DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI

Size: px
Start display at page:

Download "DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI"

Transcription

1 DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI Department of Computer Science and Engineering CS6504-COMPUTER GRAPHICS Anna University 2 & 16 Mark Questions & Answers Year / Semester: III / V Regulation: 2013 Academic year:

2 UNIT V ANIMATION AND REALISM PART - A 1. Define computer graphics animation. Computer graphics animation is the use of computer graphics equipment where the graphics output presentation dynamically changes in real time. This is often also called real time animation. 2. What is tweening? It is the process, which is applicable to animation objects defined by a sequence of points, and that change shape from frame to frame. 3. Define -Frame. One of the shape photographs that a film or video is made of is known as frame. 4. What is the normal speed of a visual animation? Visual animation requires a playback of at least 25 frames per second. 5. What are the different tricks used in computer graphics animation? a. Color look Up Table manipulation b. Bit plane manipulation c. Use of UDCS d. Special drawing modes e. Sprites f. Bit blitting 6. What is solid modeling? The construction of 3 dimensional objects for graphics display is often referred to as solid modeling. 7. What is an intuitive interface? The intuitive interface is one, which simulates the way a person would perform a corresponding operation on real object rather than have menu command. 8. What is Sprite? A Sprite is graphics shape in animation and games programs. Each sprite provided in the system has its own memory area similar to but smaller than pixel 9. What is the UDC technique? UDC stands for User Defined Character set. It is graphics animation trick, which is used in early microcomputer system. 10. What is computer graphics realism? The creation of realistic picture in computer graphics is known as realism.it is important in fields such as simulation, design, entertainments, advertising, research, education, command, and control. 11. How realistic pictures are created in computer graphics? To create a realistic picture, it must be process the scene or picture through viewing-coordinate transformations and projection that transform three-dimensional viewing coordinates onto two-dimensional device coordinates. 12. What is Fractals? A Fractal is an object whose shape is irregular at all scales.

3 13. What is a Fractal Dimension? Fractal has infinite detail and fractal dimension. A fractal imbedded in n-dimensional space could have any fractional dimension between 0 and n. The Fractal Dimension D= LogN / Log S Where N is the No of Pieces and S is the Scaling Factor. 14. What is random fractal? The patterns in the random fractals are no longer perfect and the random defects at all scale. 15. What is geometric fractal? A geometric fractal is a fractal that repeats self-similar patterns over all scales. 16. What is Koch curve? The Koch curve can be drawn by dividing line into 4 equal segments with scaling factor 1/3. and middle 2 segments are so adjusted that they form adjustment sides of an equilateral triangle. 17. What is turtle graphics program? The turtle program is a Robert that can move in 2 dimensions and it has a pencil for drawing. The turtle is defined by the following parameters. Position of the turtle (x, y) Heading of the turtle 0 the angle from the x axis. 18. What is graftals? Graftals are applicable to represent realistic rendering plants and trees. A tree is represented by a String of symbols 0, What is a Particle system? A particle system is a method for modeling natural objects, or other irregularly shaped objects, that exhibit fluidlike properties. Particle systems are suitable for realistic rendering of fuzzy objects, smoke, sea and grass. 20. Give some examples for computer graphics standards. CORE The Core graphics standard GKS -- The Graphics Kernel system PHIGS The Programmers Hierarchical Interactive Graphics System. GSX The Graphics system extension NAPLPS The North American presentation level protocol syntax. PART-B 1. Explain in detail the design of animation sequences with various animation functions. Animation means giving life to any object in computer graphics. It has the power of injecting energy and emotions into the most seemingly inanimate objects. Computer-assisted animation and computergenerated animation are two categories of computer animation. It can be presented via film or video. The basic idea behind animation is to play back the recorded images at the rates fast enough to fool the human eye into interpreting them as continuous motion. Animation can make a series of dead images come alive. Animation can be used in many areas like entertainment, computer aided-design, scientific visualization, training, education, e-commerce, and computer art. Animation Techniques Animators have invented and used a variety of different animation techniques. Basically there are six animation technique which we would discuss one by one in this section.

4 Traditional Animation (frame by frame) Traditionally most of the animation was done by hand. All the frames in an animation had to be drawn by hand. Since each second of animation requires 24 frames (film), the amount of efforts required to create even the shortest of movies can be tremendous. Keyframing In this technique, a storyboard is laid out and then the artists draw the major frames of the animation. Major frames are the ones in which prominent changes take place. They are the key points of animation. Keyframing requires that the animator specifies critical or key positions for the objects. The computer then automatically fills in the missing frames by smoothly interpolating between those positions. Procedural In a procedural animation, the objects are animated by a procedure a set of rules not by keyframing. The animator specifies rules and initial conditions and runs simulation. Rules are often based on physical rules of the real world expressed by mathematical equations. Behavioral In behavioral animation, an autonomous character determines its own actions, at least to a certain extent. This gives the character some ability to improvise, and frees the animator from the need to specify each detail of every character's motion. Performance Based (Motion Capture) Another technique is Motion Capture, in which magnetic or vision-based sensors record the actions of a human or animal object in three dimensions. A computer then uses these data to animate the object. This technology has enabled a number of famous athletes to supply the actions for characters in sports video games. Motion capture is pretty popular with the animators mainly because some of the commonplace human actions can be captured with relative ease. However, there can be serious discrepancies between the shapes or dimensions of the subject and the graphical character and this may lead to problems of exact execution. Physically Based (Dynamics) Unlike key framing and motion picture, simulation uses the laws of physics to generate motion of pictures and other objects. Simulations can be easily used to produce slightly different sequences while maintaining physical realism. Secondly, real-time simulations allow a higher degree of interactivity where the real person can maneuver the actions of the simulated character. In contrast the applications based on key-framing and motion select and modify motions form a precomputed library of motions. One drawback that simulation suffers from is the expertise and time required to handcraft the appropriate controls systems.

5 Key Framing A keyframe is a frame where we define changes in animation. Every frame is a keyframe when we create frame by frame animation. When someone creates a 3D animation on a computer, they usually don t specify the exact position of any given object on every single frame. They create keyframes. Keyframes are important frames during which an object changes its size, direction, shape or other properties. The computer then figures out all the in-between frames and saves an extreme amount of time for the animator. The following illustrations depict the frames drawn by user and the frames generated by computer. Morphing The transformation of object shapes from one form to another form is called morphing. It is one of the most complicated transformations. 2. Write short notes on raster animation. In computer animation, the term "raster graphics" refers to animation frames made of pixels rather than scalable components, such as vertices, edges, nodes, paths or vectors. Storing images as pixels rather than vectors or vertices enables much deeper and more realistic lighting and color because the computer doesn't have to render each frame in real time as it does in a 3-D video game. However, because a fast PC can take 10 to 20 minutes to render one frame, rendering an entire animation usually requires a network of render nodes. Bitmaps and Scalable Vector Graphics Raster animation doesn't only refer to 3-D graphics, although demand for 2-D animation in movies, TV, video games and commercials has decreased since processing power has become affordable enough to render 3-D animations on a small budget. A raster image is simply another word for a bitmap, or pixelbased image. In comparison, a vector image is a 2-D picture created in a scalable vector graphics editor such as Adobe Illustrator or open source Inkscape. SVG files take up less disk space than bitmaps because they only store the paths that delineate the shapes in a picture, whereas bitmaps store data for every pixel. Bitmaps store all the depth and subtlety of light that the image resolution allows, while SVGs have simple, cartoonlike colors. File Storage The term "raster image" refers to the way the image is stored rather than how it's displayed. When your video card renders a frame of a video game, you see the same pixels you'd see if you pre-rendered the frame using the same settings. The file read by the game stores the image as an enormous array of vertices, and the video game contains software routines that move the vertices based on events in the game. Video games sacrifice realism for smoothness during game play, but they often contain prerendered movies with fully realized graphics. These scenes, stored as MPEG or a similar format, usually cause modern game sizes to exceed 1GB.

6 Traditional Raster Animation Before 3-D animation became affordable, animated films and TV shows were mostly hand-painted, but video games used low-detail raster animation to store graphics on a cartridge or disc. Video game artists in the 1980s and 1990s animated these character bitmaps using sprite sheets, which enabled them to separate all the moving objects in the game. The game's software routines played the frames in each object's sprite sheet independently of one another so that the game could react to the player's actions. Modern Raster Animation Many modern cartoons use raster animation to add color to hand-drawn animation cels. Each animation frame is either scanned into a computer or sketched on a graphics tablet, and the entire animation is stored as a digital movie. Programming languages such as Flash, HTML and Java include animation libraries that generate 2-D animations based on user input events, such as mouse clicks or keystrokes. Like vector graphics, these generated animations can be scaled to fit any window, whereas pre-rendered raster graphics have a predetermined resolution and become pixelated when scaled up. 3. Write short notes on key frame systems. A key frame in animation and filmmaking is a drawing that defines the starting and ending points of any smooth transition. The drawings are called "frames" because their position in time is measured in frames on a strip of film. A sequence of key frames defines which movement the viewer will see, whereas the position of the key frames on the film, video, or animation defines the timing of the movement. Because only two or three key frames over the span of a second do not create the illusion of movement, the remaining frames are filled with in be tweens. Use of key frames as a means to change parameters In software packages that support animation, especially 3D graphics, there are many parameters that can be changed for any one object. One example of such an object is a light (In 3D graphics, lights function similarly to real-world lights. They cause illumination, cast shadows, and create specular highlights). Lights have many parameters including light intensity, beam size, light color, and the texture cast by the light. Supposing that an animator wants the beam size of the light to change smoothly from one value to another within a predefined period of time, that could be achieved by using key frames. At the start of the animation, a beam size value is set. Another value is set for the end of the animation. Thus, the software program automatically interpolates the two values, creating a smooth transition. Video editing In non-linear digital video editing, as well as in video compositing software, a key frame is a frame used to indicate the beginning or end of a change made to the gsignal. For example, a key frame could be set to indicate the point at which audio will have faded up or down to a certain level. Video compression

7 In video compression, a key frame, also known as an "intra-frame", is a frame in which a complete image is stored in the data stream. In video compression, only changes that occur from one frame to the next are stored in the data stream, in order to greatly reduce the amount of information that must be stored. This technique capitalizes on the fact that most video sources (such as a typical movie) have only small changes in the image from one frame to the next. 4. Write short notes on Koch curves. The Koch snowflake (also known as the Koch curve, Koch star, or Koch island) is a mathematical curve and one of the earliest fractal curves to have been described. It is based on the Koch curve, which appeared in a 1904 paper titled "On a continuous curve without tangents, constructible from elementary geometry" (original French title: Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire) [citation needed] by the Swedish mathematician Helge von Koch. The progression for the area of the snowflake converges to 8/5 times the area of the original triangle, while the progression for the snowflake's perimeter diverges to infinity. Consequently, the snowflake has a finite area bounded by an infinitely long line. Construction The Koch snowflake can be constructed by starting with an equilateral triangle, then recursively altering each line segment as follows: 1. divide the line segment into three segments of equal length. 2. draw an equilateral triangle that has the middle segment from step 1 as its base and points outward. 3. remove the line segment that is the base of the triangle from step 2. After one iteration of this process, the resulting shape is the outline of a hexagram. The Koch snowflake is the limit approached as the above steps are followed over and over again. The Koch curve originally described by Helge von Koch is constructed with only one of the three sides of the original triangle. In other words, three Koch curves make a Koch snowflake. 5. Write short notes on types of curves. A curve is an infinitely large set of points. Each point has two neighbors except endpoints. Curves can be broadly classified into three categories explicit, implicit, and parametric curves. Implicit Curves Implicit curve representations define the set of points on a curve by employing a procedure that can test to see if a point in on the curve. Usually, an implicit curve is defined by an implicit function of the form f(x, y) = 0 It can represent multivalued curves (multiple y values for an x value). A common example is the circle, whose implicit representation is x 2 + y 2 - R 2 = 0

8 Explicit Curves A mathematical function y = f(x) can be plotted as a curve. Such a function is the explicit representation of the curve. The explicit representation is not general, since it cannot represent vertical lines and is also single-valued. For each value of x, only a single value of y is normally computed by the function. Parametric Curves Curves having parametric form are called parametric curves. The explicit and implicit curve representations can be used only when the function is known. In practice the parametric curves are used. A two-dimensional parametric curve has the following form P(t) = f(t), g(t) or P(t) = x(t), y(t) The functions f and g become the (x, y) coordinates of any point on the curve, and the points are obtained when the parameter t is varied over a certain interval [a, b], normally [0, 1]. 6. Write short notes on space filling curves. A Hilbert curve (also known as a Hilbert space-filling curve) is a continuous fractal space-filling curve first described by the German mathematician David Hilbert in 1891,as a variant of the space-filling Peano curves discovered by Giuseppe Peano in 1890.Because it is space-filling, its Hausdorff dimension is (precisely, its image is the unit square, whose dimension is 2 in any definition of dimension; its graph is a compact set homeomorphic to the closed unit interval, with Hausdorff dimension 2).It is the approximation to the limiting curve. The Hilbert curve is a space filling curve that visits every point in a square grid with a size of 2 2, 4 4, 8 8, 16 16, or any other power of 2. It was first described by David Hilbert in Applications of the Hilbert curve are in image processing: especially image compression and dithering. It has advantages in those operations where the coherence between neighbouring pixels is important (see Douglas Voorhies's contribution to the "Graphic Gems" series). The Hilbert curve is also a special version of a quadtree; any image processing function that benefits from the use of quadtrees may also use a Hilbert curve. Cups and joins The basic elements of the Hilbert curves are what I call "cups" (a square with one open side) and "joins" (a vector that joins two cups). The "open" side of a cup can be top, bottom, left or right. In addition, every cup has two end-points, and each of these can be the "entry" point or the "exit" point. So, there are eight possible varieties of cups. In practice, a Hilbert curve uses only four types of cups. In a similar vein, a join has a direction: up, down, left or right. A first order Hilbert curve is just a single cup (see the figure on the left). It fills a 2 2 space. The second order Hilbert curve replaces that cup by four (smaller) cups, which are linked together by three joins (see the figure on the right; the link between a cup and a join has been marked with a fat dot in the figure). Every next order repeats the process or replacing each cup by four smaller cups and three joins.

9 The function presented below (in the "C" language) computes the Hilbert curve. Note that the curve is symmetrical around the vertical axis. It would therefore be sufficient to draw half of the Hilbert curve. 7. Write short notes on fractals. Fractals are very complex pictures generated by a computer from a single formula. They are created using iterations. This means one formula is repeated with slightly different values over and over again, taking into account the results from the previous iteration. Fractals are used in many areas such as Astronomy For analyzing galaxies, rings of Saturn, etc. Biology/Chemistry For depicting bacteria cultures, Chemical reactions, human anatomy, molecules, plants, Others For depicting clouds, coastline and borderlines, data compression, diffusion, economy, fractal art, fractal music, landscapes, special effect, etc. Generation of Fractals Fractals can be generated by repeating the same shape over and over again as shown in the following figure. In figure (a) shows an equilateral triangle. In figure (b), we can see that the triangle is repeated to create a star-like shape. In figure (c), we can see that the star shape in figure (b) is repeated again and again to create a new shape. We can do unlimited number of iteration to create a desired shape. In programming terms, recursion is used to create such shapes.

10 Geometric Fractals Geometric fractals deal with shapes found in nature that have non-integer or fractal dimensions. To geometrically construct a deterministic (nonrandom) self-similar fractal, we start with a given geometric shape, called the initiator. Subparts of the initiator are then replaced with a pattern, called the generator. As an example, if we use the initiator and generator shown in the above figure, we can construct good pattern by repeating it. Each straight-line segment in the initiator is replaced with four equal-length line segments at each step. The scaling factor is 1/3, so the fractal dimension is D = ln 4/ln Also, the length of each line segment in the initiator increases by a factor of 4/3 at each step, so that the length of the fractal curve tends to infinity as more detail is added to the curve as shown in the following figure

Animation. Representation of objects as they vary over time. Traditionally, based on individual drawing or photographing the frames in a sequence

Animation. Representation of objects as they vary over time. Traditionally, based on individual drawing or photographing the frames in a sequence 6 Animation Animation Representation of objects as they vary over time Traditionally, based on individual drawing or photographing the frames in a sequence Computer animation also results in a sequence

More information

Mathematics 350 Section 6.3 Introduction to Fractals

Mathematics 350 Section 6.3 Introduction to Fractals Mathematics 350 Section 6.3 Introduction to Fractals A fractal is generally "a rough or fragmented geometric shape that is self-similar, which means it can be split into parts, each of which is (at least

More information

Fractals: Self-Similarity and Fractal Dimension Math 198, Spring 2013

Fractals: Self-Similarity and Fractal Dimension Math 198, Spring 2013 Fractals: Self-Similarity and Fractal Dimension Math 198, Spring 2013 Background Fractal geometry is one of the most important developments in mathematics in the second half of the 20th century. Fractals

More information

Chapter 12: Fractal Geometry The Koch Snowflake and Self-Similarity

Chapter 12: Fractal Geometry The Koch Snowflake and Self-Similarity Chapter 12: Fractal Geometry 12.1 The Koch Snowflake and Self-Similarity Geometric Fractal Our first example of a geometric fractal is a shape known as the Koch snowflake, named after the Swedish mathematician

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to 1.1 What is computer graphics? it would be difficult to overstate the importance of computer and communication technologies in our lives. Activities as wide-ranging as film making, publishing,

More information

Fractals. Materials. Pencil Paper Grid made of triangles

Fractals. Materials. Pencil Paper Grid made of triangles Fractals Overview: Fractals are new on the mathematics scene, however they are in your life every day. Cell phones use fractal antennas, doctors study fractal-based blood flow diagrams to search for cancerous

More information

Fractal Geometry. Prof. Thomas Bäck Fractal Geometry 1. Natural Computing Group

Fractal Geometry. Prof. Thomas Bäck Fractal Geometry 1. Natural Computing Group Fractal Geometry Prof. Thomas Bäck Fractal Geometry 1 Contents Introduction The Fractal Geometry of Nature - Self-Similarity - Some Pioneering Fractals - Dimension and Fractal Dimension Scope of Fractal

More information

<The von Koch Snowflake Investigation> properties of fractals is self-similarity. It means that we can magnify them many times and after every

<The von Koch Snowflake Investigation> properties of fractals is self-similarity. It means that we can magnify them many times and after every Jiwon MYP 5 Math Ewa Puzanowska 18th of Oct 2012 About Fractal... In geometry, a fractal is a shape made up of parts that are the same shape as itself and are of

More information

Fractal Geometry. LIACS Natural Computing Group Leiden University

Fractal Geometry. LIACS Natural Computing Group Leiden University Fractal Geometry Contents Introduction The Fractal Geometry of Nature Self-Similarity Some Pioneering Fractals Dimension and Fractal Dimension Cellular Automata Particle Systems Scope of Fractal Geometry

More information

0. Introduction: What is Computer Graphics? 1. Basics of scan conversion (line drawing) 2. Representing 2D curves

0. Introduction: What is Computer Graphics? 1. Basics of scan conversion (line drawing) 2. Representing 2D curves CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~elf Instructor: Eugene Fiume Office: BA 5266 Phone: 416 978 5472 (not a reliable way) Email:

More information

COMPUTER GRAPHICS. Computer Multimedia Systems Department Prepared By Dr Jamal Zraqou

COMPUTER GRAPHICS. Computer Multimedia Systems Department Prepared By Dr Jamal Zraqou COMPUTER GRAPHICS Computer Multimedia Systems Department Prepared By Dr Jamal Zraqou Introduction What is Computer Graphics? Applications Graphics packages What is Computer Graphics? Creation, Manipulation

More information

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS YEAR/SEM.: III/V STAFF NAME: T.ELANGOVAN SUBJECT NAME: Computer Graphics SUB. CODE:

More information

2.02B Methods and Uses of Animation Develop Computer Animations

2.02B Methods and Uses of Animation Develop Computer Animations 2.02B Methods and Uses of Animation 2.02 Develop Computer Animations Frame-by-Frame Animation Rapidly displaying images, or frames, in a sequence to create the optical illusion of movement. Digital animation

More information

Overview of Computer Graphics

Overview of Computer Graphics Application of Computer Graphics UNIT- 1 Overview of Computer Graphics Computer-Aided Design for engineering and architectural systems etc. Objects maybe displayed in a wireframe outline form. Multi-window

More information

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

CGT 581 G Procedural Methods Fractals

CGT 581 G Procedural Methods Fractals CGT 581 G Procedural Methods Fractals Bedrich Benes, Ph.D. Purdue University Department of Computer Graphics Technology Procedural Techniques Model is generated by a piece of code. Model is not represented

More information

Chapel Hill Math Circle: Symmetry and Fractals

Chapel Hill Math Circle: Symmetry and Fractals Chapel Hill Math Circle: Symmetry and Fractals 10/7/17 1 Introduction This worksheet will explore symmetry. To mathematicians, a symmetry of an object is, roughly speaking, a transformation that does not

More information

Fractals: a way to represent natural objects

Fractals: a way to represent natural objects Fractals: a way to represent natural objects In spatial information systems there are two kinds of entity to model: natural earth features like terrain and coastlines; human-made objects like buildings

More information

Multimedia Technology CHAPTER 4. Video and Animation

Multimedia Technology CHAPTER 4. Video and Animation CHAPTER 4 Video and Animation - Both video and animation give us a sense of motion. They exploit some properties of human eye s ability of viewing pictures. - Motion video is the element of multimedia

More information

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19 Lecture 17: Recursive Ray Tracing Where is the way where light dwelleth? Job 38:19 1. Raster Graphics Typical graphics terminals today are raster displays. A raster display renders a picture scan line

More information

Clouds, biological growth, and coastlines are

Clouds, biological growth, and coastlines are L A B 11 KOCH SNOWFLAKE Fractals Clouds, biological growth, and coastlines are examples of real-life phenomena that seem too complex to be described using typical mathematical functions or relationships.

More information

Final Study Guide Arts & Communications

Final Study Guide Arts & Communications Final Study Guide Arts & Communications Programs Used in Multimedia Developing a multimedia production requires an array of software to create, edit, and combine text, sounds, and images. Elements of Multimedia

More information

Fractals & Iterative Function Systems

Fractals & Iterative Function Systems CS 543: Computer Graphics Fractals & Iterative Function Systems Robert W. Lindeman Associate Professor Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu (with lots of help from

More information

2D & 3D Animation NBAY Donald P. Greenberg March 21, 2016 Lecture 7

2D & 3D Animation NBAY Donald P. Greenberg March 21, 2016 Lecture 7 2D & 3D Animation NBAY 6120 Donald P. Greenberg March 21, 2016 Lecture 7 2D Cel Animation Cartoon Animation What is cartoon animation? A sequence of drawings which, when viewed in rapid succession, create

More information

How to draw and create shapes

How to draw and create shapes Adobe Flash Professional Guide How to draw and create shapes You can add artwork to your Adobe Flash Professional documents in two ways: You can import images or draw original artwork in Flash by using

More information

Lecture 3: Some Strange Properties of Fractal Curves

Lecture 3: Some Strange Properties of Fractal Curves Lecture 3: Some Strange Properties of Fractal Curves I have been a stranger in a strange land. Exodus 2:22 1. Fractal Strangeness Fractals have a look and feel that is very different from ordinary curves.

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

Unit 6. Multimedia Element: Animation. Introduction to Multimedia Semester 1

Unit 6. Multimedia Element: Animation. Introduction to Multimedia Semester 1 Unit 6 Multimedia Element: Animation 2017-18 Semester 1 Unit Outline In this unit, we will learn Animation Guidelines Flipbook Sampling Rate and Playback Rate Cel Animation Frame-based Animation Path-based

More information

An Introduction to Fractals

An Introduction to Fractals An Introduction to Fractals Sarah Hardy December 10, 2018 Abstract Fractals can be defined as an infinitely complex pattern that is self-similar, that is contains replicas of itself of varying sizes, across

More information

Lecture Week 4. Images

Lecture Week 4. Images Lecture Week 4 Images Images can be used: As a backdrop behind text to create a pictorial framework for the text. As a background for the content. As an icon to represent options that can be selected.

More information

Computer Graphics (CS 543) Lecture 2c: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics (CS 543) Lecture 2c: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics (CS 543 Lecture c: Fractals Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI What are Fractals? Mathematical expressions to generate pretty pictures Evaluate

More information

EF432. Introduction to spagetti and meatballs

EF432. Introduction to spagetti and meatballs EF432 Introduction to spagetti and meatballs CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~karan/courses/418/ Instructors: L2501, T 6-8pm

More information

EF432. Introduction to spagetti and meatballs

EF432. Introduction to spagetti and meatballs EF432 Introduction to spagetti and meatballs CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~karan/courses/418/fall2015 Instructor: Karan

More information

Chapter 9 Animation System

Chapter 9 Animation System Chapter 9 Animation System 9.1 Types of Character Animation Cel Animation Cel animation is a specific type of traditional animation. A cel is a transparent sheet of plastic on which images can be painted

More information

Computer Animation. Conventional Animation

Computer Animation. Conventional Animation Animation The term animation has a Greek (animos) as well as roman (anima) root, meaning to bring to life Life: evolution over time Conventional Animation Animation is a technique in which the illusion

More information

FLAMINGO CHEAT SHEET FOR ES 305 CLASS 5 Pages of Fresh Flamingo Goodness

FLAMINGO CHEAT SHEET FOR ES 305 CLASS 5 Pages of Fresh Flamingo Goodness FLAMINGO CHEAT SHEET FOR ES 305 CLASS 5 Pages of Fresh Flamingo Goodness *Keep this PDF with you at all times it will help you to maneuver the vast and confusing ocean that is the Flamingo Materials Editor!

More information

FRACTALS The term fractal was coined by mathematician Benoit Mandelbrot A fractal object, unlike a circle or any regular object, has complexity at all scales Natural Fractal Objects Natural fractals

More information

Binghamton University. EngiNet. Thomas J. Watson. School of Engineering and Applied Science. State University of New York. EngiNet WARNING CS 560

Binghamton University. EngiNet. Thomas J. Watson. School of Engineering and Applied Science. State University of New York. EngiNet WARNING CS 560 Binghamton University EngiNet State University of New York EngiNet Thomas J. Watson School of Engineering and Applied Science WARNING All rights reserved. No Part of this video lecture series may be reproduced

More information

Fractals. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna.

Fractals. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna. Fractals Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Geometric Objects Man-made objects are geometrically simple (e.g., rectangles,

More information

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND Chapter 9 Geometry Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 2 WHAT YOU WILL LEARN Transformational geometry,

More information

CS770/870 Spring 2017 Animation Basics

CS770/870 Spring 2017 Animation Basics Preview CS770/870 Spring 2017 Animation Basics Related material Angel 6e: 1.1.3, 8.6 Thalman, N and D. Thalman, Computer Animation, Encyclopedia of Computer Science, CRC Press. Lasseter, J. Principles

More information

CS770/870 Spring 2017 Animation Basics

CS770/870 Spring 2017 Animation Basics CS770/870 Spring 2017 Animation Basics Related material Angel 6e: 1.1.3, 8.6 Thalman, N and D. Thalman, Computer Animation, Encyclopedia of Computer Science, CRC Press. Lasseter, J. Principles of traditional

More information

Object representation

Object representation Object representation Geri s Game Pixar 1997 Subdivision surfaces Polhemus 3d scan Over 700 controls 2 Computer Graphics Quick test #1 Describe the picture Graphical systems, visualization and multimedia

More information

Topic 0. Introduction: What Is Computer Graphics? CSC 418/2504: Computer Graphics EF432. Today s Topics. What is Computer Graphics?

Topic 0. Introduction: What Is Computer Graphics? CSC 418/2504: Computer Graphics EF432. Today s Topics. What is Computer Graphics? EF432 Introduction to spagetti and meatballs CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~karan/courses/418/ Instructors: L0101, W 12-2pm

More information

Session 27: Fractals - Handout

Session 27: Fractals - Handout Session 27: Fractals - Handout Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line. Benoit Mandelbrot (1924-2010)

More information

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

Procedural modeling and shadow mapping. Computer Graphics CSE 167 Lecture 15

Procedural modeling and shadow mapping. Computer Graphics CSE 167 Lecture 15 Procedural modeling and shadow mapping Computer Graphics CSE 167 Lecture 15 CSE 167: Computer graphics Procedural modeling Height fields Fractals L systems Shape grammar Shadow mapping Based on slides

More information

Objective DM104 Objective DM %

Objective DM104 Objective DM % Objective DM104 Objective DM104.01-5% Michelle is in the process of adding tweens to her animation. Tweens are a characteristic of what type of animation? A. frame-based animation B. still animation C.

More information

Bitmap and Vector Graphics (Introduction to Painting and Drawing applications)

Bitmap and Vector Graphics (Introduction to Painting and Drawing applications) COMPSCI 111 S1C - Lecture 14 1 of 8 Computer Science COMPSCI 111 S1C - Lecture 14 March 2004 Bitmap and Vector Graphics (Introduction to Painting and Drawing applications) Vector Graphics After computers

More information

Graphics Hardware and Display Devices

Graphics Hardware and Display Devices Graphics Hardware and Display Devices CSE328 Lectures Graphics/Visualization Hardware Many graphics/visualization algorithms can be implemented efficiently and inexpensively in hardware Facilitates interactive

More information

1 Attempt any three of the following: 1 5 a. What is Computer Graphics? How image is to be display on Video Display Device?

1 Attempt any three of the following: 1 5 a. What is Computer Graphics? How image is to be display on Video Display Device? (2½ hours) Total Marks: 75 N. B.: (1) All questions are compulsory. (2) Makesuitable assumptions wherever necessary and state the assumptions made. (3) Answers to the same question must be written together.

More information

CS GAME PROGRAMMING Question bank

CS GAME PROGRAMMING Question bank CS6006 - GAME PROGRAMMING Question bank Part A Unit I 1. List the different types of coordinate systems. 2. What is ray tracing? Mention some applications of ray tracing. 3. Discuss the stages involved

More information

History. Early viewers

History. Early viewers IT82: Multimedia 1 History Photography around since the 19th century Realistic animation began in 1872 when Eadweard Muybridge asked to settle a bet about a flying horse IT82: Multimedia 2 1 History Muybridge

More information

Computer Graphics 4731 Lecture 5: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics 4731 Lecture 5: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics 4731 Lecture 5: Fractals Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI What are Fractals? Mathematical expressions to generate pretty pictures Evaluate

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION BGDA (UG SDE) IV SEMESTER. CORE COURSE Modeling & Animation QUESTION BANK

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION BGDA (UG SDE) IV SEMESTER. CORE COURSE Modeling & Animation QUESTION BANK UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION BGDA (UG SDE) IV SEMESTER CORE COURSE Modeling & Animation Prepared by Noushad N Head, Department of Multimedia Majlis Arts and Science College Puramannur

More information

Generation of 3D Fractal Images for Mandelbrot and Julia Sets

Generation of 3D Fractal Images for Mandelbrot and Julia Sets 178 Generation of 3D Fractal Images for Mandelbrot and Julia Sets Bulusu Rama #, Jibitesh Mishra * # Department of Computer Science and Engineering, MLR Institute of Technology Hyderabad, India 1 rama_bulusu@yahoo.com

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

SLO to ILO Alignment Reports

SLO to ILO Alignment Reports SLO to ILO Alignment Reports CAN - 00 - Institutional Learning Outcomes (ILOs) CAN ILO #1 - Critical Thinking - Select, evaluate, and use information to investigate a point of view, support a conclusion,

More information

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III Year, V Semester Section : CSE - 1 & 2 Subject Code : CS6504 Subject

More information

MODELING AND ANIMATION

MODELING AND ANIMATION UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION D M A MODELING AND ANIMATION QUESTION BANK 1. 2D Animation a) Wire Frame b) More than two Dimension c) Cel animation 2. 3D Animation a) Illution of three-dimensional

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS SESSION 21 KEYFRAME ANIMATION 1 Lecture Overview Review of last class Next week Quiz #2 Project presentations rubric Today Keyframe Animation Programming Assignment #3 solution

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS380: Computer Graphics Ray Tracing Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Class Objectives Understand overall algorithm of recursive ray tracing Ray generations Intersection

More information

CS 130 Final. Fall 2015

CS 130 Final. Fall 2015 CS 130 Final Fall 2015 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

ME COMPUTER AIDED DESIGN COMPUTER AIDED DESIGN 2 MARKS Q&A

ME COMPUTER AIDED DESIGN COMPUTER AIDED DESIGN 2 MARKS Q&A ME6501 - COMPUTER AIDED DESIGN COMPUTER AIDED DESIGN 2 MARKS Q&A Unit I 1. What is CAD? Computer aided design (CAD) is the technology concerned with the use of computer systems to assist the creation,

More information

Computer Graphics and Visualization. What is computer graphics?

Computer Graphics and Visualization. What is computer graphics? CSCI 120 Computer Graphics and Visualization Shiaofen Fang Department of Computer and Information Science Indiana University Purdue University Indianapolis What is computer graphics? Computer graphics

More information

3D Programming. 3D Programming Concepts. Outline. 3D Concepts. 3D Concepts -- Coordinate Systems. 3D Concepts Displaying 3D Models

3D Programming. 3D Programming Concepts. Outline. 3D Concepts. 3D Concepts -- Coordinate Systems. 3D Concepts Displaying 3D Models 3D Programming Concepts Outline 3D Concepts Displaying 3D Models 3D Programming CS 4390 3D Computer 1 2 3D Concepts 3D Model is a 3D simulation of an object. Coordinate Systems 3D Models 3D Shapes 3D Concepts

More information

Topics and things to know about them:

Topics and things to know about them: Practice Final CMSC 427 Distributed Tuesday, December 11, 2007 Review Session, Monday, December 17, 5:00pm, 4424 AV Williams Final: 10:30 AM Wednesday, December 19, 2007 General Guidelines: The final will

More information

Per-Pixel Lighting and Bump Mapping with the NVIDIA Shading Rasterizer

Per-Pixel Lighting and Bump Mapping with the NVIDIA Shading Rasterizer Per-Pixel Lighting and Bump Mapping with the NVIDIA Shading Rasterizer Executive Summary The NVIDIA Quadro2 line of workstation graphics solutions is the first of its kind to feature hardware support for

More information

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo)

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) www.vucybarien.com Question No: 1 What are the two focusing methods in CRT? Explain briefly. Page no : 26 1. Electrostatic focusing

More information

Graphics for VEs. Ruth Aylett

Graphics for VEs. Ruth Aylett Graphics for VEs Ruth Aylett Overview VE Software Graphics for VEs The graphics pipeline Projections Lighting Shading VR software Two main types of software used: off-line authoring or modelling packages

More information

Introduction. Chapter Computer Graphics

Introduction. Chapter Computer Graphics Chapter 1 Introduction 1.1. Computer Graphics Computer graphics has grown at an astounding rate over the last three decades. In the 1970s, frame-buffers capable of displaying digital images were rare and

More information

Grade 6 Math Circles. Shapeshifting

Grade 6 Math Circles. Shapeshifting Faculty of Mathematics Waterloo, Ontario N2L 3G1 Plotting Grade 6 Math Circles October 24/25, 2017 Shapeshifting Before we begin today, we are going to quickly go over how to plot points. Centre for Education

More information

Introduction to Visualization and Computer Graphics

Introduction to Visualization and Computer Graphics Introduction to Visualization and Computer Graphics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf Introduction to Visualization and Computer Graphics Visibility Shading 3D Rendering Geometric Model Color Perspective

More information

CS 543: Computer Graphics Lecture 3 (Part I): Fractals. Emmanuel Agu

CS 543: Computer Graphics Lecture 3 (Part I): Fractals. Emmanuel Agu CS 543: Computer Graphics Lecture 3 (Part I: Fractals Emmanuel Agu What are Fractals? Mathematical expressions Approach infinity in organized way Utilizes recursion on computers Popularized by Benoit Mandelbrot

More information

There we are; that's got the 3D screen and mouse sorted out.

There we are; that's got the 3D screen and mouse sorted out. Introduction to 3D To all intents and purposes, the world we live in is three dimensional. Therefore, if we want to construct a realistic computer model of it, the model should be three dimensional as

More information

CS 4300 Computer Graphics. Prof. Harriet Fell Fall 2012 Lecture 5 September 13, 2012

CS 4300 Computer Graphics. Prof. Harriet Fell Fall 2012 Lecture 5 September 13, 2012 CS 4300 Computer Graphics Prof. Harriet Fell Fall 2012 Lecture 5 September 13, 2012 1 Today s Topics Vectors review Shirley et al. 2.4 Rasters Shirley et al. 3.0-3.2.1 Rasterizing Lines Shirley et al.

More information

NUMB3RS Activity: I It Itera Iteration. Episode: Rampage

NUMB3RS Activity: I It Itera Iteration. Episode: Rampage Teacher Page 1 NUMB3RS Activity: I It Itera Iteration Topic: Iterative processes Grade Level: 9-12 Objective: Examine random iterative processes and their outcomes Time: about 45 minutes Materials: TI-83/84

More information

CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications

CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 11794--4400

More information

Some geometries to describe nature

Some geometries to describe nature Some geometries to describe nature Christiane Rousseau Since ancient times, the development of mathematics has been inspired, at least in part, by the need to provide models in other sciences, and that

More information

Keyframe Animation. Animation. Computer Animation. Computer Animation. Animation vs Modeling. Animation vs Modeling

Keyframe Animation. Animation. Computer Animation. Computer Animation. Animation vs Modeling. Animation vs Modeling CSCI 420 Computer Graphics Lecture 19 Keyframe Animation Traditional Animation Keyframe Animation [Angel Ch. 9] Animation "There is no particular mystery in animation...it's really very simple, and like

More information

COM337 COMPUTER GRAPHICS Other Topics

COM337 COMPUTER GRAPHICS Other Topics COM337 COMPUTER GRAPHICS Other Topics Animation, Surface Details, Global Illumination Kurtuluş Küllü based on the book by Hearn, Baker, and Carithers There are some other important issues and topics that

More information

Module 1: Basics of Solids Modeling with SolidWorks

Module 1: Basics of Solids Modeling with SolidWorks Module 1: Basics of Solids Modeling with SolidWorks Introduction SolidWorks is the state of the art in computer-aided design (CAD). SolidWorks represents an object in a virtual environment just as it exists

More information

M4-R4: INTRODUCTION TO MULTIMEDIA (JAN 2019) DURATION: 03 Hrs

M4-R4: INTRODUCTION TO MULTIMEDIA (JAN 2019) DURATION: 03 Hrs M4-R4: INTRODUCTION TO MULTIMEDIA (JAN 2019) Max Marks: 100 DURATION: 03 Hrs M1-R4-01-19 1.3 Which of the following tag pair is used to list the text? (a) and (b) and (c)

More information

Computer Graphics. Spring Feb Ghada Ahmed, PhD Dept. of Computer Science Helwan University

Computer Graphics. Spring Feb Ghada Ahmed, PhD Dept. of Computer Science Helwan University Spring 2018 13 Feb 2018, PhD ghada@fcih.net Agenda today s video 2 Starting video: Video 1 Video 2 What is Animation? Animation is the rapid display of a sequence of images to create an illusion of movement

More information

Books: 1) Computer Graphics, Principles & Practice, Second Edition in C JamesD. Foley, Andriesvan Dam, StevenK. Feiner, John F.

Books: 1) Computer Graphics, Principles & Practice, Second Edition in C JamesD. Foley, Andriesvan Dam, StevenK. Feiner, John F. Computer Graphics Books: 1) Computer Graphics, Principles & Practice, Second Edition in C JamesD. Foley, Andriesvan Dam, StevenK. Feiner, John F. Huges 2) Schaim s Outline Computer Graphics Roy A. Plastock,

More information

Lecture 34: Curves defined by Parametric equations

Lecture 34: Curves defined by Parametric equations Curves defined by Parametric equations When the path of a particle moving in the plane is not the graph of a function, we cannot describe it using a formula that express y directly in terms of x, or x

More information

Aspects of Geometry. Finite models of the projective plane and coordinates

Aspects of Geometry. Finite models of the projective plane and coordinates Review Sheet There will be an exam on Thursday, February 14. The exam will cover topics up through material from projective geometry through Day 3 of the DIY Hyperbolic geometry packet. Below are some

More information

New Features in BCC AVX 4.0

New Features in BCC AVX 4.0 New Features in BCC AVX 4.0 Introduction..........................................................2 New Integration Features................................................2 Working with 8-bit and 16-bit

More information

Fractals and Multi-Layer Coloring Algorithms

Fractals and Multi-Layer Coloring Algorithms Fractals and Multi-Layer Coloring Algorithms Javier Barrallo and Santiago Sanchez Mathematics, Physics and Computer Science The University of the Basque Country School of Architecture. Plaza Onati, 2.

More information

Fundamental of Digital Media Design. Introduction to Animation

Fundamental of Digital Media Design. Introduction to Animation Fundamental of Digital Media Design Introduction to Animation by Noraniza Samat Faculty of Computer Systems & Software Engineering noraniza@ump.edu.my OER Fundamental of Digital Media Design by Noraniza

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Computer Graphics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Computer Graphics r About the Tutorial To display a picture of any size on a computer screen is a difficult process. Computer graphics are used to simplify this process. Various algorithms and techniques are used to generate

More information

Lossy Coding 2 JPEG. Perceptual Image Coding. Discrete Cosine Transform JPEG. CS559 Lecture 9 JPEG, Raster Algorithms

Lossy Coding 2 JPEG. Perceptual Image Coding. Discrete Cosine Transform JPEG. CS559 Lecture 9 JPEG, Raster Algorithms CS559 Lecture 9 JPEG, Raster Algorithms These are course notes (not used as slides) Written by Mike Gleicher, Sept. 2005 With some slides adapted from the notes of Stephen Chenney Lossy Coding 2 Suppose

More information

Fractal Coding. CS 6723 Image Processing Fall 2013

Fractal Coding. CS 6723 Image Processing Fall 2013 Fractal Coding CS 6723 Image Processing Fall 2013 Fractals and Image Processing The word Fractal less than 30 years by one of the history s most creative mathematician Benoit Mandelbrot Other contributors:

More information

Introduction to 3D Concepts

Introduction to 3D Concepts PART I Introduction to 3D Concepts Chapter 1 Scene... 3 Chapter 2 Rendering: OpenGL (OGL) and Adobe Ray Tracer (ART)...19 1 CHAPTER 1 Scene s0010 1.1. The 3D Scene p0010 A typical 3D scene has several

More information

COMP Preliminaries Jan. 6, 2015

COMP Preliminaries Jan. 6, 2015 Lecture 1 Computer graphics, broadly defined, is a set of methods for using computers to create and manipulate images. There are many applications of computer graphics including entertainment (games, cinema,

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

More information

Graphics and Interaction Rendering pipeline & object modelling

Graphics and Interaction Rendering pipeline & object modelling 433-324 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Lecture outline Introduction to Modelling Polygonal geometry The rendering

More information

Image Base Rendering: An Introduction

Image Base Rendering: An Introduction Image Base Rendering: An Introduction Cliff Lindsay CS563 Spring 03, WPI 1. Introduction Up to this point, we have focused on showing 3D objects in the form of polygons. This is not the only approach to

More information

Fractal Dimension and the Cantor Set

Fractal Dimension and the Cantor Set Fractal Dimension and the Cantor Set Shailesh A Shirali Shailesh Shirali is Director of Sahyadri School (KFI), Pune, and also Head of the Community Mathematics Centre in Rishi Valley School (AP). He has

More information