Hosseinbor et al., 2015 Medical Image Analysis 21:15-28

36 What Next? Extremely complex multiple disconnected anatomical structures

37 Challenge: Parameterize the whole white matter fibers using HyperSPHARM.

38 Standard brain parcellation with 116 regions Precentral gyrus

39 19-layer hierarchical brain parcellation

40 Hierarchical nested connectivity

41 Extremely dense brain network nodes +0.6 billion connections HyperSPHARM Chung et al IPMI representation in R 3 R 3

42 June 22-23, 2018

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 February 04.

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 February 04. NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 February 04. Published in final edited form as: Med Image Comput Comput Assist Interv.

More information

Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 May 26.

Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 May 26. NIH Public Access Author Manuscript Published in final edited form as: Med Image Comput Comput Assist Interv. 2013 ; 16(0 1): 598 605. 4D Hyperspherical Harmonic (HyperSPHARM) Representation of Multiple

More information

Computational Methods in NeuroImage Analysis!

Computational Methods in NeuroImage Analysis! Computational Methods in NeuroImage Analysis! Instructor: Moo K. Chung" mkchung@wisc.edu" Lecture 8" Geometric computation" October 29, 2010" NOTICE! Final Exam: December 3 9:00-12:00am (35%)" Topics:

More information

MULTI-RESOLUTION STATISTICAL ANALYSIS ON GRAPH STRUCTURED DATA IN NEUROIMAGING

MULTI-RESOLUTION STATISTICAL ANALYSIS ON GRAPH STRUCTURED DATA IN NEUROIMAGING MULTI-RESOLUTION STATISTICAL ANALYSIS ON GRAPH STRUCTURED DATA IN NEUROIMAGING, Vikas Singh, Moo Chung, Nagesh Adluru, Barbara B. Bendlin, Sterling C. Johnson University of Wisconsin Madison Apr. 19, 2015

More information

Tiling Manifolds with Orthonormal Basis

Tiling Manifolds with Orthonormal Basis Tiling Manifolds with Orthonormal Basis University of Wisconsin, Madison Department of Biostatistics and Medical Informatics Technical Report 203 Published in the Proceedings of the MICCAI 2008 Workshop

More information

Tiling Manifolds with Orthonormal Basis

Tiling Manifolds with Orthonormal Basis Tiling Manifolds with Orthonormal Basis University of Wisconsin, Madison Department of Biostatistics and Medical Informatics Technical Report 203 Moo K. Chung 12, Anqi Qiu 4, Brendon, M. Nacewicz 2, Seth

More information

Heat Kernel Smoothing Using Laplace-Beltrami Eigenfunctions

Heat Kernel Smoothing Using Laplace-Beltrami Eigenfunctions Heat Kernel Smoothing Using Laplace-Beltrami Eigenfunctions Seongho Seo 1, Moo K. Chung 1,2,3, and Houri K. Vorperian 4 1 Department of Brain and Cognitive Sciences Seoul National University, Korea 2 Department

More information

Tiling Manifolds with Orthonormal Basis

Tiling Manifolds with Orthonormal Basis Tiling Manifolds with Orthonormal Basis Moo K. Chung 12, Anqi Qiu 4, Brendon, M. Nacewicz 2, Seth Pollak 3, Richard J. Davidson 23 1 Department of Biostatistics and Medical Informatics, 2 Waisman Laboratory

More information

Computational Methods in NeuroImage Analysis

Computational Methods in NeuroImage Analysis Computational Methods in NeuroImage Analysis Instructor: Moo K. Chung mchung@wisc.edu September3, 2010 Instructor Moo K. Chung Associate Professor of Biostatistics and Medical Informatics University of

More information

Topological Characterization of Signal in Brain Images Using Min-Max Diagrams

Topological Characterization of Signal in Brain Images Using Min-Max Diagrams Topological Characterization of Signal in Brain Images Using Min-Max Diagrams Moo K. Chung 1,2, Vikas Singh 1, Peter T. Kim 4, Kim M. Dalton 2, and Richard J. Davidson 2,3 1 Department of Biostatistics

More information

Amygdala Surface Modeling with Weighted Spherical Harmonics

Amygdala Surface Modeling with Weighted Spherical Harmonics Amygdala Surface Modeling with Weighted Spherical Harmonics University of Wisconsin, Madison Department of Biostatistics and Medical Informatics Technical Report 202 Moo K. Chung 12, Brendon, M. Nacewicz

More information

Network connectivity via inference over curvature-regularizing line graphs

Network connectivity via inference over curvature-regularizing line graphs Network connectivity via inference over curvature-regularizing line graphs Asian Conference on Computer Vision Maxwell D. Collins 1,2, Vikas Singh 2,1, Andrew L. Alexander 3 1 Department of Computer Sciences

More information

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 August 15.

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 August 15. NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 August 15. Published in final edited form as: Med Image Comput Comput Assist Interv.

More information

Amygdala Surface Modeling with Weighted Spherical Harmonics

Amygdala Surface Modeling with Weighted Spherical Harmonics Amygdala Surface Modeling with Weighted Spherical Harmonics Moo K. Chung 1,2, Brendon M. Nacewicz 2, Shubing Wang 1, Kim M. Dalton 2, Seth Pollak 3,andRichardJ.Davidson 2,3 1 Department of Statistics,

More information

Multi-scale Voxel-based Morphometry via Weighted Spherical Harmonic Representation

Multi-scale Voxel-based Morphometry via Weighted Spherical Harmonic Representation Multi-scale Voxel-based Morphometry via Weighted Spherical Harmonic Representation Moo K. Chung 1,2, Li Shen 4, Kim M. Dalton 2, and Richard J. Davidson 2,3 1 Department of Statistics, Biostatistics and

More information

FFTs in Graphics and Vision. Invariance of Shape Descriptors

FFTs in Graphics and Vision. Invariance of Shape Descriptors FFTs in Graphics and Vision Invariance of Shape Descriptors 1 Outline Math Overview Translation and Rotation Invariance The 0 th Order Frequency Component Shape Descriptors Invariance 2 Translation Invariance

More information

Characterizing brain connectivity using ɛ-radial nodes: application to autism classification

Characterizing brain connectivity using ɛ-radial nodes: application to autism classification Characterizing brain connectivity using ɛ-radial nodes: application to autism classification Nagesh Adluru, Moo K. Chung, Kim M. Dalton Andrew L. Alexander, and Richard J. Davidson University of Wisconsin,

More information

An Analytical Fiber ODF Reconstruction in 3D Polarized Light Imaging

An Analytical Fiber ODF Reconstruction in 3D Polarized Light Imaging An Analytical Fiber ODF Reconstruction in 3D Polarized Light Imaging Abib Alimi, Yves Usson, Pierre-Simon Jouk, Gabrielle Michalowicz, Rachid Deriche To cite this version: Abib Alimi, Yves Usson, Pierre-Simon

More information

Comparisons of topological properties in autism for the brain network construction methods

Comparisons of topological properties in autism for the brain network construction methods Comparisons of topological properties in autism for the brain network construction methods Min-Hee Lee a*, Dong Youn Kim a, Sang Hyeon Lee a, Jin Uk Kim a, Moo K. Chung b a Department of Biomedical Engineering,

More information

General Multivariate Linear Modeling of Surface Shapes Using SurfStat

General Multivariate Linear Modeling of Surface Shapes Using SurfStat General Multivariate Linear Modeling of Surface Shapes Using SurfStat Moo K. Chung a,b,e,keith J. Worsley d, Brendon, M. Nacewicz b, Kim M. Dalton b, Richard J. Davidson b,c a Department of Biostatistics

More information

Conformal Flattening ITK Filter

Conformal Flattening ITK Filter =1 Conformal Flattening ITK Filter Release 0.00 Yi Gao 1, John Melonakos 1, and Allen Tannenbaum 1 July 22, 2006 1 Georgia Institute of Technology, Atlanta, GA Abstract This paper describes the Insight

More information

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers Preparation Meeting Recent Advances in the Analysis of 3D Shapes Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers What You Will Learn in the Seminar Get an overview on state of the art

More information

WEIGHTED FOURIER IMAGE ANALYSIS AND MODELING

WEIGHTED FOURIER IMAGE ANALYSIS AND MODELING WEIGHTED FOURIER IMAGE ANALYSIS AND MODELING By Shubing Wang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Statistics) at the UNIVERSITY OF

More information

Cortical surface thickness as a classifier: Boosting for autism classification

Cortical surface thickness as a classifier: Boosting for autism classification Cortical surface thickness as a classifier: Boosting for autism classification Vikas Singh 1, Lopamudra Mukherjee 2, and Moo K. Chung 1 1 Biostatistics and Medical Informatics, University of Wisconsin-Madison,

More information

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data Alexey Samsonov, Julia Velikina Departments of Radiology and Medical

More information

Shape Registration with Spherical Cross Correlation

Shape Registration with Spherical Cross Correlation Shape Registration with Spherical Cross Correlation Boris Gutman 1,2 {bgutman@ucla.edu}, Yalin Wang 1,2, Tony Chan 1, Paul M. Thompson 2, and Arthur W. Toga 2 1 UCLA Department of Mathematics 2 UCLA Laboratory

More information

ENCODING CORTICAL SURFACE BY SPHERICAL HARMONICS

ENCODING CORTICAL SURFACE BY SPHERICAL HARMONICS Statistica Sinica 18(2008), 1269-1291 ENCODING CORTICAL SURFACE BY SPHERICAL HARMONICS Moo K. Chung 1, Richard Hartley 2, Kim M. Dalton 1 and Richard J. Davidson 1 1 University of Wisconsin, Madison and

More information

HHS Public Access Author manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 March 20.

HHS Public Access Author manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 March 20. Online Statistical Inference for Large-Scale Binary Images Moo K. Chung 1,2, Ying Ji Chuang 2, and Houri K. Vorperian 2 1 Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison,

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

1.7.1 Laplacian Smoothing

1.7.1 Laplacian Smoothing 1.7.1 Laplacian Smoothing 320491: Advanced Graphics - Chapter 1 434 Theory Minimize energy functional total curvature estimate by polynomial-fitting non-linear (very slow!) 320491: Advanced Graphics -

More information

Neuroimage Processing

Neuroimage Processing Neuroimage Processing Instructor: Moo K. Chung mkchung@wisc.edu Lecture 2-3. General Linear Models (GLM) Voxel-based Morphometry (VBM) September 11, 2009 What is GLM The general linear model (GLM) is a

More information

Online Statistical Inference for Quantifying Mandible Growth in CT Images

Online Statistical Inference for Quantifying Mandible Growth in CT Images Online Statistical Inference for Quantifying Mandible Growth in CT Images Moo K. Chung 1,2, Ying Ji Chuang 2, Houri K. Vorperian 2 1 Department of Biostatistics and Medical Informatics 2 Vocal Tract Development

More information

Data fusion and multi-cue data matching using diffusion maps

Data fusion and multi-cue data matching using diffusion maps Data fusion and multi-cue data matching using diffusion maps Stéphane Lafon Collaborators: Raphy Coifman, Andreas Glaser, Yosi Keller, Steven Zucker (Yale University) Part of this work was supported by

More information

4 Parametrization of closed curves and surfaces

4 Parametrization of closed curves and surfaces 4 Parametrization of closed curves and surfaces Parametrically deformable models give rise to the question of obtaining parametrical descriptions of given pixel or voxel based object contours or surfaces,

More information

4.2 Description of surfaces by spherical harmonic functions

4.2 Description of surfaces by spherical harmonic functions Chapter 4. Parametrization of closed curves and surfaces Im[z] Im[z] Translation Im[z] Im[z] Rotation Scale Starting point Re[z] Re[z] Re[z] Re[z] a b c d Figure 4.: Normalization steps of Fourier coefficients;

More information

Hippocampal shape analysis: surface-based representation and classification

Hippocampal shape analysis: surface-based representation and classification Hippocampal shape analysis: surface-based representation and classification Li Shen a, James Ford a, Fillia Makedon a, and Andrew Saykin b a Dartmouth Experimental Visualization Laboratory, Department

More information

Conformal Flattening ITK Filter

Conformal Flattening ITK Filter =1 Conformal Flattening ITK Filter Release 0.00 Yi Gao 1, John Melonakos 1, and Allen Tannenbaum 1 July 10, 2006 1 Georgia Institute of Technology, Atlanta, GA Abstract This paper describes the Insight

More information

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 12, DECEMBER

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 12, DECEMBER IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 12, DECEMBER 2010 2009 Robust Surface Reconstruction via Laplace-Beltrami Eigen-Projection and Boundary Deformation Yonggang Shi, Member, IEEE, Rongjie

More information

Investigating Disease in the Human Brain with Conformal Maps and Conformal Invariants

Investigating Disease in the Human Brain with Conformal Maps and Conformal Invariants AMMP Workshop: Conformal Geometry in Mapping, Imaging and Sensing Imperial College London South Kensington Campus, London June 20-21, 2013 Investigating Disease in the Human Brain with Conformal Maps and

More information

Optimization of Brain Conformal Mapping with Landmarks

Optimization of Brain Conformal Mapping with Landmarks Optimization of Brain Conformal Mapping with Landmarks Yalin Wang 1,LokMingLui 1,TonyF.Chan 1, and Paul M. Thompson 2 Mathematics Department, UCLA, Los Angeles, CA 90095, USA Lab. of Neuro Imaging, UCLA

More information

Conformal Geometry of the Visual Cortex

Conformal Geometry of the Visual Cortex Ma191b Winter 2017 Geometry of Neuroscience Functional Architecture of the V1 visual cortex Filtering of optical signals by visual neurons and local differential data; integration of local differential

More information

Modified Normal Vector Voting Estimation in neuroimage

Modified Normal Vector Voting Estimation in neuroimage Modified Normal Vector Voting Estimation in neuroimage Neuroimage Processing (339.632) Instructor: Moo. K. Chung Seung-goo KIM Dec 15, 2009 Abstract The normal vector is one of the metrics that are sensitive

More information

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy Sokratis K. Makrogiannis, PhD From post-doctoral research at SBIA lab, Department of Radiology,

More information

Multivariate Shape Modeling and Its Application to Characterizing Abnormal Amygdala Shape in Autism

Multivariate Shape Modeling and Its Application to Characterizing Abnormal Amygdala Shape in Autism Multivariate Shape Modeling and Its Application to Characterizing Abnormal Amygdala Shape in Autism Moo K. Chung a,b,keith J. Worsley d, Brendon, M. Nacewicz b, Kim M. Dalton b, Richard J. Davidson b,c

More information

Matching 3D Shapes Using 2D Conformal Representations

Matching 3D Shapes Using 2D Conformal Representations Matching 3D Shapes Using 2D Conformal Representations Xianfeng Gu 1 and Baba C. Vemuri 2 Computer and Information Science and Engineering, Gainesville, FL 32611-6120, USA {gu,vemuri}@cise.ufl.edu Matching

More information

Matching 3D Shapes Using 2D Conformal Representations

Matching 3D Shapes Using 2D Conformal Representations Matching 3D Shapes Using 2D Conformal Representations Xianfeng Gu 1 and Baba C. Vemuri 2 Computer and Information Science and Engineering, Gainesville, FL 32611-6120, USA {gu,vemuri}@cise.ufl.edu Abstract.

More information

NIH Public Access Author Manuscript Proc SPIE. Author manuscript; available in PMC 2012 October 10.

NIH Public Access Author Manuscript Proc SPIE. Author manuscript; available in PMC 2012 October 10. NIH Public Access Author Manuscript Published in final edited form as: Proc SPIE. 2011 ; 7962: 79620S. doi:10.1117/12.878291. Efficient, Graph-based White Matter Connectivity from Orientation Distribution

More information

COMBINATIONOF BRAIN CONFORMAL MAPPING AND LANDMARKS: A VARIATIONALAPPROACH

COMBINATIONOF BRAIN CONFORMAL MAPPING AND LANDMARKS: A VARIATIONALAPPROACH COMBINATIONOF BRAIN CONFORMAL MAPPING AND LANDMARKS: A VARIATIONALAPPROACH Yalin Wang Mathematics Department, UCLA email: ylwang@math.ucla.edu Lok Ming Lui Mathematics Department, UCLA email: malmlui@math.ucla.edu

More information

Brain Warping Via Landmark Points and Curves with a Level Set Representation

Brain Warping Via Landmark Points and Curves with a Level Set Representation Brain Warping Via Landmark Points and Curves with a Level Set Representation Andrew Y. Wang, Alex D. Leow, 2 Hillary D. Protas, Arthur W. Toga, Paul M. Thompson UCLA Laboratory of Neuro Imaging, Los Angeles,

More information

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

The organization of the human cerebral cortex estimated by intrinsic functional connectivity 1 The organization of the human cerebral cortex estimated by intrinsic functional connectivity Journal: Journal of Neurophysiology Author: B. T. Thomas Yeo, et al Link: https://www.ncbi.nlm.nih.gov/pubmed/21653723

More information

Detection of Unique Point Landmarks in HARDI Images of the Human Brain

Detection of Unique Point Landmarks in HARDI Images of the Human Brain Detection of Unique Point Landmarks in HARDI Images of the Human Brain Henrik Skibbe and Marco Reisert Department of Radiology, University Medical Center Freiburg, Germany {henrik.skibbe, marco.reisert}@uniklinik-freiburg.de

More information

Online Statistical Inference for Large-Scale Binary Images

Online Statistical Inference for Large-Scale Binary Images Online Statistical Inference for Large-Scale Binary Images Moo K. Chung 1,2(B),YingJiChuang 2, and Houri K. Vorperian 2 1 Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison,

More information

Computational Conformal Geometry and Its Applications

Computational Conformal Geometry and Its Applications Computational Conformal Geometry and Its Applications Wei Zeng Institute of Computing Technology Chinese Academy of Sciences zengwei@cs.sunysb.edu Thesis Proposal Advisor: Harry Shum Co-advisor: Xianfeng

More information

Scale-Space on Image Profiles about an Object Boundary

Scale-Space on Image Profiles about an Object Boundary Scale-Space on Image Profiles about an Object Boundary Sean Ho and Guido Gerig Department of Computer Science University of North Carolina, Chapel Hill, NC 27599, USA seanho@cs.unc.edu Abstract. Traditionally,

More information

Objectives. Introduce Phong model Introduce modified Phong model Consider computation of required vectors Discuss polygonal shading.

Objectives. Introduce Phong model Introduce modified Phong model Consider computation of required vectors Discuss polygonal shading. Shading II 1 Objectives Introduce Phong model Introduce modified Phong model Consider computation of required vectors Discuss polygonal shading Flat Smooth Gouraud 2 Phong Lighting Model A simple model

More information

Subvoxel Segmentation and Representation of Brain Cortex Using Fuzzy Clustering and Gradient Vector Diffusion

Subvoxel Segmentation and Representation of Brain Cortex Using Fuzzy Clustering and Gradient Vector Diffusion Subvoxel Segmentation and Representation of Brain Cortex Using Fuzzy Clustering and Gradient Vector Diffusion Ming-Ching Chang Xiaodong Tao GE Global Research Center {changm, taox} @ research.ge.com SPIE

More information

Shape Analysis with Overcomplete Spherical Wavelets

Shape Analysis with Overcomplete Spherical Wavelets Shape Analysis with Overcomplete Spherical Wavelets B.T. Thomas Yeo 1,4,,PengYu 2, P. Ellen Grant 3,4, Bruce Fischl 1,3, and Polina Golland 1 1 Computer Science and Artificial Intelligence Laboratory,

More information

Brain Surface Conformal Spherical Mapping

Brain Surface Conformal Spherical Mapping Brain Surface Conformal Spherical Mapping Min Zhang Department of Industrial Engineering, Arizona State University mzhang33@asu.edu Abstract It is well known and proved that any genus zero surface can

More information

Multi-Objective Optimization of a Boomerang Shape using modefrontier and STAR-CCM+

Multi-Objective Optimization of a Boomerang Shape using modefrontier and STAR-CCM+ Multi-Objective Optimization of a Boomerang Shape using modefrontier and STAR-CCM+ Alberto Clarich*, Rosario Russo ESTECO, Trieste, (Italy) Enrico Nobile, Carlo Poloni University of Trieste (Italy) Summary

More information

The Discrete Surface Kernel: Framework and Applications

The Discrete Surface Kernel: Framework and Applications The Discrete Surface Kernel: Framework and Applications Naoufel Werghi College of Information Technology University of Dubai Dubai, UAE nwerghi@ud.ac.ae Abstract This paper presents a framework for the

More information

Tomographic Reconstruction

Tomographic Reconstruction Tomographic Reconstruction 3D Image Processing Torsten Möller Reading Gonzales + Woods, Chapter 5.11 2 Overview Physics History Reconstruction basic idea Radon transform Fourier-Slice theorem (Parallel-beam)

More information

3DS Max Tutorial Surface, Shell, Editable Mesh and Mesh Smooth.

3DS Max Tutorial Surface, Shell, Editable Mesh and Mesh Smooth. 3DS Max Tutorial Surface, Shell, Editable Mesh and Mesh Smooth. This is a tutorial that shows how to use the 3D Studio Max modifiers Surface and Shell and how to work with meshes. To start with you really

More information

Exercise: Simulating spatial processing in the visual pathway with convolution

Exercise: Simulating spatial processing in the visual pathway with convolution Exercise: Simulating spatial processing in the visual pathway with convolution This problem uses convolution to simulate the spatial filtering performed by neurons in the early stages of the visual pathway,

More information

Research Proposal: Computational Geometry with Applications on Medical Images

Research Proposal: Computational Geometry with Applications on Medical Images Research Proposal: Computational Geometry with Applications on Medical Images MEI-HENG YUEH yueh@nctu.edu.tw National Chiao Tung University 1 Introduction My research mainly focuses on the issues of computational

More information

MORPHOMETRIC ANALYSIS OF GENETIC VARIATION IN HIPPOCAMPAL SHAPE IN MILD COGNITIVE IMPAIRMENT: ROLE OF AN IL-6 PROMOTER POLYMORPHISM

MORPHOMETRIC ANALYSIS OF GENETIC VARIATION IN HIPPOCAMPAL SHAPE IN MILD COGNITIVE IMPAIRMENT: ROLE OF AN IL-6 PROMOTER POLYMORPHISM 1 MORPHOMETRIC ANALYSIS OF GENETIC VARIATION IN HIPPOCAMPAL SHAPE IN MILD COGNITIVE IMPAIRMENT: ROLE OF AN IL-6 PROMOTER POLYMORPHISM Li Shen 1, Andrew J. Saykin 2, Moo K. Chung 3, Heng Huang 4, James

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information

Deformetrica: a software for statistical analysis of anatomical shapes

Deformetrica: a software for statistical analysis of anatomical shapes Deformetrica: a software for statistical analysis of anatomical shapes Alexandre Routier, Marcel Prastawa, Benjamin Charlier, Cédric Doucet, Joan Alexis Glaunès, Stanley Durrleman To cite this version:

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Nonrigid Registration using Free-Form Deformations

Nonrigid Registration using Free-Form Deformations Nonrigid Registration using Free-Form Deformations Hongchang Peng April 20th Paper Presented: Rueckert et al., TMI 1999: Nonrigid registration using freeform deformations: Application to breast MR images

More information

Nested Arrays: A Novel Approach to Array Processing with Enhanced Degrees of Freedom

Nested Arrays: A Novel Approach to Array Processing with Enhanced Degrees of Freedom Nested Arrays: A Novel Approach to Array Processing with Enhanced Degrees of Freedom Xiangfeng Wang OSPAC May 7, 2013 Reference Reference Pal Piya, and P. P. Vaidyanathan. Nested arrays: a novel approach

More information

The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer

The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer K. Franklin Evans Program in Atmospheric and Oceanic Sciences University of Colorado, Boulder Computational Methods in

More information

Estimating Arterial Wall Shear Stress 1

Estimating Arterial Wall Shear Stress 1 DEPARTMENT OF STATISTICS University of Wisconsin 1210 West Dayton St. Madison, WI 53706 TECHNICAL REPORT NO. 1088 December 12, 2003 Estimating Arterial Wall Shear Stress 1 John D. Carew 2 Departments of

More information

Parameterization with Manifolds

Parameterization with Manifolds Parameterization with Manifolds Manifold What they are Why they re difficult to use When a mesh isn t good enough Problem areas besides surface models A simple manifold Sphere, torus, plane, etc. Using

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

Brain Surface Conformal Parameterization with Algebraic Functions

Brain Surface Conformal Parameterization with Algebraic Functions Brain Surface Conformal Parameterization with Algebraic Functions Yalin Wang 1,2, Xianfeng Gu 3, Tony F. Chan 1, Paul M. Thompson 2, and Shing-Tung Yau 4 1 Mathematics Department, UCLA, Los Angeles, CA

More information

Lilla Zöllei A.A. Martinos Center, MGH; Boston, MA

Lilla Zöllei A.A. Martinos Center, MGH; Boston, MA Lilla Zöllei lzollei@nmr.mgh.harvard.edu A.A. Martinos Center, MGH; Boston, MA Bruce Fischl Gheorghe Postelnicu Jean Augustinack Anastasia Yendiki Allison Stevens Kristen Huber Sita Kakonoori + the FreeSurfer

More information

Genus Zero Surface Conformal Mapping and Its Application to Brain Surface Mapping

Genus Zero Surface Conformal Mapping and Its Application to Brain Surface Mapping IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 7, JULY 24 Genus Zero Surface Conformal Mapping and Its Application to Brain Surface Mapping Xianfeng Gu, Yalin Wang, Tony F. Chan, Paul M. Thompson,

More information

BrainSuite. presented at the UCLA/NITP Advanced Neuroimaging Summer Program 29 July 2014

BrainSuite. presented at the UCLA/NITP Advanced Neuroimaging Summer Program 29 July 2014 BrainSuite presented at the UCLA/NITP Advanced Neuroimaging Summer Program 29 July 2014 David Shattuck Ahmanson-Lovelace Brain Mapping Center Department of Neurology David Geffen School of Medicine at

More information

How to print a Hypercube

How to print a Hypercube How to print a Hypercube Henry Segerman One of the things that mathematics is about, perhaps the thing that mathematics is about, is trying to make things easier to understand. John von Neumann once said

More information

A Surface-based Approach for Classification of 3D Neuroanatomic Structures

A Surface-based Approach for Classification of 3D Neuroanatomic Structures A Surface-based Approach for Classification of 3D Neuroanatomic Structures Li Shen 1, James Ford 1, Fillia Makedon 1, Andrew Saykin 2 1 Dartmouth Experimental Visualization Laboratory, Computer Science,

More information

Multiresolution analysis: theory and applications. Analisi multirisoluzione: teoria e applicazioni

Multiresolution analysis: theory and applications. Analisi multirisoluzione: teoria e applicazioni Multiresolution analysis: theory and applications Analisi multirisoluzione: teoria e applicazioni Course overview Course structure The course is about wavelets and multiresolution Exam Theory: 4 hours

More information

Rigid folding analysis of offset crease thick folding

Rigid folding analysis of offset crease thick folding Proceedings of the IASS Annual Symposium 016 Spatial Structures in the 1st Century 6-30 September, 016, Tokyo, Japan K. Kawaguchi, M. Ohsaki, T. Takeuchi eds.) Rigid folding analysis of offset crease thick

More information

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Abstract. Finding meaningful 1-1 correspondences between hippocampal (HP) surfaces is an important but difficult

More information

Area-preserving Surface Flattening Using Lie Advection

Area-preserving Surface Flattening Using Lie Advection Area-preserving Surface Flattening Using Lie Advection Guangyu Zou 1, Jiaxi Hu 1, Xianfeng Gu 2, and Jing Hua 1 1 Wayne State University, USA 2 State University of New York at Stony Brook, USA Abstract.

More information

Deformation-Based Surface Morphometry Applied to Gray Matter Deformation

Deformation-Based Surface Morphometry Applied to Gray Matter Deformation Deformation-Based Surface Morphometry Applied to Gray Matter Deformation Moo K. Chung 1,2, Keith J. Worsley 3,4, Steve Robbins 4, Tomas Paus 4, Jonathan Taylor 5, Jay N. Giedd 6, Judith L. Rapoport 6,

More information

Shading. Why we need shading. Scattering. Shading. Objectives

Shading. Why we need shading. Scattering. Shading. Objectives Shading Why we need shading Objectives Learn to shade objects so their images appear three-dimensional Suppose we build a model of a sphere using many polygons and color it with glcolor. We get something

More information

the PyHRF package P. Ciuciu1,2 and T. Vincent1,2 Methods meeting at Neurospin 1: CEA/NeuroSpin/LNAO

the PyHRF package P. Ciuciu1,2 and T. Vincent1,2 Methods meeting at Neurospin 1: CEA/NeuroSpin/LNAO Joint detection-estimation of brain activity from fmri time series: the PyHRF package Methods meeting at Neurospin P. Ciuciu1,2 and T. Vincent1,2 philippe.ciuciu@cea.fr 1: CEA/NeuroSpin/LNAO www.lnao.fr

More information

Shape Optimization for Consumer-Level 3D Printing

Shape Optimization for Consumer-Level 3D Printing hape Optimization for Consumer-Level 3D Printing Przemyslaw Musialski TU Wien Motivation 3D Modeling 3D Printing Przemyslaw Musialski 2 Motivation Przemyslaw Musialski 3 Przemyslaw Musialski 4 Example

More information

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University Greedy Routing in Wireless Networks Jie Gao Stony Brook University A generic sensor node CPU. On-board flash memory or external memory Sensors: thermometer, camera, motion, light sensor, etc. Wireless

More information

Multiresolution analysis: theory and applications. Analisi multirisoluzione: teoria e applicazioni

Multiresolution analysis: theory and applications. Analisi multirisoluzione: teoria e applicazioni Multiresolution analysis: theory and applications Analisi multirisoluzione: teoria e applicazioni Course overview Course structure The course is about wavelets and multiresolution Exam Theory: 4 hours

More information

Regularization of Bending and Crossing White Matter Fibers in MRI Q-Ball Fields

Regularization of Bending and Crossing White Matter Fibers in MRI Q-Ball Fields Regularization of Bending and Crossing White Matter Fibers in MRI Q-Ball Fields Hans-H. Ehricke 1, Kay-M. Otto 1 and Uwe Klose 2 1 Institute for Applied Computer Science (IACS), Stralsund University and

More information

CS 563 Advanced Topics in Computer Graphics Spherical Harmonic Lighting by Mark Vessella. Courtesy of

CS 563 Advanced Topics in Computer Graphics Spherical Harmonic Lighting by Mark Vessella. Courtesy of CS 563 Advanced Topics in Computer Graphics Spherical Harmonic Lighting by Mark Vessella Courtesy of http://www.yasrt.org/shlighting/ Outline for the Night Introduction to Spherical Harmonic Lighting Description

More information

CSE 681 Illumination and Phong Shading

CSE 681 Illumination and Phong Shading CSE 681 Illumination and Phong Shading Physics tells us What is Light? We don t see objects, we see light reflected off of objects Light is a particle and a wave The frequency of light What is Color? Our

More information

CONFORMAL SPHERICAL PARAMETRIZATION FOR HIGH GENUS SURFACES

CONFORMAL SPHERICAL PARAMETRIZATION FOR HIGH GENUS SURFACES COMMUNICATIONS IN INFORMATION AND SYSTEMS c 2007 International Press Vol. 7, No. 3, pp. 273-286, 2007 004 CONFORMAL SPHERICAL PARAMETRIZATION FOR HIGH GENUS SURFACES WEI ZENG, XIN LI, SHING-TUNG YAU, AND

More information

Spherical Harmonic Lighting: The Gritty Details Robin Green

Spherical Harmonic Lighting: The Gritty Details Robin Green Spherical Harmonic Lighting: The Gritty Details Robin Green R&D Programmer Sony Computer Entertainment America What This Talk Is About Advanced Lecture Explicit equations will be shown This talk is one

More information

BMI/STAT 768: Lecture 06 Trees in Graphs

BMI/STAT 768: Lecture 06 Trees in Graphs BMI/STAT 768: Lecture 06 Trees in Graphs Moo K. Chung mkchung@wisc.edu February 11, 2018 Parts of this lecture is based on [3, 5]. Many objects and data can be represented as networks. Unfortunately networks

More information

H. Mirzaalian, L. Ning, P. Savadjiev, O. Pasternak, S. Bouix, O. Michailovich, M. Kubicki, C-F Westin, M.E.Shenton, Y. Rathi

H. Mirzaalian, L. Ning, P. Savadjiev, O. Pasternak, S. Bouix, O. Michailovich, M. Kubicki, C-F Westin, M.E.Shenton, Y. Rathi Harmonizing diffusion MRI data from multiple scanners H. Mirzaalian, L. Ning, P. Savadjiev, O. Pasternak, S. Bouix, O. Michailovich, M. Kubicki, C-F Westin, M.E.Shenton, Y. Rathi Synopsis Diffusion MRI

More information

Segmentation of Heterochromatin Foci Using a 3D Spherical Harmonics Intensity Model

Segmentation of Heterochromatin Foci Using a 3D Spherical Harmonics Intensity Model Segmentation of Heterochromatin Foci Using a 3D Spherical Harmonics Intensity Model Simon Eck 1, Stefan Wörz 1, Andreas Biesdorf 1, Katharina Müller-Ott 2, Karsten Rippe 2, and Karl Rohr 1 1 University

More information

Diffuse Optical Tomography, Inverse Problems, and Optimization. Mary Katherine Huffman. Undergraduate Research Fall 2011 Spring 2012

Diffuse Optical Tomography, Inverse Problems, and Optimization. Mary Katherine Huffman. Undergraduate Research Fall 2011 Spring 2012 Diffuse Optical Tomography, Inverse Problems, and Optimization Mary Katherine Huffman Undergraduate Research Fall 11 Spring 12 1. Introduction. This paper discusses research conducted in order to investigate

More information

17th Annual Meeting of the Organization for Human Brain Mapping (HBM)

17th Annual Meeting of the Organization for Human Brain Mapping (HBM) 17th Annual Meeting of the Organization for Human Brain Mapping (HBM) Regionally constrained voxel-based network of left hippocampus in left medial temporal lobe epilepsy Submission No: 2740 Authors: Jarang

More information