Ramasamy Krishnan Boeing Electronics High Technology Center Seattle, Washington

Size: px
Start display at page:

Download "Ramasamy Krishnan Boeing Electronics High Technology Center Seattle, Washington"

Transcription

1 Conventional Binary Number System (BNS) versus Residue Number System (RNS) Digital Signal processing Architecture Suitable for Complex Digital Filtering Ramasamy Krishnan Boeing Electronics High Technology Center Seattle, Washington Abstract In general, the number of active devices used to build a circuit, decides the power consumption and the area of the circuit in the VLSI technology. Hence, algorithms are developed to compute the number of active devices for residue number system (RNS) and binary number system (BNS) signal processing architectures. The pre-charged CMOS technology is used in order to build the filter architecture. The ROM lookup table and 2s complement multiplier are used as computational cells in the RNS and BNS respectively. A direct implementation transversal systolic filter architecture is considered in RNS and BNS algorithms. 1. Introduction In the last two decades, considerable efforts have been made to develop computationally high speed algorithms to process digital signals. Mainly these algorithms are based on the Residue Number System (RNS) arithmetic computed over finite fields and rings and the conventional Binary Number System(BNS) arithmetic. If the BNS based algorithms are employed in implementing the hardware to process the digital signals, a comparatively large amount of time will be spent in the multiplication operation, and large register lengths will be required. One of the problems in implementing the digital filter algorithms using the conventional BNS is the possible accumulation of round-off and truncation error during computation because of finite word length constraint.[5]. In RNS, the binary operations of addition or subtraction have no inter-digit carries or borrows, and multiplication does not generate partial products. In fact, in some hardware realizations multiplication and addition have identical speed and cost, and, in certain cases, multiplication by constant can he a 'free' operation. The primary advantage of the RNS is that the bir.z:y operations of addition, subtraction and multiplication can he performed on the respective residue digits in the L-independent parallel channels. The over head is the coding and decoding. Hence, the RNS is of particular interest in digital signal processing. In the early ~O'S, the RNS was extensively investigated and demonstrated for the use of general purpose high speed computer applications. The early investigators such as savaboda and valach[3] were interested in using the RNS for the design and construction of general purpose computer which resulted in the EPOS general purpose computer. Residue technique did not achieve wide spread usage at that time because the ferrite core memories were too expensive and bulky. In addition, the RNS has difficulties in implementing operations of division, scaling, sign detection and magnitude comparison. Further more, there were not efficient algorithms for coding and decoding at that time. Although many shortcomings still exists in applying the RNS to general purpose computer design, the techniques were well suited to the implementation of digital signal processing algorithms. In the RNS, once the coefficients and input data are quantized, there is no computational error due to round-off or truncation. However, when implementing the IIR filter using RNS algorithms, scaling is necessary to keep the data with in the limited dynamic range. It is reported in [2], that the RNS based recursive filter will provide better signal to noise ratio than the conventional filters due to the quantization error. A tremendous amount of research has been published in this field[6] In this paper, we are computing the architectural requirements in terms of power for the RNS and BNS based filters, In order to do this computation, a transversal filter architecture to process a continuous stream of incoming complex data at a rate of MHz. Recently, it has been shown that complex multiplication over Complex Quadratic Rings can be reduced to 2 base field multiplications, with the proviso that the field modulus is of the form 4K+1. This work was directed towards the study of RNS architectures in which parallel independent operations on several small quadratic rings are used to produce a result over a ring isomorphic to the direct sum of smaller rings. The resulting number 23ACSSC MAPLE PRESS 873

2 system has been termed the quadratic Residue Number System (QRNS). The results, however, also apply to operations computed over a single ring. These results have been extended to the Modified Quadratic Residue Number System (MQRNS) with ring operations for moduli of any form[4]. 2. Systolic Implementation of Direct Transversal Filter Architecture in QRNS The transversal filter can be described by the inputoutput relationship: N- 1 y(n)= Z h(k). x(n-k) for,1... N-1. (1) where (x(n-k)) are the input samples, (y(n)) are the output samples, h(k) are the filter coefficients and N is the order of the filter. The direct computation of (1) can be considered in the QRNS as follows: YI (n) = YI mi (n) 0 YI mz d YI ml (n) The direct implementation the systolic architecture in the QRNS is shown in fig-i. The main computational element here is the look-up table modules. In the following section we have developed algorithms to compute power for look-up table module. xlrl The element pairs of the input samples and the filter coefficients can be computed as follows: Let h(k)= a(k) + ip(k) be the impulse response and x(n-k)= y (n-k)+ is(n-k) be the complex sequence of the FIR filter where i=d-i is a complex operator. Let the operator j for the QRNS can be computed using jzt = -1 mod mt and IS [ 1.2,._... 1 and mt is of the form 4Kt+l Mk)t = I awt + jtp(k)t lmt x(n-k)t= I y (n-k)t+ jt6(n-k)t Imt (2) h*(k)t =I a(k)t - jtp(k), Imt x*(n-k)t = I y (n-k)t-jt6(n-k)t lmt The quadratic residue pairs for the output of the FIR filter can be computed as: N-1 Q(n)t =I Z h(k)t. x(n-k)tlmt (4) N-1 Q*(n)t =I Z h*(k)t. x*(n-k)tlmt (5) The real and imaginary parts of the FIR filter output can be computed as: (3) Figure 1. Syrtolrc Architecture for Complex FIR Filter in the QRNS 4.Power Computation in look-up table Computational Modules The memory cells to store '0 and '1' in CMOS are shown in fig-2. It uses a precharge principle. The output bit lines are precharged low or '0 during QI. e 4 0 s U 81 YR(n)t = I 2-l. (Q(n)t + Q*(n)t)lmt (6) YI(n)t = jt-l(q(n)t-q*(n),)l,t (7) For the mapping the CRT can he used on the real and imaginary part as follows: YR (n) = YR mi (n) d YR "2 YR ml (n) (8) To Store Logical 0 To store logical 1 Figurel. Memory cells 874

3 During, the selected word line goes low (all others remain 1, implying that a precharge decoder to select word lines can be used). If a p-channel transistor is placed at the intersection of the bit-line and the selected word line, a 1 will be transmitted to the bit line; otherwise, 0 will be transmitted (see fig-3). 0.WORD is the logical output from the decode (Supporting) circuits. Loak~upTSle artay figure 3. CMOS Look-up Table Module for an 8~bit modulus In CMOS ROM, there are two components that establish the amount of power dissipated. They are: 1. Static power (P,) - due to leakage current 2. Dynamic dissipation (pd)- due to: i. switching transients current ii. Charging, discharging of load capacitance Therefore the total power dissipation =Pt = Ps + Pd (9) Among the two, the second one is predominant factor, but if the number of look-up tables increases which is always the case in the RNS architecture, we cannot completely neglect the first one. Therefore, the static power can be computed as: n Ps= Z Lecage current x VDD (10) I where n is the number of devices and the dynamic power is: Pd = CL VDD~ F (11) where F = Frequency of operation CL = Load Capacitance Eqn.(9) can be used to compute the total power dissipation in a ROM look-up table module. Once the technology and the type of drive is fixed, we can obtain the value of CL as shown in [7]. Since the static power is proportional to number of active devices, it can be computed for the look-up table, for any given prime modulo mi, i E {1,2... L). Note: The following computation ts performed predominantly for the storage array for a prime moduli. For the decoder or the supporting circuit the number of active devices based on the gate counts. Let ni = number of bits used to represent any prime modulus mi, then ni = r logz mi 1 (12) where r.1 represents the ceiling function for the integer truncation. That is ni should be the next integer value of log2 mi. Let Li = 2"' - mi and N; = number of the memory locations in modulo mi look- up table. If Li = 0, then Ni' = 22ni and if Li # 0 then Li- 1 N; = 22ni. z {.(ZK +I)) (13) K=O The proposed memory cell can be used in a ROM array with precharged n-devices to store the 'Os' and so we need only p-devices in combination of the above n-devices to store 'Is'. That means, we need not have separate location to store a word with all 'Os'. Based on this, the number of memory locations needed to store the rest of the words in the look-up table can be computed as follows: Let NiA/S and NiM be the number of memory locations needed to implement the modulo mi addersubtractor and multiplier respectively. Then for adder-subtractor NiA/S = N(. mi (14) and for multiplication NiM = Ni' - [ Zni + - (2Ki + 3)l (15) where Ki = Li - 1 and ki =0, when Li - 1 < I. The number of devices required for adderlsubtractor look-up table is: N. ai - N.AIS, ni I and for the multiplier N,~ = N ~M. ni (16) The static power in the look-up table is NG or Nmi P,M= Z Lecage current x VDD (17) 1 PdM = CL VDD2 F (18) The dynamic power in the look-up table is: The decoder circuit will be implemented using logic gates. Large number of gates with many inputs ( for example if it exceeds 3 or 4) would be difficult to implement in any technology. Therefore the first level of decoder circuits may be implemented either using 2 or 4 input logic gates and the remaining 875

4 levels may he implemented using two input gates (see fig-3). In this approach, to compute the access time of the memory, the critical path of the signal should be traced and the effective capacitance can he computed using the procedure Lct us consider first the horizontal decoder circuits and the same will be repeated for the vertical decoder circuits. If ni is greater than 2 hits, then the total number of gates Ng = N1 + N2 + NI (19) where NI = no. of gates in the first level N2 = no. of 2 input gates in the rest of the levels N' = no. of gates to address the table locations. Therefore the total number of gates for the both decoder circuits will be 2Ng. The total number of devices in the decoders is ND = nng + 2(N2 + N') (20) where n is the total number of inputs to the first level of the decoder. Therefore the static power in the decoder circuit ND P;D = Z Leakage current X VDD i=l The dynamic power consumed by the decoder circuit can be computed by computing the load capacitance CL using the method proposed in [7,81. The dynamic power: PdD CL. VDD2. F The total power consumed by the computational look-up table module p = PsM + PdM + 2( PsD f PdD) (21) In the next section the implementation of BNS architecture has been presented. 4. Systolic Implementation of Direct Transversal Filter Architecture in BNS A one bit multiplier and adder cellfor the high speed binary multiplier circuit is shown in fig-4 [l]. The cell uses 23 transistor and the cell draws no DC current. - S > ~, The number of cells required for a n-bit multplier will be n2. Number of devices required for a binary 16 bit multplier can be easily computed. Using this binary multiplier, the implementation of transversal filter using systolic architecture in the BNS is shown in fig-5. The static power consumption can he computed using (IO). The dynamic power can be computed using the procedure given in section 3. Figure 5. Syrtolir. Architecture for Complex FIR filter in ENS 5.Conclusion Implementation of transversal filter in quadratic residue number system and binary number system has been presented. A step by step pruceudre has been developed to compute the number of devices in both architecture for precharged CMOS technology. Algorithms have developed to compute the static and dynamic power in the case of the RNS and BNS architectures. Figure4. One bit multiplierandadder cell 876

5 REFERENCES [I]. J.lwamura, S.Taguchi, K. Suganuma, M.Kimura, H.Tango K.lchinose and T. Sato," A High speed and low power CMOSISOS multiplier-accumulator". Micro electronics Journal, Vol. 14. No , pp G.A Jullien." Residue Number Scaling and other Operations Using ROM Arrays", IEEE trans. on Computers. Vol. c.27. No.4, April 1978, pp A.Savoboda and M.Valach," Decimal Arithmetic Unit," Stroje Na Zpracovani, Vol. 8, Nakl. CSAU, Praha A.V.Oppenheim and C.I.Weinstein." Effects of finite register length in digital filtering and fast fourie,r transform." IEEE Proc. Vol.60, pp , Aug M.A.Soderstrand. W.K.Jenkins, G.A.Jullien and F.1.Taylor," Residue Number System Arithmetic: Modern Applications in Digital Signal Processing", IEEE press, 1YX6, New York. (71 C.Mead and L.Conway," Introduction to VLSl Systems", Addison Wesley [El A.Mukherjee." Introduction to nmos & CMOS VLSl System Design", Prentice-Hall R.Krishnan, G.A.lullien and W.C.Miller," Complex Digital Signal Processing Usong Quadratic Residue Number Systems," IEEE Trans. Acoust.. Speech, Signal Processing, Vol. ASP-34, No.1, Feb x77

Low-Power FIR Digital Filters Using Residue Arithmetic

Low-Power FIR Digital Filters Using Residue Arithmetic Low-Power FIR Digital Filters Using Residue Arithmetic William L. Freking and Keshab K. Parhi Department of Electrical and Computer Engineering University of Minnesota 200 Union St. S.E. Minneapolis, MN

More information

Improving Area Efficiency of Residue Number System based Implementation of DSP Algorithms

Improving Area Efficiency of Residue Number System based Implementation of DSP Algorithms Improving Area Efficiency of Residue Number System based Implementation of DSP Algorithms M.N.Mahesh, Satrajit Gupta Electrical and Communication Engg. Indian Institute of Science Bangalore - 560012, INDIA

More information

Area And Power Efficient LMS Adaptive Filter With Low Adaptation Delay

Area And Power Efficient LMS Adaptive Filter With Low Adaptation Delay e-issn: 2349-9745 p-issn: 2393-8161 Scientific Journal Impact Factor (SJIF): 1.711 International Journal of Modern Trends in Engineering and Research www.ijmter.com Area And Power Efficient LMS Adaptive

More information

A DCT Architecture based on Complex Residue Number Systems

A DCT Architecture based on Complex Residue Number Systems A DCT Architecture based on Complex Residue Number Systems J. RAMÍREZ (), A. GARCÍA (), P. G. FERNÁNDEZ (3), L. PARRILLA (), A. LLORIS () () Dept. of Electronics and () Dept. of Computer Sciences (3) Dept.

More information

INTEGER SEQUENCE WINDOW BASED RECONFIGURABLE FIR FILTERS.

INTEGER SEQUENCE WINDOW BASED RECONFIGURABLE FIR FILTERS. INTEGER SEQUENCE WINDOW BASED RECONFIGURABLE FIR FILTERS Arulalan Rajan 1, H S Jamadagni 1, Ashok Rao 2 1 Centre for Electronics Design and Technology, Indian Institute of Science, India (mrarul,hsjam)@cedt.iisc.ernet.in

More information

A Ripple Carry Adder based Low Power Architecture of LMS Adaptive Filter

A Ripple Carry Adder based Low Power Architecture of LMS Adaptive Filter A Ripple Carry Adder based Low Power Architecture of LMS Adaptive Filter A.S. Sneka Priyaa PG Scholar Government College of Technology Coimbatore ABSTRACT The Least Mean Square Adaptive Filter is frequently

More information

ON CONFIGURATION OF RESIDUE SCALING PROCESS IN PIPELINED RADIX-4 MQRNS FFT PROCESSOR

ON CONFIGURATION OF RESIDUE SCALING PROCESS IN PIPELINED RADIX-4 MQRNS FFT PROCESSOR POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Robert SMYK* Maciej CZYŻAK* ON CONFIGURATION OF RESIDUE SCALING PROCESS IN PIPELINED RADIX-4 MQRNS FFT PROCESSOR Residue

More information

COPY RIGHT. To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code

COPY RIGHT. To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code COPY RIGHT 2018IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must be obtained for all other uses, in any current or future media, including reprinting/republishing this material

More information

IMPLEMENTATION OF AN ADAPTIVE FIR FILTER USING HIGH SPEED DISTRIBUTED ARITHMETIC

IMPLEMENTATION OF AN ADAPTIVE FIR FILTER USING HIGH SPEED DISTRIBUTED ARITHMETIC IMPLEMENTATION OF AN ADAPTIVE FIR FILTER USING HIGH SPEED DISTRIBUTED ARITHMETIC Thangamonikha.A 1, Dr.V.R.Balaji 2 1 PG Scholar, Department OF ECE, 2 Assitant Professor, Department of ECE 1, 2 Sri Krishna

More information

Fixed Point LMS Adaptive Filter with Low Adaptation Delay

Fixed Point LMS Adaptive Filter with Low Adaptation Delay Fixed Point LMS Adaptive Filter with Low Adaptation Delay INGUDAM CHITRASEN MEITEI Electronics and Communication Engineering Vel Tech Multitech Dr RR Dr SR Engg. College Chennai, India MR. P. BALAVENKATESHWARLU

More information

ARITHMETIC operations based on residue number systems

ARITHMETIC operations based on residue number systems IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 2, FEBRUARY 2006 133 Improved Memoryless RNS Forward Converter Based on the Periodicity of Residues A. B. Premkumar, Senior Member,

More information

Fault Tolerant Parallel Filters Based on ECC Codes

Fault Tolerant Parallel Filters Based on ECC Codes Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 11, Number 7 (2018) pp. 597-605 Research India Publications http://www.ripublication.com Fault Tolerant Parallel Filters Based on

More information

Adaptive FIR Filter Using Distributed Airthmetic for Area Efficient Design

Adaptive FIR Filter Using Distributed Airthmetic for Area Efficient Design International Journal of Scientific and Research Publications, Volume 5, Issue 1, January 2015 1 Adaptive FIR Filter Using Distributed Airthmetic for Area Efficient Design Manish Kumar *, Dr. R.Ramesh

More information

International Journal for Research in Applied Science & Engineering Technology (IJRASET) IIR filter design using CSA for DSP applications

International Journal for Research in Applied Science & Engineering Technology (IJRASET) IIR filter design using CSA for DSP applications IIR filter design using CSA for DSP applications Sagara.K.S 1, Ravi L.S 2 1 PG Student, Dept. of ECE, RIT, Hassan, 2 Assistant Professor Dept of ECE, RIT, Hassan Abstract- In this paper, a design methodology

More information

Batchu Jeevanarani and Thota Sreenivas Department of ECE, Sri Vasavi Engg College, Tadepalligudem, West Godavari (DT), Andhra Pradesh, India

Batchu Jeevanarani and Thota Sreenivas Department of ECE, Sri Vasavi Engg College, Tadepalligudem, West Godavari (DT), Andhra Pradesh, India Memory-Based Realization of FIR Digital Filter by Look-Up- Table Optimization Batchu Jeevanarani and Thota Sreenivas Department of ECE, Sri Vasavi Engg College, Tadepalligudem, West Godavari (DT), Andhra

More information

ISSN (Online), Volume 1, Special Issue 2(ICITET 15), March 2015 International Journal of Innovative Trends and Emerging Technologies

ISSN (Online), Volume 1, Special Issue 2(ICITET 15), March 2015 International Journal of Innovative Trends and Emerging Technologies VLSI IMPLEMENTATION OF HIGH PERFORMANCE DISTRIBUTED ARITHMETIC (DA) BASED ADAPTIVE FILTER WITH FAST CONVERGENCE FACTOR G. PARTHIBAN 1, P.SATHIYA 2 PG Student, VLSI Design, Department of ECE, Surya Group

More information

Performance Analysis of CORDIC Architectures Targeted by FPGA Devices

Performance Analysis of CORDIC Architectures Targeted by FPGA Devices International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Performance Analysis of CORDIC Architectures Targeted by FPGA Devices Guddeti Nagarjuna Reddy 1, R.Jayalakshmi 2, Dr.K.Umapathy

More information

DESIGN AND SIMULATION OF 1 BIT ARITHMETIC LOGIC UNIT DESIGN USING PASS-TRANSISTOR LOGIC FAMILIES

DESIGN AND SIMULATION OF 1 BIT ARITHMETIC LOGIC UNIT DESIGN USING PASS-TRANSISTOR LOGIC FAMILIES Volume 120 No. 6 2018, 4453-4466 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ DESIGN AND SIMULATION OF 1 BIT ARITHMETIC LOGIC UNIT DESIGN USING PASS-TRANSISTOR

More information

International Journal of Advance Engineering and Research Development LOW POWER AND HIGH PERFORMANCE MSML DESIGN FOR CAM USE OF MODIFIED XNOR CELL

International Journal of Advance Engineering and Research Development LOW POWER AND HIGH PERFORMANCE MSML DESIGN FOR CAM USE OF MODIFIED XNOR CELL Scientific Journal of Impact Factor (SJIF): 5.71 e-issn (O): 2348-4470 p-issn (P): 2348-6406 International Journal of Advance Engineering and Research Development Volume 5, Issue 04, April -2018 LOW POWER

More information

An Efficient Hybrid Parallel Prefix Adders for Reverse Converters using QCA Technology

An Efficient Hybrid Parallel Prefix Adders for Reverse Converters using QCA Technology An Efficient Hybrid Parallel Prefix Adders for Reverse Converters using QCA Technology N. Chandini M.Tech student Scholar Dept.of ECE AITAM B. Chinna Rao Associate Professor Dept.of ECE AITAM A. Jaya Laxmi

More information

HIGH SPEED REALISATION OF DIGITAL FILTERS

HIGH SPEED REALISATION OF DIGITAL FILTERS HIGH SPEED REALISATION OF DIGITAL FILTERS A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF PHILOSOPHY IN ELECTRICAL AND ELECTRONIC ENGINEERING AT THE UNIVERSITY OF HONG KONG BY TSIM TS1M MAN-TAT, JIMMY DEPARTMENT

More information

DESIGN OF HYBRID PARALLEL PREFIX ADDERS

DESIGN OF HYBRID PARALLEL PREFIX ADDERS DESIGN OF HYBRID PARALLEL PREFIX ADDERS S. Sadiq Basha Dept. of ECE Vemu Institute of Technology Chittor,A.P Sadiqbasha4u@gmail.com H. Chandra Sekhar Associate Professor, ECE Vemu Institute of Technology

More information

Two High Performance Adaptive Filter Implementation Schemes Using Distributed Arithmetic

Two High Performance Adaptive Filter Implementation Schemes Using Distributed Arithmetic Two High Performance Adaptive Filter Implementation Schemes Using istributed Arithmetic Rui Guo and Linda S. ebrunner Abstract istributed arithmetic (A) is performed to design bit-level architectures for

More information

MCM Based FIR Filter Architecture for High Performance

MCM Based FIR Filter Architecture for High Performance ISSN No: 2454-9614 MCM Based FIR Filter Architecture for High Performance R.Gopalana, A.Parameswari * Department Of Electronics and Communication Engineering, Velalar College of Engineering and Technology,

More information

A Residue Approach to the Finite Field Arithmetics

A Residue Approach to the Finite Field Arithmetics A Residue Approach to the Finite Field Arithmetics 1/23 A Residue Approach to the Finite Field Arithmetics JC Bajard LIRMM, CNRS UM2 161 rue Ada, 34392 Montpellier cedex 5, France CIRM 2009 A Residue Approach

More information

OPTIMIZING THE POWER USING FUSED ADD MULTIPLIER

OPTIMIZING THE POWER USING FUSED ADD MULTIPLIER Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 11, November 2014,

More information

Design of a Multiplier Architecture Based on LUT and VHBCSE Algorithm For FIR Filter

Design of a Multiplier Architecture Based on LUT and VHBCSE Algorithm For FIR Filter African Journal of Basic & Applied Sciences 9 (1): 53-58, 2017 ISSN 2079-2034 IDOSI Publications, 2017 DOI: 10.5829/idosi.ajbas.2017.53.58 Design of a Multiplier Architecture Based on LUT and VHBCSE Algorithm

More information

Implementation of a Fast Sign Detection Algoritm for the RNS Moduli Set {2 N+1-1, 2 N -1, 2 N }, N = 16, 64

Implementation of a Fast Sign Detection Algoritm for the RNS Moduli Set {2 N+1-1, 2 N -1, 2 N }, N = 16, 64 GLOBAL IMPACT FACTOR 0.238 I2OR PIF 2.125 Implementation of a Fast Sign Detection Algoritm for the RNS Moduli Set {2 N+1-1, 2 N -1, 2 N }, N = 16, 64 1 GARNEPUDI SONY PRIYANKA, 2 K.V.K.V.L. PAVAN KUMAR

More information

16 Bit Low Power High Speed RCA Using Various Adder Configurations

16 Bit Low Power High Speed RCA Using Various Adder Configurations 16 Bit Low Power High Speed RCA Using Various Adder Configurations Jasbir Kaur #1, Dr.Neelam RupPrakash *2 Electronics & Comminucation Enfineering, P.E.C University of Technology 1 jasbirkaur70@yahoo.co.in

More information

Implementation of a Low Power Decimation Filter Using 1/3-Band IIR Filter

Implementation of a Low Power Decimation Filter Using 1/3-Band IIR Filter Implementation of a Low Power Decimation Filter Using /3-Band IIR Filter Khalid H. Abed Department of Electrical Engineering Wright State University Dayton Ohio, 45435 Abstract-This paper presents a unique

More information

VLSI Implementation of Low Power Area Efficient FIR Digital Filter Structures Shaila Khan 1 Uma Sharma 2

VLSI Implementation of Low Power Area Efficient FIR Digital Filter Structures Shaila Khan 1 Uma Sharma 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 05, 2015 ISSN (online): 2321-0613 VLSI Implementation of Low Power Area Efficient FIR Digital Filter Structures Shaila

More information

INTERNATIONAL JOURNAL OF PROFESSIONAL ENGINEERING STUDIES Volume 9 /Issue 3 / OCT 2017

INTERNATIONAL JOURNAL OF PROFESSIONAL ENGINEERING STUDIES Volume 9 /Issue 3 / OCT 2017 Design of Low Power Adder in ALU Using Flexible Charge Recycling Dynamic Circuit Pallavi Mamidala 1 K. Anil kumar 2 mamidalapallavi@gmail.com 1 anilkumar10436@gmail.com 2 1 Assistant Professor, Dept of

More information

Take Home Final Examination (From noon, May 5, 2004 to noon, May 12, 2004)

Take Home Final Examination (From noon, May 5, 2004 to noon, May 12, 2004) Last (family) name: First (given) name: Student I.D. #: Department of Electrical and Computer Engineering University of Wisconsin - Madison ECE 734 VLSI Array Structure for Digital Signal Processing Take

More information

Implementation and Impact of LNS MAC Units in Digital Filter Application

Implementation and Impact of LNS MAC Units in Digital Filter Application Implementation and Impact of LNS MAC Units in Digital Filter Application Hari Krishna Raja.V.S *, Christina Jesintha.R * and Harish.I * * Department of Electronics and Communication Engineering, Sri Shakthi

More information

DUE to the high computational complexity and real-time

DUE to the high computational complexity and real-time IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 3, MARCH 2005 445 A Memory-Efficient Realization of Cyclic Convolution and Its Application to Discrete Cosine Transform Hun-Chen

More information

Analysis of Performance and Designing of Bi-Quad Filter using Hybrid Signed digit Number System

Analysis of Performance and Designing of Bi-Quad Filter using Hybrid Signed digit Number System International Journal of Electronics and Computer Science Engineering 173 Available Online at www.ijecse.org ISSN: 2277-1956 Analysis of Performance and Designing of Bi-Quad Filter using Hybrid Signed

More information

AnEfficientImplementationofDigitFIRFiltersusingMemorybasedRealization

AnEfficientImplementationofDigitFIRFiltersusingMemorybasedRealization Global Journal of Researches in Engineering: F Electrical and Electronics Engineering Volume 14 Issue 9 Version 1.0 ype: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

A Novel Distributed Arithmetic Multiplierless Approach for Computing Complex Inner Products

A Novel Distributed Arithmetic Multiplierless Approach for Computing Complex Inner Products 606 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. PDPTA'5 A ovel Distributed Arithmetic Multiplierless Approach for Computing Complex Inner Products evin. Bowlyn, and azeih M. Botros. Ph.D. Candidate,

More information

AN FFT PROCESSOR BASED ON 16-POINT MODULE

AN FFT PROCESSOR BASED ON 16-POINT MODULE AN FFT PROCESSOR BASED ON 6-POINT MODULE Weidong Li, Mark Vesterbacka and Lars Wanhammar Electronics Systems, Dept. of EE., Linköping University SE-58 8 LINKÖPING, SWEDEN E-mail: {weidongl, markv, larsw}@isy.liu.se,

More information

FPGA Implementation of Multiplierless 2D DWT Architecture for Image Compression

FPGA Implementation of Multiplierless 2D DWT Architecture for Image Compression FPGA Implementation of Multiplierless 2D DWT Architecture for Image Compression Divakara.S.S, Research Scholar, J.S.S. Research Foundation, Mysore Cyril Prasanna Raj P Dean(R&D), MSEC, Bangalore Thejas

More information

Performance Evaluation of Guarded Static CMOS Logic based Arithmetic and Logic Unit Design

Performance Evaluation of Guarded Static CMOS Logic based Arithmetic and Logic Unit Design International Journal of Engineering Research and General Science Volume 2, Issue 3, April-May 2014 Performance Evaluation of Guarded Static CMOS Logic based Arithmetic and Logic Unit Design FelcyJeba

More information

Open Access Hardware Implementation of Fir Filter Based on Number-theoretic Fast Fourier Transform in Residue Number System

Open Access Hardware Implementation of Fir Filter Based on Number-theoretic Fast Fourier Transform in Residue Number System Send Orders for Reprints to reprints@benthamscience.net Open Engineering Sciences Journal, 2014, 1, 1-6 1 Open Access Hardware Implementation of Fir Filter Based on Number-theoretic Fast Fourier Transform

More information

Tai Leong Charn. A Thesis Submitted in Partial Fulfilment. of the Requirement for the Degree of. The Chinese University of Hong Kong. May 1983.

Tai Leong Charn. A Thesis Submitted in Partial Fulfilment. of the Requirement for the Degree of. The Chinese University of Hong Kong. May 1983. Implementing IIR Filters via Residue Number Systems by Tai Leong Charn A Thesis Submitted in Partial Fulfilment of the Requirement for the Degree of Master of Philosophy in Electronics. The Chinese University

More information

A Residue Approach of the Finite Field Arithmetics

A Residue Approach of the Finite Field Arithmetics A Residue Approach of the Finite Field Arithmetics 1/20 A Residue Approach of the Finite Field Arithmetics JC Bajard LIRMM, CNRS UM2 161 rue Ada, 34392 Montpellier cedex 5, France A Residue Approach of

More information

A Unified Addition Structure for Moduli Set {2 n -1, 2 n,2 n +1} Based on a Novel RNS Representation

A Unified Addition Structure for Moduli Set {2 n -1, 2 n,2 n +1} Based on a Novel RNS Representation A Unified Addition Structure for Moduli Set { n -, n, n +} Based on a Novel RNS Representation Somayeh Timarchi,, Mahmood Fazlali,, and Sorin D.Cotofana Department of Electrical and Computer Engineering,

More information

Implementing FIR Filters

Implementing FIR Filters Implementing FIR Filters in FLEX Devices February 199, ver. 1.01 Application Note 73 FIR Filter Architecture This section describes a conventional FIR filter design and how the design can be optimized

More information

DYNAMIC CIRCUIT TECHNIQUE FOR LOW- POWER MICROPROCESSORS Kuruva Hanumantha Rao 1 (M.tech)

DYNAMIC CIRCUIT TECHNIQUE FOR LOW- POWER MICROPROCESSORS Kuruva Hanumantha Rao 1 (M.tech) DYNAMIC CIRCUIT TECHNIQUE FOR LOW- POWER MICROPROCESSORS Kuruva Hanumantha Rao 1 (M.tech) K.Prasad Babu 2 M.tech (Ph.d) hanumanthurao19@gmail.com 1 kprasadbabuece433@gmail.com 2 1 PG scholar, VLSI, St.JOHNS

More information

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-1 CHAPTER V CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-2 NUMBER SYSTEMS RADIX-R REPRESENTATION Decimal number expansion 73625 10 = ( 7 10 4 ) + ( 3 10 3 ) + ( 6 10 2 ) + ( 2 10 1 ) +(

More information

THE orthogonal frequency-division multiplex (OFDM)

THE orthogonal frequency-division multiplex (OFDM) 26 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 57, NO. 1, JANUARY 2010 A Generalized Mixed-Radix Algorithm for Memory-Based FFT Processors Chen-Fong Hsiao, Yuan Chen, Member, IEEE,

More information

Effective Improvement of Carry save Adder

Effective Improvement of Carry save Adder Effective Improvement of Carry save Adder K.Nandini 1, A.Padmavathi 1, K.Pavithra 1, M.Selva Priya 1, Dr. P. Nithiyanantham 2 1 UG scholars, Department of Electronics, Jay Shriram Group of Institutions,

More information

Floating-point to Fixed-point Conversion. Digital Signal Processing Programs (Short Version for FPGA DSP)

Floating-point to Fixed-point Conversion. Digital Signal Processing Programs (Short Version for FPGA DSP) Floating-point to Fixed-point Conversion for Efficient i Implementation ti of Digital Signal Processing Programs (Short Version for FPGA DSP) Version 2003. 7. 18 School of Electrical Engineering Seoul

More information

An Efficient Constant Multiplier Architecture Based On Vertical- Horizontal Binary Common Sub-Expression Elimination Algorithm

An Efficient Constant Multiplier Architecture Based On Vertical- Horizontal Binary Common Sub-Expression Elimination Algorithm Volume-6, Issue-6, November-December 2016 International Journal of Engineering and Management Research Page Number: 229-234 An Efficient Constant Multiplier Architecture Based On Vertical- Horizontal Binary

More information

Analysis of 8T SRAM with Read and Write Assist Schemes (UDVS) In 45nm CMOS Technology

Analysis of 8T SRAM with Read and Write Assist Schemes (UDVS) In 45nm CMOS Technology Analysis of 8T SRAM with Read and Write Assist Schemes (UDVS) In 45nm CMOS Technology Srikanth Lade 1, Pradeep Kumar Urity 2 Abstract : UDVS techniques are presented in this paper to minimize the power

More information

Dynamic Logic ALU Design with Reduced Switching Power

Dynamic Logic ALU Design with Reduced Switching Power Indian Journal of Science and Technology, Vol 8(20), DOI:10.17485/ijst/2015/v8i20/79080, August 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Dynamic Logic ALU Design with Reduced Switching Power

More information

Exercises in DSP Design 2016 & Exam from Exam from

Exercises in DSP Design 2016 & Exam from Exam from Exercises in SP esign 2016 & Exam from 2005-12-12 Exam from 2004-12-13 ept. of Electrical and Information Technology Some helpful equations Retiming: Folding: ω r (e) = ω(e)+r(v) r(u) F (U V) = Nw(e) P

More information

Design of a Floating-Point Fused Add-Subtract Unit Using Verilog

Design of a Floating-Point Fused Add-Subtract Unit Using Verilog International Journal of Electronics and Computer Science Engineering 1007 Available Online at www.ijecse.org ISSN- 2277-1956 Design of a Floating-Point Fused Add-Subtract Unit Using Verilog Mayank Sharma,

More information

Multifunction Residue Architectures for Cryptography 1

Multifunction Residue Architectures for Cryptography 1 Multifunction Residue Architectures for Cryptography 1 LAXMI TRIVENI.D, M.TECH., EMBEDDED SYSTEMS & VLSI 2 P.V.VARAPRASAD,RAO ASSOCIATE PROFESSOR., SLC S INSTITUTE OF ENGINEERING AND TECHNOLOGY Abstract

More information

1. Introduction. Raj Kishore Kumar 1, Vikram Kumar 2

1. Introduction. Raj Kishore Kumar 1, Vikram Kumar 2 ASIC Implementation and Comparison of Diminished-one Modulo 2 n +1 Adder Raj Kishore Kumar 1, Vikram Kumar 2 1 Shivalik Institute of Engineering & Technology 2 Assistant Professor, Shivalik Institute of

More information

FPGA IMPLEMENTATION OF FLOATING POINT ADDER AND MULTIPLIER UNDER ROUND TO NEAREST

FPGA IMPLEMENTATION OF FLOATING POINT ADDER AND MULTIPLIER UNDER ROUND TO NEAREST FPGA IMPLEMENTATION OF FLOATING POINT ADDER AND MULTIPLIER UNDER ROUND TO NEAREST SAKTHIVEL Assistant Professor, Department of ECE, Coimbatore Institute of Engineering and Technology Abstract- FPGA is

More information

HIGH PERFORMANCE QUATERNARY ARITHMETIC LOGIC UNIT ON PROGRAMMABLE LOGIC DEVICE

HIGH PERFORMANCE QUATERNARY ARITHMETIC LOGIC UNIT ON PROGRAMMABLE LOGIC DEVICE International Journal of Advances in Applied Science and Engineering (IJAEAS) ISSN (P): 2348-1811; ISSN (E): 2348-182X Vol. 2, Issue 1, Feb 2015, 01-07 IIST HIGH PERFORMANCE QUATERNARY ARITHMETIC LOGIC

More information

Representation of Numbers and Arithmetic in Signal Processors

Representation of Numbers and Arithmetic in Signal Processors Representation of Numbers and Arithmetic in Signal Processors 1. General facts Without having any information regarding the used consensus for representing binary numbers in a computer, no exact value

More information

High-Performance Full Adders Using an Alternative Logic Structure

High-Performance Full Adders Using an Alternative Logic Structure Term Project EE619 High-Performance Full Adders Using an Alternative Logic Structure by Atulya Shivam Shree (10327172) Raghav Gupta (10327553) Department of Electrical Engineering, Indian Institure Technology,

More information

An efficient multiplierless approximation of the fast Fourier transform using sum-of-powers-of-two (SOPOT) coefficients

An efficient multiplierless approximation of the fast Fourier transform using sum-of-powers-of-two (SOPOT) coefficients Title An efficient multiplierless approximation of the fast Fourier transm using sum-of-powers-of-two (SOPOT) coefficients Author(s) Chan, SC; Yiu, PM Citation Ieee Signal Processing Letters, 2002, v.

More information

Analysis of 8T SRAM Cell Using Leakage Reduction Technique

Analysis of 8T SRAM Cell Using Leakage Reduction Technique Analysis of 8T SRAM Cell Using Leakage Reduction Technique Sandhya Patel and Somit Pandey Abstract The purpose of this manuscript is to decrease the leakage current and a memory leakage power SRAM cell

More information

Principles of Computer Architecture. Chapter 3: Arithmetic

Principles of Computer Architecture. Chapter 3: Arithmetic 3-1 Chapter 3 - Arithmetic Principles of Computer Architecture Miles Murdocca and Vincent Heuring Chapter 3: Arithmetic 3-2 Chapter 3 - Arithmetic 3.1 Overview Chapter Contents 3.2 Fixed Point Addition

More information

Chapter 3: part 3 Binary Subtraction

Chapter 3: part 3 Binary Subtraction Chapter 3: part 3 Binary Subtraction Iterative combinational circuits Binary adders Half and full adders Ripple carry and carry lookahead adders Binary subtraction Binary adder-subtractors Signed binary

More information

COMPARISON OF DIFFERENT REALIZATION TECHNIQUES OF IIR FILTERS USING SYSTEM GENERATOR

COMPARISON OF DIFFERENT REALIZATION TECHNIQUES OF IIR FILTERS USING SYSTEM GENERATOR COMPARISON OF DIFFERENT REALIZATION TECHNIQUES OF IIR FILTERS USING SYSTEM GENERATOR Prof. SunayanaPatil* Pratik Pramod Bari**, VivekAnandSakla***, Rohit Ashok Shah****, DharmilAshwin Shah***** *(sunayana@vcet.edu.in)

More information

Design and Implementation of CVNS Based Low Power 64-Bit Adder

Design and Implementation of CVNS Based Low Power 64-Bit Adder Design and Implementation of CVNS Based Low Power 64-Bit Adder Ch.Vijay Kumar Department of ECE Embedded Systems & VLSI Design Vishakhapatnam, India Sri.Sagara Pandu Department of ECE Embedded Systems

More information

Analysis and Realization of Digital Filter in Communication System

Analysis and Realization of Digital Filter in Communication System , pp.37-42 http://dx.doi.org/0.4257/astl.206. Analysis and Realization of Digital Filter in Communication System Guohua Zou School of software, East China University of Technology, anchang, 330000, China

More information

Introduction to Field Programmable Gate Arrays

Introduction to Field Programmable Gate Arrays Introduction to Field Programmable Gate Arrays Lecture 2/3 CERN Accelerator School on Digital Signal Processing Sigtuna, Sweden, 31 May 9 June 2007 Javier Serrano, CERN AB-CO-HT Outline Digital Signal

More information

Injntu.com Injntu.com Injntu.com R16

Injntu.com Injntu.com Injntu.com R16 1. a) What are the three methods of obtaining the 2 s complement of a given binary (3M) number? b) What do you mean by K-map? Name it advantages and disadvantages. (3M) c) Distinguish between a half-adder

More information

ECE 637 Integrated VLSI Circuits. Introduction. Introduction EE141

ECE 637 Integrated VLSI Circuits. Introduction. Introduction EE141 ECE 637 Integrated VLSI Circuits Introduction EE141 1 Introduction Course Details Instructor Mohab Anis; manis@vlsi.uwaterloo.ca Text Digital Integrated Circuits, Jan Rabaey, Prentice Hall, 2 nd edition

More information

Design of 2-Bit ALU using CMOS & GDI Logic Architectures.

Design of 2-Bit ALU using CMOS & GDI Logic Architectures. Design of 2-Bit ALU using CMOS & GDI Logic Architectures. Sachin R 1, Sachin R M 2, Sanjay S Nayak 3, Rajiv Gopal 4 1, 2, 3 UG Students, Dept. of ECE New Horizon College of Engineering, Bengaluru 4 Asst.

More information

EXTREMELY LOW-POWER AI HARDWARE ENABLED BY CRYSTALLINE OXIDE SEMICONDUCTORS

EXTREMELY LOW-POWER AI HARDWARE ENABLED BY CRYSTALLINE OXIDE SEMICONDUCTORS Semiconductor Energy Laboratory: White Paper EXTREMELY LOW-POWER AI HARDWARE ENABLED BY CRYSTALLINE OXIDE SEMICONDUCTORS Semiconductor Energy Laboratory (SEL): Extremely low-power AI chips can be built

More information

Digital Electronics. CHAPTER THIRTY TWO. Semiconductor Read-Only Memories

Digital Electronics. CHAPTER THIRTY TWO. Semiconductor Read-Only Memories Digital Electronics. CHAPTER THIRTY TWO Semiconductor Read-Only Memories Introduction Diode circuits, BJT circuits, and MOSFET circuits are used to provide memory semiconductor circuits consisting of both

More information

FIR Filter Architecture for Fixed and Reconfigurable Applications

FIR Filter Architecture for Fixed and Reconfigurable Applications FIR Filter Architecture for Fixed and Reconfigurable Applications Nagajyothi 1,P.Sayannna 2 1 M.Tech student, Dept. of ECE, Sudheer reddy college of Engineering & technology (w), Telangana, India 2 Assosciate

More information

Keywords: Soft Core Processor, Arithmetic and Logical Unit, Back End Implementation and Front End Implementation.

Keywords: Soft Core Processor, Arithmetic and Logical Unit, Back End Implementation and Front End Implementation. ISSN 2319-8885 Vol.03,Issue.32 October-2014, Pages:6436-6440 www.ijsetr.com Design and Modeling of Arithmetic and Logical Unit with the Platform of VLSI N. AMRUTHA BINDU 1, M. SAILAJA 2 1 Dept of ECE,

More information

UNIT II - COMBINATIONAL LOGIC Part A 2 Marks. 1. Define Combinational circuit A combinational circuit consist of logic gates whose outputs at anytime are determined directly from the present combination

More information

R07. Code No: V0423. II B. Tech II Semester, Supplementary Examinations, April

R07. Code No: V0423. II B. Tech II Semester, Supplementary Examinations, April SET - 1 II B. Tech II Semester, Supplementary Examinations, April - 2012 SWITCHING THEORY AND LOGIC DESIGN (Electronics and Communications Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

ECE 2030B 1:00pm Computer Engineering Spring problems, 5 pages Exam Two 10 March 2010

ECE 2030B 1:00pm Computer Engineering Spring problems, 5 pages Exam Two 10 March 2010 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

Parallel FIR Filters. Chapter 5

Parallel FIR Filters. Chapter 5 Chapter 5 Parallel FIR Filters This chapter describes the implementation of high-performance, parallel, full-precision FIR filters using the DSP48 slice in a Virtex-4 device. ecause the Virtex-4 architecture

More information

Implementation of Reduce the Area- Power Efficient Fixed-Point LMS Adaptive Filter with Low Adaptation-Delay

Implementation of Reduce the Area- Power Efficient Fixed-Point LMS Adaptive Filter with Low Adaptation-Delay Implementation of Reduce the Area- Power Efficient Fixed-Point LMS Adaptive Filter with Low Adaptation-Delay A.Sakthivel 1, A.Lalithakumar 2, T.Kowsalya 3 PG Scholar [VLSI], Muthayammal Engineering College,

More information

isplever Parallel FIR Filter User s Guide October 2005 ipug06_02.0

isplever Parallel FIR Filter User s Guide October 2005 ipug06_02.0 isplever TM CORE Parallel FIR Filter User s Guide October 2005 ipug06_02.0 Introduction This document serves as a guide containing technical information about the Lattice Parallel FIR Filter core. Overview

More information

Evaluation of High Speed Hardware Multipliers - Fixed Point and Floating point

Evaluation of High Speed Hardware Multipliers - Fixed Point and Floating point International Journal of Electrical and Computer Engineering (IJECE) Vol. 3, No. 6, December 2013, pp. 805~814 ISSN: 2088-8708 805 Evaluation of High Speed Hardware Multipliers - Fixed Point and Floating

More information

A SIMULINK-TO-FPGA MULTI-RATE HIERARCHICAL FIR FILTER DESIGN

A SIMULINK-TO-FPGA MULTI-RATE HIERARCHICAL FIR FILTER DESIGN A SIMULINK-TO-FPGA MULTI-RATE HIERARCHICAL FIR FILTER DESIGN Xiaoying Li 1 Fuming Sun 2 Enhua Wu 1, 3 1 University of Macau, Macao, China 2 University of Science and Technology Beijing, Beijing, China

More information

Design and Simulation of Power Optimized 8 Bit Arithmetic Unit using Gating Techniques in Cadence 90nm Technology

Design and Simulation of Power Optimized 8 Bit Arithmetic Unit using Gating Techniques in Cadence 90nm Technology Design and Simulation of Power Optimized 8 Bit Arithmetic Unit using Gating Techniques in Cadence 90nm Technology Umashree.M.Sajjanar 1, Maruti.Lamani 2, Mr.Mahesh.B.Neelagar 3 1 PG Scholar, Dept of PG

More information

19. Implementing High-Performance DSP Functions in Stratix & Stratix GX Devices

19. Implementing High-Performance DSP Functions in Stratix & Stratix GX Devices 19. Implementing High-Performance SP Functions in Stratix & Stratix GX evices S52007-1.1 Introduction igital signal processing (SP) is a rapidly advancing field. With products increasing in complexity,

More information

IMPLEMENTATION OF LOW POWER AREA EFFICIENT ALU WITH LOW POWER FULL ADDER USING MICROWIND DSCH3

IMPLEMENTATION OF LOW POWER AREA EFFICIENT ALU WITH LOW POWER FULL ADDER USING MICROWIND DSCH3 IMPLEMENTATION OF LOW POWER AREA EFFICIENT ALU WITH LOW POWER FULL ADDER USING MICROWIND DSCH3 Ritafaria D 1, Thallapalli Saibaba 2 Assistant Professor, CJITS, Janagoan, T.S, India Abstract In this paper

More information

Design of a Multiplier for Similar Base Numbers Without Converting Base Using a Data Oriented Memory

Design of a Multiplier for Similar Base Numbers Without Converting Base Using a Data Oriented Memory Journal of Computer & Robotics 7 (1), 2014 37-50 37 Design of a Multiplier for Similar Base Numbers Without Converting Base Using a Data Oriented Memory Majid Jafari *, Ali Broumandnia, Navid Habibi, Shahab

More information

Computer Architecture and Organization

Computer Architecture and Organization 3-1 Chapter 3 - Arithmetic Computer Architecture and Organization Miles Murdocca and Vincent Heuring Chapter 3 Arithmetic 3-2 Chapter 3 - Arithmetic Chapter Contents 3.1 Fixed Point Addition and Subtraction

More information

Prachi Sharma 1, Rama Laxmi 2, Arun Kumar Mishra 3 1 Student, 2,3 Assistant Professor, EC Department, Bhabha College of Engineering

Prachi Sharma 1, Rama Laxmi 2, Arun Kumar Mishra 3 1 Student, 2,3 Assistant Professor, EC Department, Bhabha College of Engineering A Review: Design of 16 bit Arithmetic and Logical unit using Vivado 14.7 and Implementation on Basys 3 FPGA Board Prachi Sharma 1, Rama Laxmi 2, Arun Kumar Mishra 3 1 Student, 2,3 Assistant Professor,

More information

Vertical-Horizontal Binary Common Sub- Expression Elimination for Reconfigurable Transposed Form FIR Filter

Vertical-Horizontal Binary Common Sub- Expression Elimination for Reconfigurable Transposed Form FIR Filter Vertical-Horizontal Binary Common Sub- Expression Elimination for Reconfigurable Transposed Form FIR Filter M. Tirumala 1, Dr. M. Padmaja 2 1 M. Tech in VLSI & ES, Student, 2 Professor, Electronics and

More information

X(f) S(f) -F s X(f) * S(f)

X(f) S(f) -F s X(f) * S(f) Digital Design for Embedded Data Converters Valentino Liberali Universita degli Studi di Pavia Dipartimento di Elettronica Via Ferrata 1, 271 Pavia, Italy Phone: 39-382.5.5783 Fax: 39-382.422583 e-mail:

More information

CS6303 COMPUTER ARCHITECTURE LESSION NOTES UNIT II ARITHMETIC OPERATIONS ALU In computing an arithmetic logic unit (ALU) is a digital circuit that performs arithmetic and logical operations. The ALU is

More information

Design of Low Power Wide Gates used in Register File and Tag Comparator

Design of Low Power Wide Gates used in Register File and Tag Comparator www..org 1 Design of Low Power Wide Gates used in Register File and Tag Comparator Isac Daimary 1, Mohammed Aneesh 2 1,2 Department of Electronics Engineering, Pondicherry University Pondicherry, 605014,

More information

Design of Analog VLSI Architecture for DCT

Design of Analog VLSI Architecture for DCT International Journal of Engineering and Technology Volume No. 8, ugust, 1 Design of nalog VLSI rchitecture for DCT M.Thiruveni, M.Deivakani Department Of ECE, PSN College of Engineering and Technology,

More information

Binary Addition. Add the binary numbers and and show the equivalent decimal addition.

Binary Addition. Add the binary numbers and and show the equivalent decimal addition. Binary Addition The rules for binary addition are 0 + 0 = 0 Sum = 0, carry = 0 0 + 1 = 0 Sum = 1, carry = 0 1 + 0 = 0 Sum = 1, carry = 0 1 + 1 = 10 Sum = 0, carry = 1 When an input carry = 1 due to a previous

More information

FAST FOURIER TRANSFORM (FFT) and inverse fast

FAST FOURIER TRANSFORM (FFT) and inverse fast IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 11, NOVEMBER 2004 2005 A Dynamic Scaling FFT Processor for DVB-T Applications Yu-Wei Lin, Hsuan-Yu Liu, and Chen-Yi Lee Abstract This paper presents an

More information

EE 486 Winter The role of arithmetic. EE 486 : lecture 1, the integers. SIA Roadmap - 2. SIA Roadmap - 1

EE 486 Winter The role of arithmetic. EE 486 : lecture 1, the integers. SIA Roadmap - 2. SIA Roadmap - 1 EE 486 Winter 2-3 The role of arithmetic EE 486 : lecture, the integers M. J. Flynn With increasing circuit density available with sub micron feature sizes, there s a corresponding broader spectrum of

More information

Design of Linear Phase FIR Filter for

Design of Linear Phase FIR Filter for M.Pratheba and P.SatheesKumar 70 Design of Linear Phase FIR Filter for Minimum Number of Adders by Using MILP M.Pratheba and P.SatheesKumar Abstract:Linear phase Finite Impulse Response (FIR) filter are

More information