CREATION OF THE TREE MODEL ADAPTING TO ENVIRONMENT

Size: px
Start display at page:

Download "CREATION OF THE TREE MODEL ADAPTING TO ENVIRONMENT"

Transcription

1 CREATION OF THE TREE MODEL ADAPTING TO ENVIRONMENT Ryota Ueno Yoshio Ohno {ryota Graduate School of Science and Technology, Keio University Hiyoshi, Kohoku-ku Yokohama Japan ABSTRACT: In this paper, we propose a new technique for modeling trees being affected by the environments. We consider four factors: collision with other branches, amount of sunshine received, heliotropism, and avoidance of other objects (rectangular parallelepiped and cylinder). We show some results and evaluate them by comparing with existing trees. Keywords: tree, L-system, heliotropism, obstacle avoidance, collision detection 1. INTRODUCTION Recently, the need for modeling real objects has increased with the advance of computer graphics technology. Among the objects, automatic modeling technique of trees is requested often because of the complexity of their structure and the familiarity to humans. A lot of researches have been done, but most of them aim at the creation of individual tree model and the influences of the other trees or objects that stand close to the target are not considered. In real world, the space where trees can grow up freely without being influenced by other objects is rare. The subject of this paper is to create tree models for an environment automatically by considering the environmental factors that influence the structure of the tree. We consider the following four environmental factors: (1) collision of branches, (2) the amount of sunshine received, (3) heliotropism and (4) the avoidance of other objects. By using this method, we can make more natural tree models than before easily in scenes where trees contact with other objects. 2. PREVIOUS WORKS There have been various approaches for the modeling of trees. Some researches are based on the measurement data of existing trees; others rely on some procedure. The most famous and effective research of the latter approach would be the L-System [2]. By using this system, various trees, grass, and flowers can be modeled. However, it does not consider the affect of environments. In the real world, every tree receives the affect of ground shape, sunshine, other objects, and the branches of itself. The method for creating tree models considering the collision with other branches and the amount of sunshine received was introduced by Radomir Mech et al. [1]. However, there are some problems in this research: * The bend of branches is not presented because the environmental factors are considered only at branching points. * When a branch collides with other branches, the growth is stopped. It is difficult to present the avoidance of other objects. When a branch collides with other branches, the growth will be stopped because that point is occluded from the sun by leaves. But when a contact with other objects happens, the branch may grow further if the point is in the sunshine. 3. APPROACH 3.1 Light Sources We put several light sources on the orbit of the sun to represent the influence of the position of the sun on the structure of trees. As an average over a year, we assume the sun's orbit on the vernal and autumnal equinox when the angle of the sun on the south is 54.5 degree (see Fig. 1). Each light source is given the intensity that is proportional to its height.

2 Fig. 1 Arrangement of light sources. 3.2 Tree Models We model a tree using a modified L-system. We extended the original L-system to consider the environmental factors. L-system can create the fractal objects easily by applying rewriting rules recursively. It is effective to use L-system because branches diverge in rules determined by the type of the tree. 3.3 Algorithm The flow of our algorithm is shown in Fig. 2. The first step is the specification of growth procedure and the values of necessary parameters for the L-system. During the application of rewriting rules, the collision between branches and the amount of received sunshine are checked, and if the growth termination criteria are satisfied, we stop the growth of the branch. Then we decide the angle of the branch taking heliotropism in consideration. Check of collision with obstacles comes next. In our current implementation only the obstacles of rectangular parallelepiped (for a building and a wall) and cylinder column (for a utility pole) can be specified. When we detect a collision, we decide the contact point using a cantilever model. After decided the shape of a tree, the rendering is done using POV-Ray. 4. ENVIRONMENTAL FACTORS 4.1 Collision with Other Branches, and Amount of the Sunshine Received We find the collision with other branches and calculate the amount of sunshine received by putting spheres that approximate collections of leaves on the branching points. When a sphere contacts with other spheres, the growth of the branch is stopped because it means a collision with other branches. The effect of this process is shown in Fig. 3. In this figure, the difference can Fig. 2 Flow of our algorithm. be seen in the crowded area. Growth of some branches is stopped because of the collision with other branches. Fig. 3 Generated tree models with (left) and without (right) the collision detection with other branches. We calculate the amount of sunshine received by casting rays from the branching point to the light sources and judge whether the rays intersect with other spheres or not. By judging with every light source, we decide the amount of sunshine received at the branching point. The influence of sunshine is expressed by reflecting the amount of sunshine to the length of the branches growing from the point. The effect of this process can be seen in Fig. 4.

3 Fig. 4 The affect of sunshine. The left model considers the amount of sunshine received for each branch; the right model does not. Some branches of the left model have been trimmed in the crowded area. 4.2 Heliotropism The heliotropism is the property of trees to direct the branch toward the sun. In this paper, the heliotropism is applied on the middle point of a branch to represent the bend of branches. We change the branch's growth direction a little bit toward the most intense light source among the light sources whose light reaches the point. To realize that, we modify the growth direction vector u to u by rotating small angle θ along a direction that is perpendicular to u and the light source direction s (Fig. 5). In this computation, we considered the light source which gives the largest amount of sunshine to this branch only. The effect of this process can be seen in Fig. 6. Fig. 6 Generated tree model with (left) and without (right) heliotropism. We assume that the sun is on the left side. Fig. 7 Branches avoiding obstacles. 5.1 Avoidance of a Rectangular Parallelepiped When a branch contacts with a rectangular parallelepiped, it grows up along the surface. Therefore we keep the parallel component to the surface in the direction of the growth, and change the perpendicular component toward the direction along the surface. We show the affect of this process in Fig. 8. Fig. 5 Model for heliotropism. 5. AVOIDANCE OF OBSTACLES The shape of a real tree that contacts with obstacle objects is shown in Fig. 7. From this figure, we can observe that the branches collided with obstacles continue to grow with bending their direction. We simulate this using cantilever model to decide the amount of bending. We deal a rectangular parallelepiped and a cylinder column as obstacle objects. Fig. 8 Generated tree models with (left) and without (right) collision handling with rectangular parallelepiped obstacle. In the right model, the growth of a bramch is stopped when it touches to an obstacle. 5.2 Avoidance of a Cylinder Column Fig. 9 shows a real tree that collides to a cylinder object. In case of avoidance of a cylinder column, the direction of the growth depends on

4 candidate contact points and comparing the angle to the maximum bending angle at each point (Fig. 11). The effect of this obstacle avoiding algorithm is shown in Fig. 12. Fig. 9 A tree colliding to a utility pole. the elasticity of the branch (Fig. 10). Therefore we must decide the contact point with the column. Fig. 11 Determination of bending angle. Fig. 10 Affect of elasticity to the position of contact point. Left figures shows a hard branch, and right figure is a soft branch. We decide the contact point using the knowledge of material and mechanics and regard branches as cantilever beams. A cantilever beam is a beam whose one end is fixed and the load is put on another end. The maximum bending angle is given by i max σ = E max l d i max σ max is the allowable bending stress, E where is Young modulus, I is the distance from the fixed edge and d is the diameter of the beam. Because both σ max and E are decided depending on the material, i max is proportional to the length of the beam and is inversely proportional to the diameter of the beam. We decide the contact point by moving the Fig. 12 The effect of cylinder pole avoidance algorithm. The left column figures use the algorithm; the right column figures just stop growth when collide to an obstacle. View points are in East direction (top figures), and in Northeast direction (bottom figures). 6. RESULTS We show a ginkgo model colliding to obstacles in Figs. 13 and 14. From Fig. 14, it is observed that our method can create a tree model that is suitable in the environment. The computation time is summarized in Table 1. We used a PC with Pentium M 1.70GHz and 512MByte memory. OS is Windows XP professional. We used POV-ray 3.6 for the rendering.

5 Fig. 13 A ginkgo model avoiding a cylinder pole. Recursion depths are 3 (top) and 4 (bottom) for the tree model generation. Table 1. Computation time for the situation shown in Fig. 14. Rec. Depth Modeling Rendering sec 18.6 sec sec 89.1 sec 7. DISCUSSION We proposed a method for automatic creation of tree models adapting to the environment. We considered the collision with other branches, the amount of sunshine received, heliotropism, and the avoidance of obstacle objects as the environmental factors. This method makes it easy to create tree models in various scenes. We still have some problems that should be solved. Fig. 14 A ginkgo model avoiding two obstacles. Recursion depths are 3 (top) and 4 (bottom) for the tree model generation. First, there are other factors that influence the structure of the trees, for example the soil, the root. We have to study the plant ecology and find the relationship between these environmental factors and the structure of the trees. Second, we dealt only a rectangular parallelepiped and a cylinder column as obstacle objects. There are other obstacles in real world. We need to establish the system that can deal them collectively. Finally, we need to use the parameters of the real tree in the modeling of a tree. In this paper, the length of a branch is proportional to the amount of sunshine received. But in real world, a branch would be stopped when the amount of sunshine received is smaller than the specific value. We have to find the function of the length of the branch and the amount of sunshine received.

6 ACKNOWLEDGMENTS This work is supported in part by a Grant in Aid for the 21st Century Center of Excellence from the Ministry of Education, Culture, Sport, Science and Technology in Japan. REFERENCES [1] Aristid Lindenmayer, Mathematical Models for Cellular Interaction in Development, Part I and part II, J. Theoretical Biology, Vol.18, pp , [2] Aristid Lindenmayer, Przemyslaw Prusinkiewicz, The Algorithmic Beauty of Plants, Springer-Verlag, New York, [3] Oliver Deussen, Pat Hanrahan, Bernd Lintermann, Rodomir Mech, Matt Pharr, Przemyslaw Prusinkiewicz, Realistic Modeling and Rendering of Plant Ecosystem, SIGGRAPH 98 Proceedings, pp , [4] Radmir Mech, Przemyslaw Prusinkiewicz, Visual Models of Plants Interacting with Their Environment, SIGGRAPH 96 Proceedings, pp , [5] Katsuhiko Onishi, Shoichi Hasuike, Yoshifumi Kitamura, Fumio Kishino, Interactive Modeling of Trees by Using Growth Simulation, Proc. ACM Symp. Virtual Reality Software and Technology, pp.66-72, 2003.

A STABLE MODELING OF LARGE PLANT ECOSYSTEMS

A STABLE MODELING OF LARGE PLANT ECOSYSTEMS ICCVG 2002 Zakopane, 25-29 Sept. 2002 Bedřich Beneš ITESM Campus Ciudad de México, Mexico City beda@campus.ccm.itesm.mx A STABLE MODELING OF LARGE PLANT ECOSYSTEMS Abstract. The focus of this paper is

More information

APPROACH GEOMETRY/IMAGE FOR RENDERING FOREST IN REAL TIME

APPROACH GEOMETRY/IMAGE FOR RENDERING FOREST IN REAL TIME APPROACH GEOMETRY/IMAGE FOR RENDERING FOREST IN REAL TIME ABBAS FAYçAL 1 and Med CHAOUKI BABAHENINI 2 1 Department of Computer, Mohamed Khider University, BISKRA, ALGERIA abbas.faycal@gmail.com 2 Department

More information

Topics. Recursive tree models. Procedural approach L-systems. Image-based approach. Billboarding

Topics. Recursive tree models. Procedural approach L-systems. Image-based approach. Billboarding Plant Modeling Topics Recursive tree models Billboarding Procedural approach L-systems Image-based approach Tree Model The structure of a tree Trunk (linkage) Branches (linkage, child of trunk node) Leaves/Buds/flowers/fruit

More information

Animating Plant Growth in L-System By Parametric Functional Symbols

Animating Plant Growth in L-System By Parametric Functional Symbols Animating Plant Growth in L-System By Parametric Functional Symbols Somporn Chuai-aree, Suchada Siripant, and Chidchanok Lursinsap Advanced Virtual and Intelligent Computing Center (AVIC) Department of

More information

POPULATION BASED PROCEDURAL ARTIFICIAL CITY GENERATION USING BETA DISTRIBUTION. Baha ġen, Abdullah ÇAVUġOĞLU, Haldun GÖKTAġ and Nesrin AYDIN

POPULATION BASED PROCEDURAL ARTIFICIAL CITY GENERATION USING BETA DISTRIBUTION. Baha ġen, Abdullah ÇAVUġOĞLU, Haldun GÖKTAġ and Nesrin AYDIN Mathematical and Computational Applications, Vol. 17, No. 1, pp. 9-17, 01 POPULATION BASED PROCEDURAL ARTIFICIAL CITY GENERATION USING BETA DISTRIBUTION Baha ġen, Abdullah ÇAVUġOĞLU, Haldun GÖKTAġ and

More information

CSE 167: Lecture #15: Procedural Modeling. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #15: Procedural Modeling. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #15: Procedural Modeling Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Monday, Nov 26: Midterm review in

More information

Smooth Animation for Plant Growth Using Time Embedded Component and Growth Function

Smooth Animation for Plant Growth Using Time Embedded Component and Growth Function Smooth Animation for Plant Growth Using Time Embedded Component and Growth Function Somporn Chuai-Aree 1, Willi Jäger 1, Hans Georg Bock 1, Suchada Siripant 2 1 Interdisciplinary Center for Scientific

More information

8 Special Models for Animation. Chapter 8. Special Models for Animation. Department of Computer Science and Engineering 8-1

8 Special Models for Animation. Chapter 8. Special Models for Animation. Department of Computer Science and Engineering 8-1 Special Models for Animation 8-1 L-Systems 8-2 L-Systems Branching Structures Botany Display geometric substitution turtle graphics Animating plants, animals 8-3 Plant examples http://algorithmicbotany.org/papers/#abop

More information

CSE 167: Lecture #17: Procedural Modeling. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #17: Procedural Modeling. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #17: Procedural Modeling Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Important dates: Final project outline

More information

Space Filling: A new algorithm for procedural creation of game assets

Space Filling: A new algorithm for procedural creation of game assets Space Filling: A new algorithm for procedural creation of game assets Paul Bourke ivec@uwa, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, West Australia 6009. Email: paul.bourke@uwa.edu.au

More information

Interacting Agents with Memory in Virtual Ecosystems

Interacting Agents with Memory in Virtual Ecosystems Interacting Agents with Memory in Virtual Ecosystems Bedřich Beneš Dep. of Computer Science ITESM CCM México D.F. Bedrich.Benes@itesm.mx Javier Abdul Cordóba Dep. of Computer Science ITESM CEM México D.F.

More information

Development of a High Quality Expression System of Natural Elements Using the Real-Time Simulation Method

Development of a High Quality Expression System of Natural Elements Using the Real-Time Simulation Method Journal for Geometry and Graphics Volume 11 (2007), No. 1, 45 57. Development of a High Quality Expression System of Natural Elements Using the Real-Time Simulation Method Tomohiro Fukuda 1, Kazuhiro Sakata

More information

Efficient Rendering of Glossy Reflection Using Graphics Hardware

Efficient Rendering of Glossy Reflection Using Graphics Hardware Efficient Rendering of Glossy Reflection Using Graphics Hardware Yoshinori Dobashi Yuki Yamada Tsuyoshi Yamamoto Hokkaido University Kita-ku Kita 14, Nishi 9, Sapporo 060-0814, Japan Phone: +81.11.706.6530,

More information

Image Based Real-time and Realistic Forest Rendering and Forest Growth Simulation

Image Based Real-time and Realistic Forest Rendering and Forest Growth Simulation Image Based Real-time and Realistic Forest Rendering and Forest Growth Simulation Yi-Kuan Zhang School of Science, Xi an Jiaotong Univ. ykzhang@liama.ia.ac.cn Xiao-Peng Zhang xpzhang@nlpr.ia.ac.cn Olivier

More information

Definitions. Modeling. Primitives. Creating a model of an object, usually out of a collection of simpler primitives

Definitions. Modeling. Primitives. Creating a model of an object, usually out of a collection of simpler primitives Modeling 1 Definitions Modeling Creating a model of an object, usually out of a collection of simpler primitives Primitives A basic shape handled directly the rendering system 2 Boundary Representation

More information

Midterm Project: L-systems in Practice and Theory

Midterm Project: L-systems in Practice and Theory Midterm Project: L-systems in Practice and Theory Joey Gonzales-Dones March 28, 2016 1 Introduction Lindenmayer systems, or L-systems, are systems for algorithmically rewriting a string of characters.

More information

VARIOUS APPROACHES USED IN THE SEISMIC QUALIFICATION OF THE PIPING SYSTEMS IN NUCLEAR FACILITIES. Introduction

VARIOUS APPROACHES USED IN THE SEISMIC QUALIFICATION OF THE PIPING SYSTEMS IN NUCLEAR FACILITIES. Introduction VARIOUS APPROACHES USED IN THE SEISMIC QUALIFICATION OF THE PIPING SYSTEMS IN NUCLEAR FACILITIES A. Musil, P. Markov Stevenson&Associates, Pilsen, Czech Republic Introduction In the firm Stevenson&Associates

More information

A space filling algorithm for generating procedural geometry and texture

A space filling algorithm for generating procedural geometry and texture A space filling algorithm for generating procedural geometry and texture Paul Bourke ivec@uwa, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, West Australia 6009. Email: paul.bourke@uwa.edu.au

More information

Lightweight Corrugated Plate for Cargo box by using DOE and Topology Optimization

Lightweight Corrugated Plate for Cargo box by using DOE and Topology Optimization Lightweight Corrugated Plate for Cargo box by using DOE and Topology Optimization Seung Jun Na, Euy Sik Jeon 1 PG Scholar, Department of Mechanical Engineering, Graduate School, Kongju National University

More information

12.2 Plants. CS Dept, UK

12.2 Plants. CS Dept, UK 1 12.2 Plants - modeling and animation of plants represents an interesting and challenging area - exhibit arbitrary complexity while possessing a constrained branching structure - grow from a single source

More information

Chapter 87 Real-Time Rendering of Forest Scenes Based on LOD

Chapter 87 Real-Time Rendering of Forest Scenes Based on LOD Chapter 87 Real-Time Rendering of Forest Scenes Based on LOD Hao Li, Fuyan Liu and Shibo Yu Abstract Using the stochastic L-system for modeling the trees. Modeling the trees includes two sides, the trunk

More information

CSE 167: Introduction to Computer Graphics Lecture #16: Procedural Modeling

CSE 167: Introduction to Computer Graphics Lecture #16: Procedural Modeling CSE 167: Introduction to Computer Graphics Lecture #16: Procedural Modeling Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Reduced office hours today and tomorrow

More information

Modeling Plant Leaves in Marble-Patterned Colours with Particle Transportation System

Modeling Plant Leaves in Marble-Patterned Colours with Particle Transportation System Modeling Plant Leaves in Marble-Patterned Colours with Particle Transportation System Yodthong Rodkaew, Prabhas Chongstitvatana, Suchada Siripant and Chidchanok Lursinsap. Department of Computer Engineering,

More information

Procedural modeling and shadow mapping. Computer Graphics CSE 167 Lecture 15

Procedural modeling and shadow mapping. Computer Graphics CSE 167 Lecture 15 Procedural modeling and shadow mapping Computer Graphics CSE 167 Lecture 15 CSE 167: Computer graphics Procedural modeling Height fields Fractals L systems Shape grammar Shadow mapping Based on slides

More information

Imaginary Gardens A Model for Imitating Plant Growth

Imaginary Gardens A Model for Imitating Plant Growth Imaginary Gardens A Model for Imitating Plant Growth Anne M. Burns Mathematics Department Long Island University, C.W. Post Campus Brookville, NY 11548, USA Email: aburns@liu.edu Abstract A simplified

More information

Modeling Virtual Gardens by Autonomous Procedural Agents

Modeling Virtual Gardens by Autonomous Procedural Agents Modeling Virtual Gardens by Autonomous Procedural Agents Bedřich Beneš, ITESM Campus Ciudad de México Bedrich.Benes@itesm.mx Javier Abdul Cordóba, Juan Miguel Soto ITESM Campus Estado de México {abdul

More information

The Collision-free Workspace of the Tripteron Parallel Robot Based on a Geometrical Approach

The Collision-free Workspace of the Tripteron Parallel Robot Based on a Geometrical Approach The Collision-free Workspace of the Tripteron Parallel Robot Based on a Geometrical Approach Z. Anvari 1, P. Ataei 2 and M. Tale Masouleh 3 1,2 Human-Robot Interaction Laboratory, University of Tehran

More information

NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN

NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN Vol 4 No 3 NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN Ass Lecturer Mahmoud A Hassan Al-Qadisiyah University College of Engineering hasaaneng@yahoocom ABSTRACT This paper provides some lighting

More information

Aircraft Impact Analysis of New York World Trade Center Tower by Using the ASI-Gauss Technique

Aircraft Impact Analysis of New York World Trade Center Tower by Using the ASI-Gauss Technique Proceeding of ICCES 05, 1-10 December 2005, INDIA 1212 Aircraft Impact Analysis of New York World Trade Center Tower by Using the ASI-Gauss Technique D. Isobe 1 and K. M. Lynn 2 Summary In this paper,

More information

Cooperative Conveyance of an Object with Tethers by Two Mobile Robots

Cooperative Conveyance of an Object with Tethers by Two Mobile Robots Proceeding of the 11th World Congress in Mechanism and Machine Science April 1-4, 2004, Tianjin, China China Machine Press, edited by Tian Huang Cooperative Conveyance of an Object with Tethers by Two

More information

Specular 3D Object Tracking by View Generative Learning

Specular 3D Object Tracking by View Generative Learning Specular 3D Object Tracking by View Generative Learning Yukiko Shinozuka, Francois de Sorbier and Hideo Saito Keio University 3-14-1 Hiyoshi, Kohoku-ku 223-8522 Yokohama, Japan shinozuka@hvrl.ics.keio.ac.jp

More information

Cloth Model Handling by The Combination of Some Manipulations for Draping

Cloth Model Handling by The Combination of Some Manipulations for Draping KEER2014, LINKÖPING JUNE 11-13 2014 INTERNATIONAL CONFERENCE ON KANSEI ENGINEERING AND EMOTION RESEARCH Cloth Model Handling by The Combination of Some Manipulations for Draping Yuko mesuda 1, Shigeru

More information

Ray tracing based fast refraction method for an object seen through a cylindrical glass

Ray tracing based fast refraction method for an object seen through a cylindrical glass 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Ray tracing based fast refraction method for an object seen through a cylindrical

More information

Modeling. Michael Kazhdan ( /657) HB FvDFH Modeling Seashells, Fowler et al. 1992

Modeling. Michael Kazhdan ( /657) HB FvDFH Modeling Seashells, Fowler et al. 1992 Modeling Michael Kazhdan (601.457/657) HB 10.18 10.19 FvDFH 20.2 20.4 Modeling Seashells, Fowler et al. 1992 Modeling How do we... Represent 3D objects in a computer? Construct such representations quickly

More information

CS 4300 Computer Graphics. Prof. Harriet Fell Fall 2012 Lecture 28 November 8, 2012

CS 4300 Computer Graphics. Prof. Harriet Fell Fall 2012 Lecture 28 November 8, 2012 CS 4300 Computer Graphics Prof. Harriet Fell Fall 2012 Lecture 28 November 8, 2012 1 Today s Topics Fractals Mandelbrot Set Julia Sets L-Systems 2 Fractals The term fractal was coined in 1975 by Benoît

More information

Maximum and Minimum Problems

Maximum and Minimum Problems Maximum and Minimum Problems Numbers 1. The sum of two positive numbers is 20. Find the two numbers such that a) the sum of the square is minimum, b) the product of one and the square of the other is maximum.

More information

Structured Dynamical Systems

Structured Dynamical Systems Structured Dynamical Systems Przemyslaw Prusinkiewicz 1 Department of Computer Science University of Calgary Abstract This note introduces the notion of structured dynamical systems, and places L-systems

More information

Interactive Arrangement of Botanical L-System Models

Interactive Arrangement of Botanical L-System Models Interactive Arrangement of Botanical L-System Models Joanna L. Power A.J. Bernheim Brush Przemyslaw Prusinkiewicz y David H. Salesin University of Washington y University of Calgary Abstract In this paper,

More information

The Light Field. Last lecture: Radiometry and photometry

The Light Field. Last lecture: Radiometry and photometry The Light Field Last lecture: Radiometry and photometry This lecture: Light field = radiance function on rays Conservation of radiance Measurement equation Throughput and counting rays Irradiance calculations

More information

Accelerated Ambient Occlusion Using Spatial Subdivision Structures

Accelerated Ambient Occlusion Using Spatial Subdivision Structures Abstract Ambient Occlusion is a relatively new method that gives global illumination like results. This paper presents a method to accelerate ambient occlusion using the form factor method in Bunnel [2005]

More information

Seamless Integration of Stylized Renditions in Computer-Generated Landscape Visualization

Seamless Integration of Stylized Renditions in Computer-Generated Landscape Visualization Seamless Integration of Stylized Renditions in Computer-Generated Landscape Visualization Liviu Coconu 1, Carsten Colditz 2, Hans-Christian Hege 1 and Oliver Deussen 2 Abstract We propose enhancements

More information

Improvement of Accuracy for 2D Marker-Based Tracking Using Particle Filter

Improvement of Accuracy for 2D Marker-Based Tracking Using Particle Filter 17th International Conference on Artificial Reality and Telexistence 2007 Improvement of Accuracy for 2D Marker-Based Tracking Using Particle Filter Yuko Uematsu Hideo Saito Keio University 3-14-1 Hiyoshi,

More information

Recover-Forwarding Method in Link Failure with Pre-established Recovery Table for Wide Area Ethernet

Recover-Forwarding Method in Link Failure with Pre-established Recovery Table for Wide Area Ethernet Recover-Forwarding Method in Link Failure with Pre-established Recovery Table for Wide Area Ethernet Midori Terasawa, Masahiro Nishida, Sho Shimizu, Yutaka Arakawa, Satoru Okamoto and Naoaki Yamanaka Department

More information

THE EFFECT OF THE FREE SURFACE ON THE SINGULAR STRESS FIELD AT THE FATIGUE CRACK FRONT

THE EFFECT OF THE FREE SURFACE ON THE SINGULAR STRESS FIELD AT THE FATIGUE CRACK FRONT Journal of MECHANICAL ENGINEERING Strojnícky časopis, VOL 67 (2017), NO 2, 69-76 THE EFFECT OF THE FREE SURFACE ON THE SINGULAR STRESS FIELD AT THE FATIGUE CRACK FRONT OPLT Tomáš 1,2, POKORNÝ Pavel 2,

More information

A Study of Generating Weathered Patterns by Using Fractal Functions

A Study of Generating Weathered Patterns by Using Fractal Functions A Study of Generating Weathered Patterns by Using Fractal Functions N. Mukai, H. Shigeoka and M. Kosugi Graduate School of Engineering, Musashi Institute of Technology, E-Mail: mukai@cs.musashi-tech.ac.jp

More information

Genetic L-System Programming: Breeding and Evolving Artificial Flowers with Mathematica

Genetic L-System Programming: Breeding and Evolving Artificial Flowers with Mathematica Genetic L-System Programming: Breeding and Evolving Artificial Flowers with Mathematica C. Jacob, jacob@informatik.uni-erlangen.de, Chair of Programming Languages, Department of Computer Science, University

More information

Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds

Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds 1 Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds Takeru Niwa 1 and Hiroshi Masuda 2 1 The University of Electro-Communications, takeru.niwa@uec.ac.jp 2 The University

More information

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA Tomoki Hayashi 1, Francois de Sorbier 1 and Hideo Saito 1 1 Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi,

More information

Ray Tracing. Kjetil Babington

Ray Tracing. Kjetil Babington Ray Tracing Kjetil Babington 21.10.2011 1 Introduction What is Ray Tracing? Act of tracing a ray through some scene Not necessarily for rendering Rendering with Ray Tracing Ray Tracing is a global illumination

More information

A New Self-Collision Detection Method for Cloth Simulation

A New Self-Collision Detection Method for Cloth Simulation Send Orders for Reprints to reprints@benthamscience.ae 386 The Open Electrical & Electronic Engineering Journal, 205, 9, 386-392 A New Self-Collision Detection Method for Cloth Simulation Open Access Fengquan

More information

Projection simulator to support design development of spherical immersive display

Projection simulator to support design development of spherical immersive display Projection simulator to support design development of spherical immersive display Wataru Hashimoto, Yasuharu Mizutani, and Satoshi Nishiguchi Faculty of Information Sciences and Technology, Osaka Institute

More information

1-2-tree: Semantic Modeling and Editing of Trees

1-2-tree: Semantic Modeling and Editing of Trees 1-2-tree: Semantic Modeling and Editing of Trees Björn Ganster, Reinhard Klein Universität Bonn Email: {ganster,rk}@uni-bonn.de Abstract In computer graphics, procedural methods and L- systems are common

More information

Development of a Simulation Method of Three-Dimensional Ultrafine Processing by Femtosecond Laser Shunsuke Nabetani 1, a, Hideki Aoyama 1, b * 1, 2, c

Development of a Simulation Method of Three-Dimensional Ultrafine Processing by Femtosecond Laser Shunsuke Nabetani 1, a, Hideki Aoyama 1, b * 1, 2, c Development of a Simulation Method of Three-Dimensional Ultrafine Processing by Femtosecond Laser Shunsuke Nabetani 1, a, Hideki Aoyama 1, b * 1,, c, Masahiro Ueda Yoshinori Ogawa 1,, d 1,, 3, e, and Kazuo

More information

Design Visualization with Autodesk Alias, Part 2

Design Visualization with Autodesk Alias, Part 2 Design Visualization with Autodesk Alias, Part 2 Wonjin John Autodesk Who am I? Wonjin John is an automotive and industrial designer. Born in Seoul, Korea, he moved to United States after finishing engineering

More information

Open Access The Three-dimensional Coding Based on the Cone for XML Under Weaving Multi-documents

Open Access The Three-dimensional Coding Based on the Cone for XML Under Weaving Multi-documents Send Orders for Reprints to reprints@benthamscience.ae 676 The Open Automation and Control Systems Journal, 2014, 6, 676-683 Open Access The Three-dimensional Coding Based on the Cone for XML Under Weaving

More information

Modeling Leaf Shapes Using L-systems and Genetic Algorithms

Modeling Leaf Shapes Using L-systems and Genetic Algorithms Modeling Leaf Shapes Using L-systems and Genetic Algorithms Yodthong Rodkaew Intelligent System Lab (ISL), Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University 43718130@student.chula.ac.th

More information

MODELING AND HIERARCHY

MODELING AND HIERARCHY MODELING AND HIERARCHY Introduction Models are abstractions of the world both of the real world in which we live and of virtual worlds that we create with computers. We are all familiar with mathematical

More information

Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001

Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001 Computer graphics Assignment 5 1 Overview Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001 In this assignment you will implement the camera and several primitive objects for a ray tracer. We

More information

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19 Lecture 17: Recursive Ray Tracing Where is the way where light dwelleth? Job 38:19 1. Raster Graphics Typical graphics terminals today are raster displays. A raster display renders a picture scan line

More information

Using Genetic Algorithms to Improve the Visual Quality of Fractal Plants Generated with CSG-PL-Systems

Using Genetic Algorithms to Improve the Visual Quality of Fractal Plants Generated with CSG-PL-Systems Using Genetic Algorithms to Improve the Visual Quality of Fractal Plants Generated with CSG-PL-Systems Christoph Traxler and Michael Gervautz Institute of Computer Graphics Vienna University of Technology,

More information

A New Vision of Fractal Geometry with Triangulation Algorithm

A New Vision of Fractal Geometry with Triangulation Algorithm A New Vision of Fractal Geometry with Triangulation Algorithm Yasser M. Abd El-Latif, Fatma S.Abousaleh, and Daoud S. S. Abstract L-system is a tool commonly used for modeling and simulating the growth

More information

Ray Tracer Due date: April 27, 2011

Ray Tracer Due date: April 27, 2011 Computer graphics Assignment 4 1 Overview Ray Tracer Due date: April 27, 2011 In this assignment you will implement the camera and several primitive objects for a ray tracer, and a basic ray tracing algorithm.

More information

Exploiting Depth Camera for 3D Spatial Relationship Interpretation

Exploiting Depth Camera for 3D Spatial Relationship Interpretation Exploiting Depth Camera for 3D Spatial Relationship Interpretation Jun Ye Kien A. Hua Data Systems Group, University of Central Florida Mar 1, 2013 Jun Ye and Kien A. Hua (UCF) 3D directional spatial relationships

More information

Digital Halftoning Algorithm Based o Space-Filling Curve

Digital Halftoning Algorithm Based o Space-Filling Curve JAIST Reposi https://dspace.j Title Digital Halftoning Algorithm Based o Space-Filling Curve Author(s)ASANO, Tetsuo Citation IEICE TRANSACTIONS on Fundamentals o Electronics, Communications and Comp Sciences,

More information

Приложение 34 к приказу 949 от 29 сентября 2017 г. MOSCOW AVIATION INSTITUTE (NATIONAL RESEARCH UNIVERSITY)

Приложение 34 к приказу 949 от 29 сентября 2017 г. MOSCOW AVIATION INSTITUTE (NATIONAL RESEARCH UNIVERSITY) Приложение 34 к приказу 949 от 29 сентября 2017 г. MOSCOW AVIATION INSTITUTE (NATIONAL RESEARCH UNIVERSITY) The Program for Entrance Exam in Mathematics MAI 2018 The first section lists the basic mathematical

More information

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming L1 - Introduction Contents Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming 1 Definitions Computer-Aided Design (CAD) The technology concerned with the

More information

Affective Scene Generation

Affective Scene Generation Affective Scene Generation Carl Hultquist Department of Computer Science University of Cape Town Cape Town, South Africa James Gain Department of Computer Science University of Cape Town Cape Town, South

More information

Collision Detection. Pu Jiantao.

Collision Detection. Pu Jiantao. Collision Detection Pu Jiantao. 12-09 Content Introduction CD with rays Dynamic CD using BSP Trees Hierarchical Method OBBTree Method Some Other Topics 12-1717 2 Introduction Collision Collision is a fundamental

More information

[1] involuteσ(spur and Helical Gear Design)

[1] involuteσ(spur and Helical Gear Design) [1] involuteσ(spur and Helical Gear Design) 1.3 Software Content 1.3.1 Icon Button There are 12 icon buttons: [Dimension], [Tooth Form], [Accuracy], [Strength], [Sliding Graph], [Hertz Stress Graph], [FEM],

More information

A SYMMETRIC THREE-DIMENSIONAL MODEL OF THE HYPERCUBE

A SYMMETRIC THREE-DIMENSIONAL MODEL OF THE HYPERCUBE Symmetry: Culture and Science Vol. 16, No.1, page_first-page_last, 2005 A SYMMETRIC THREE-DIMENSIONAL MODEL OF THE HYPERCUBE László Vörös Architect, b. Mohács, Hungary, 1955. Address: Institute of Architecture,

More information

Find the maximum value and minimum values of f(x) for x in [0, 4]. Graph f(x) to check your answers. ( answer)

Find the maximum value and minimum values of f(x) for x in [0, 4]. Graph f(x) to check your answers. ( answer) Exercises 6.1 Ex 6.1.1 Let f(x) = { 1 + 4x x2 (x + 5)/2 for x 3 for x > 3 Find the maximum value and minimum values of f(x) for x in [0, 4]. Graph f(x) to check your answers. max at (2, 5), min at (0,

More information

Modulobe: A New 3D-Model Creation Platform for Complex Motion Design

Modulobe: A New 3D-Model Creation Platform for Complex Motion Design Modulobe: A New 3D-Model Creation Platform for Complex Motion Design Koichiro Eto 1, Masahiro Hamasaki 1, Kuniaki Watanabe 1, Yoshinori Kawasaki 1, Yutaka Matsuo 2, and Takuichi Nishimura 1 1 National

More information

Generate Leaf Shapes using L-system and Genetic Algorithms

Generate Leaf Shapes using L-system and Genetic Algorithms Generate Leaf Shapes using L-system and Genetic Algorithms Yodthong Rodkaew 1, Suchada Siripant 2, Chidchanok Lursinsap 3 and Prabhas Chongstitvatana 4 Department of Computer Engineering Faculty of Engineering

More information

Koch-Like Fractal Images

Koch-Like Fractal Images Bridges Finland Conference Proceedings Koch-Like Fractal Images Vincent J. Matsko Department of Mathematics University of San Francisco vince.matsko@gmail.com Abstract The Koch snowflake is defined by

More information

Virtual Interaction System Based on Optical Capture

Virtual Interaction System Based on Optical Capture Sensors & Transducers 203 by IFSA http://www.sensorsportal.com Virtual Interaction System Based on Optical Capture Peng CHEN, 2 Xiaoyang ZHOU, 3 Jianguang LI, Peijun WANG School of Mechanical Engineering,

More information

Artificial Mosaics with Irregular Tiles BasedonGradientVectorFlow

Artificial Mosaics with Irregular Tiles BasedonGradientVectorFlow Artificial Mosaics with Irregular Tiles BasedonGradientVectorFlow Sebastiano Battiato, Alfredo Milone, and Giovanni Puglisi University of Catania, Image Processing Laboratory {battiato,puglisi}@dmi.unict.it

More information

A Sketch-and-Grow Interface for Botanical Tree Modeling

A Sketch-and-Grow Interface for Botanical Tree Modeling A Sketch-and-Grow Interface for Botanical Tree Modeling Nordin Zakaria Computer & Info Science Department, Universiti Teknologi PETRONAS, Malaysia nordinzakaria@petronas.com.my Abstract. We introduce in

More information

INTERNATIONAL DISTRIBUTED HYBRID SIMULATION OF 2-SPAN CONTINUOUS BRIDGE

INTERNATIONAL DISTRIBUTED HYBRID SIMULATION OF 2-SPAN CONTINUOUS BRIDGE INTERNATIONAL DISTRIBUTED HYBRID SIMULATION OF 2-SPAN CONTINUOUS BRIDGE Y. Takahashi 1, H. Iemura 2, S.A. Mahin 3 and G.L. Fenves 4 1 Associate Professor, Disaster Prevention Research Institute, Kyoto

More information

Name: Period: 2018 Geometry Spring Final Exam Review

Name: Period: 2018 Geometry Spring Final Exam Review 2018 Geometry Spring Final Exam Review 1. Find the number of lunch combinations that can be created if you order a soup, sandwich, drink and dessert. There are 4 soup choices, 5 sandwich choices, 3 drink

More information

Local Modification of Subdivision Surfaces Based on Curved Mesh

Local Modification of Subdivision Surfaces Based on Curved Mesh Local Modification of Subdivision Surfaces Based on Curved Mesh Yoshimasa Tokuyama Tokyo Polytechnic University tokuyama@image.t-kougei.ac.jp Kouichi Konno Iwate University konno@cis.iwate-u.ac.jp Junji

More information

A method for generating stochastic 3D tree models with Python in Autodesk Maya

A method for generating stochastic 3D tree models with Python in Autodesk Maya Professional paper http://doi.org/10.24867/jged-2016-2-025 method for generating stochastic 3D tree models with Python in utodesk Maya bstract This paper introduces a method for generating 3D tree models

More information

Determination of Angle of Attack (AOA) for Rotating Blades

Determination of Angle of Attack (AOA) for Rotating Blades Downloaded from orbit.dtu.dk on: Sep 1, 218 Determination of Angle of Attack (AOA) for Rotating Blades Shen, Wen Zhong; Hansen, Martin Otto Laver; Sørensen, Jens Nørkær Published in: Wind Energy Publication

More information

Virtual Sculpting and Virtual Woodblock Printing as a Tool for Enjoying Creation of 3D Shapes

Virtual Sculpting and Virtual Woodblock Printing as a Tool for Enjoying Creation of 3D Shapes Review Forma, 15, 29 39, 2000 Virtual Sculpting and Virtual Woodblock Printing as a Tool for Enjoying Creation of 3D Shapes S. MIZUNO 1, M. OKADA 2 and J. TORIWAKI 3 1 Computer Center, Toyohashi University

More information

Multi-view Surface Inspection Using a Rotating Table

Multi-view Surface Inspection Using a Rotating Table https://doi.org/10.2352/issn.2470-1173.2018.09.iriacv-278 2018, Society for Imaging Science and Technology Multi-view Surface Inspection Using a Rotating Table Tomoya Kaichi, Shohei Mori, Hideo Saito,

More information

MESH-BASED PARAMETRIZED L-SYSTEMS AND GENERALIZED SUBDIVISION FOR GENERATING COMPLEX GEOMETRY

MESH-BASED PARAMETRIZED L-SYSTEMS AND GENERALIZED SUBDIVISION FOR GENERATING COMPLEX GEOMETRY International Journal of Shape Modeling c World Scientific Publishing Company MESH-BASED PARAMETRIZED L-SYSTEMS AND GENERALIZED SUBDIVISION FOR GENERATING COMPLEX GEOMETRY ROBERT F. TOBLER VRVis Research

More information

3D Automatic Building Footprints Generation

3D Automatic Building Footprints Generation 3D Automatic Building Footprints Generation Mohamed Shaarawy Ahmed Kaboudan Shaimaa Toriah Abstract Virtual building modeling became an increasingly urgent need for computer graphics, simulation, games,

More information

Graphics and Games. Penny Rheingans University of Maryland Baltimore County

Graphics and Games. Penny Rheingans University of Maryland Baltimore County Graphics and Games IS 101Y/CMSC 104Y First Year IT Penny Rheingans University of Maryland Baltimore County Announcements Quizzes Project Questions Other questions Questions about Reading Asst Games with

More information

Stable Grasp and Manipulation in 3D Space with 2-Soft-Fingered Robot Hand

Stable Grasp and Manipulation in 3D Space with 2-Soft-Fingered Robot Hand Stable Grasp and Manipulation in 3D Space with 2-Soft-Fingered Robot Hand Tsuneo Yoshikawa 1, Masanao Koeda 1, Haruki Fukuchi 1, and Atsushi Hirakawa 2 1 Ritsumeikan University, College of Information

More information

Intro to Ray-Tracing & Ray-Surface Acceleration

Intro to Ray-Tracing & Ray-Surface Acceleration Lecture 12 & 13: Intro to Ray-Tracing & Ray-Surface Acceleration Computer Graphics and Imaging UC Berkeley Course Roadmap Rasterization Pipeline Core Concepts Sampling Antialiasing Transforms Geometric

More information

Image Based Lighting with Near Light Sources

Image Based Lighting with Near Light Sources Image Based Lighting with Near Light Sources Shiho Furuya, Takayuki Itoh Graduate School of Humanitics and Sciences, Ochanomizu University E-mail: {shiho, itot}@itolab.is.ocha.ac.jp Abstract Recent some

More information

Image Based Lighting with Near Light Sources

Image Based Lighting with Near Light Sources Image Based Lighting with Near Light Sources Shiho Furuya, Takayuki Itoh Graduate School of Humanitics and Sciences, Ochanomizu University E-mail: {shiho, itot}@itolab.is.ocha.ac.jp Abstract Recent some

More information

and a 3D-scanner. The laser generator continues to generate one khz pulse laser, while the 3D-scanner controls the direction of the laser beam and the

and a 3D-scanner. The laser generator continues to generate one khz pulse laser, while the 3D-scanner controls the direction of the laser beam and the ASIAGRAPH 2009 PROCEEDINGS Billboard representation for Laser-Plasma Scanning 3D Display Hiroyo Ishikawa 1 /Graduate School of Science and Technology, Keio University, Hideo Saito 2 / Department of Information

More information

Texture Mapping II. Light maps Environment Maps Projective Textures Bump Maps Displacement Maps Solid Textures Mipmaps Shadows 1. 7.

Texture Mapping II. Light maps Environment Maps Projective Textures Bump Maps Displacement Maps Solid Textures Mipmaps Shadows 1. 7. Texture Mapping II Light maps Environment Maps Projective Textures Bump Maps Displacement Maps Solid Textures Mipmaps Shadows 1 Light Maps Simulates the effect of a local light source + = Can be pre-computed

More information

Hierarchical Image-Based Rendering Using Texture Mapping Hardware

Hierarchical Image-Based Rendering Using Texture Mapping Hardware UCRL-JC-132830 PREPRINT Hierarchical Image-Based Rendering Using Texture Mapping Hardware Nelson Max This paper was prepared for submittal to the 10th Eurographics Workshop on Rendering Granada, Spain

More information

Homework Set 3 Due Thursday, 07/14

Homework Set 3 Due Thursday, 07/14 Homework Set 3 Due Thursday, 07/14 Problem 1 A room contains two parallel wall mirrors, on opposite walls 5 meters apart. The mirrors are 8 meters long. Suppose that one person stands in a doorway, in

More information

PantaRay: Fast Ray-traced Occlusion Caching of Massive Scenes J. Pantaleoni, L. Fascione, M. Hill, T. Aila

PantaRay: Fast Ray-traced Occlusion Caching of Massive Scenes J. Pantaleoni, L. Fascione, M. Hill, T. Aila PantaRay: Fast Ray-traced Occlusion Caching of Massive Scenes J. Pantaleoni, L. Fascione, M. Hill, T. Aila Agenda Introduction Motivation Basics PantaRay Accelerating structure generation Massively parallel

More information

STRUCTURAL REPRESENTATION OF PERSONAL EVENTS

STRUCTURAL REPRESENTATION OF PERSONAL EVENTS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIV-5/W10 STRUCTURAL REPRESENTATION OF PERSONAL EVENTS Masashi Toda a, Takeshi Nagasaki a, Toshimasa

More information

Modeling of Humanoid Systems Using Deductive Approach

Modeling of Humanoid Systems Using Deductive Approach INFOTEH-JAHORINA Vol. 12, March 2013. Modeling of Humanoid Systems Using Deductive Approach Miloš D Jovanović Robotics laboratory Mihailo Pupin Institute Belgrade, Serbia milos.jovanovic@pupin.rs Veljko

More information

Approximate Image-Based Tree-Modeling using Particle Flows

Approximate Image-Based Tree-Modeling using Particle Flows Erschienen in: ACM Transactions on Graphics (TOG) ; 26 (2007), 3. - 88 https://dx.doi.org/10.1145/1276377.1276487 Approximate Image-Based Tree-Modeling using Particle Flows Boris Neubert Thomas Franken

More information

Computer Science 173 Fall, Project 3: Lindenmayer Systems Due in class on Monday, September 28

Computer Science 173 Fall, Project 3: Lindenmayer Systems Due in class on Monday, September 28 Computer Science 173 all, 2015 Project 3: Lindenmayer Systems Due in class on Monday, September 28 Work on this project with a partner. Create a new directory for this project, copy the Makefile from the

More information