AME 20213: Fundamentals of Measurements and Data Analysis. LEX-3: Wind Tunnel Pressure Measurement Uncertainty 9 October 2006

Size: px
Start display at page:

Download "AME 20213: Fundamentals of Measurements and Data Analysis. LEX-3: Wind Tunnel Pressure Measurement Uncertainty 9 October 2006"

Transcription

1 AME 20213: Fundamentals of Measurements and Data Analysis LEX-3: Wind Tunnel Pressure Measurement Uncertainty 9 October 2006 TA: John Schmitz Office: B028 Hessert Phone: jschmitz@nd.edu Objective: Pitot-static tubes and static pressure ports interfaced with pressure transducers are wind tunnel measurement devices with long histories and widespread use today. As with any measurement system however, the instruments have basic uncertainties that must be understood and quantified before data interpretation. Objectives of the current exercise are twofold: to demonstrate uncertainties inherent to pressure measurement through the use of imperfect instrumentation and discrete representation of analog signals, as well as to highlight the limiting Pitot-static tube requirement of exact freestream alignment. Background: Often in the experimental study of fluid mechanics, velocities, V, are found by measuring density, ρ, and pressures, P, and implementing the classic Bernoulli expression for total pressure in an incompressible flow (Equation 1). Solving for velocity yields, P T otal = P Static + P Dynamic = P Static ρv 2 (1) V = 2(P T otal P Static ). (2) ρ The value of density in Equation 2 is defined by the equation of state, P = ρrt, (3) where R, P, and T are the universal gas constant, recorded lab ambient pressure, and recorded lab temperature, respectively. One common device to implement the above highlighted relation is the Pitot-static probe. By creating a stagnation point in the flow, a Pitot-static probe measures a total pressure at its tip. Additional pressure ports along the body of the probe are used to measure the static pressure component and, hence, yield velocities according to Equation 2. Other pressure measurement instruments, such as Pitot probes, do not have the capability as single instruments to measure a difference between total and static pressures and hence velocities. Although the Pitot-static probe features an inexpensive and robust design, it requires an exacting alignment to the freestream velocity. Naturally, uncertainty permeates results in 1

2 Figure 1: Pitot-static Tube. the case of Pitot-static probe misalignment. The current exercise seeks to understand the uncertainty trend when Pitot-static probe yaw angle is varied from -80 to 80 degrees to the freestream. The static pressure port is another common measurement device, presented in this exercise to explore uncertainty in the analog-to-digital conversion of data. Static ports are often used to understand pressure forces on bodies submerged in fluids. For example, many static ports arranged along an airfoil body can give a pressure distribution about the airfoil, from which a lift coefficient may be gleaned. In certain applications, such as in the present case of separated flow around a cylinder, highly fluctuating pressure measurements call for the sampling and subsequent averaging of many points to give an accurate pressure reading. The deviation in the measured pressure is given by, 1 S x = (xi x) N 1 2, (4) where N is the number of sampled points, x i is a single sampled point and x is the sample mean of the points. Uncertainty for this case is that for estimating the true mean value, given by, u = ±t ν,p S x N, (5) where t ν,p arises from the Student-t probability distribution, ν is equal to N-1, and P indicates the desired confidence interval. As seen Equations 4 and 5, deviation and hence uncertainty will diminish as the number of sampled points is increased. All data are acquired by groups of two students in the continuous wind tunnel located in the Engineering Learning Center (ELC). The laboratory setup is depicted in Figure 2 2

3 Figure 2: Learning Center Low-Speed Wind Tunnel. and features a Pitot-static probe for Part A of the lab and a cylinder with a static port for the uncertainty measurements in Part B. Procedure: (PART A) To record pressure measurements, a pressure transducer is attached to the Pitot-static probe in order to represent pressures as voltages for data acquisition. Pressures may be converted from the stored voltages according to, P = 0.05 E pt , (6) where E pt1 is the recorded pressure transducer #1 voltage in volts and P is the pressure difference in in. H 2 O. Follow these steps to setup and record data for the Pitot-static tube yaw survey: 1. Record lab ambient temperature [ F] and pressure [in. Hg] using the barometer and thermometer located on the north side of the tunnel. You will need these to solve for density using Equation 3. Be sure to use a consistent system of units. 2. Ensure the Pitot-static probe is oriented upstream of the cylinder in the test section. Also verify that the black plug on the single pressure transducer is set to the port labeled Channel 1 on the acquisition board. 3

4 3. All data will be stored using the Labview package AME located on the computer desktop. First create a folder in the desktop folder ame20213 to save your data files during the procedure. Next, open AME Flip the switch to supply power to the tunnel motor. Set the power to the prescribed tunnel power setting and Pitot-static probe distance from the ceiling according to your group number. Use the meter located on the right side of the tunnel to set the power and the scale attached to the vertical traverse to set the correct probe height for your unique exercise. 5. In the software, verify that the Pitot/Cylinder switch is thrown to the Pitot setting and that data is sampled 1000 times at 500 Hz. 6. In Labview, label Channel 1 Pitot and click into the grey area, checking to make sure a green light switches on. 7. One lab partner must stand on the step stool and set the Pitot-static yaw angle using the available protractor. Start at -80 degrees and click the Start Experiment tab in Labview. Create a file in your folder with a.txt extension. 8. After designating a file and saving the first data point, Labview will ask if you would like to move the traverse and record another data sample. Change the yaw angle by 10 degrees and then click record sample. Continue until you have populated the range of yaw angles from -80 to 80 degrees in increments of 10 degrees. After reaching a positive 80 degrees, record several more points at 0 degrees to help you verify the freestream velocity value in your data analysis. 9. When finished recording data, click No, I m done. (PART B) The pressure transducer equation for cylinder static pressure port measurements is given by, P = (E pt ), (7) where E pt2 is the recorded pressure transducer #2 voltage in volts and P is the pressure difference in in. H 2 O. Follow these steps to setup and record data for the cylinder static port uncertainty: 1. By rotating the handle, position the Pitot-static probe near the tunnel ceiling so as not to disturb flow around the cylinder. 2. Switch the black BNC cable on the pressure transducer from Part A to Channel 2 on the box with two pressure transducers. N.B: A different pressure transducer is used for Part B. It is the larger of the two transducers. 4

5 3. In Labview, erase Pitot and label Channel 1 as Cylinder. 4. In Labview, flip the virtual switch from Pitot to Cylinder. 5. Set number of points sampled to 750 and verify a sampling rate of 1000Hz. 6. Set tunnel power to 50 % and ensure a static tap orientation of 10 degrees counterclockwise from vertical. 7. Start Experiment and save to a.txt file in your group folder, making sure to label clearly which data are for 50 % power and which for 90 %. 8. You only have to take one data point since Labview is now recording 750 raw data points to your.txt file. N.B. Take care not to take more than 1 data set. 9. Repeat the procedure for 90 % power. 10. When finished recording data, click No, I m done. Post-process/Deliverables: Using Equation 2, plot freestream velocity, V, versus yaw angle, θ. Include in your plot y error bars corresponding to measurement uncertainties in dynamic pressure. Take care to account for all pressure transducer measurement uncertainties discussed in the lab introduction. The behavior of the temporal precision error of the cylinder static tap is clearly understood upon plotting standard deviation, S x, versus number of sampled points, N. To make the plots, extract data in cumulative segments of 25 points, and then calculate a mean and standard deviation for every interval (i.e. N=[25,50, ]). Include figures according to the guidelines on p.49 [Dunn 2005]. Remember units on figure axes, a title or caption, and error bars where appropriate. Include three plots, one corresponding to the Pitot-static probe yaw survey, one for cylinder static port data standard deviation, and one for the corresponding temporal precision uncertainty given by expression 5. Include and comment on all results in a technical report as detailed on p [Dunn 2005], with particular focus on the following points: 1. Provide a table of uncertainties present in both parts of the lab. Discuss the sources and meanings of the uncertainties. 2. Include an appendix with a typed sample I.S.O. uncertainty derivation. 3. What is the maximum measurement uncertainty in the Pitot-static tube? Explain the behavior of the uncertainty at its maximum and minimum points. Where should the uncertainty be maximum and minimum? Does this correlate with your data? N.B. Uncertainty due to yaw angle has not been quantified in this exercise, and the maximum measurement uncertainty should correspond to your maximum y error bar value in Part A. 5

6 4. Is the effect of yaw angle on Pitot-static probe pressure measurement negligible? Why/why not? What is the implication for two or three-dimensional flows? Is there any way to correct for this behavior? 5. Explain the mechanism for uncertainty in the cylinder static tap. Why is there a challenge recording digital (discrete) measurements of an analog (continuous) signal in fluctuating conditions? Why is it important to average many samples when using a Pitot-static probe or static tap? Technical Report Due Date: Thursday November 9, 9:30 AM. References: 1. Dunn, P.F Measurement and Data Analysis for Engineering and Science. New York: McGraw-Hill. 6

DRAFT. DETERMINATION OF STACK GAS VELOCITY AND VOLUMETRIC FLOW RATE (Three-Dimensional Pitot Tube)

DRAFT. DETERMINATION OF STACK GAS VELOCITY AND VOLUMETRIC FLOW RATE (Three-Dimensional Pitot Tube) DRAFT Draft: 6/30/93 DETERMINATION OF STACK GAS VELOCITY AND VOLUMETRIC FLOW RATE (Three-Dimensional Pitot Tube) 1. Applicability and Principle 1.1 Applicability. This method is applicable for measurement

More information

Determination of Drag Coefficient

Determination of Drag Coefficient DEPARTMENT OF MECHANICAL, INDUSTRIAL AND MANUFACTURING ENGINEERING MIMU 505 - MEASUREMENT AND ANALYSIS Determination of Drag Coefficient You will need to bring a zip disk or USB storage device to the lab

More information

TFI s Windows-based Device Control software provides a powerful, easy-to-use interface for controlling and operating the Cobra Probe.

TFI s Windows-based Device Control software provides a powerful, easy-to-use interface for controlling and operating the Cobra Probe. COBRA PROBE The is a 4-hole pressure probe that provides dynamic, 3-component velocity and local pressure measurements in real-time. The features a linear frequency-response from 0 Hz (mean flow) to more

More information

September 17, 2003 Rev 2.0 (321-06) SUBJECT: Analysis of a Cylindrical pitot-static device for use in Air Flow Measurement

September 17, 2003 Rev 2.0 (321-06) SUBJECT: Analysis of a Cylindrical pitot-static device for use in Air Flow Measurement September 7, 3 Rev. (3-6) SUBJECT: Analysis of a Cylindrical pitot-static device for use in Air Flow Measurement BY: Robert O. Brandt, Jr, PE An analysis was done on a Cylindrical pitot-static device to

More information

University of Michigan Department of Aerospace Engineering 5ft 7ft Wind Tunnel Data Acquisition Bible

University of Michigan Department of Aerospace Engineering 5ft 7ft Wind Tunnel Data Acquisition Bible University of Michigan Department of Aerospace Engineering 5ft 7ft Wind Tunnel Data Acquisition Bible Richard B. Choroszucha riboch@umich.edu 16.V.2010 Contents List of Figures vi I Gathering Data 1 1

More information

Error Analysis, Statistics and Graphing

Error Analysis, Statistics and Graphing Error Analysis, Statistics and Graphing This semester, most of labs we require us to calculate a numerical answer based on the data we obtain. A hard question to answer in most cases is how good is your

More information

Visual Physics Introductory Lab [Lab 0]

Visual Physics Introductory Lab [Lab 0] Your Introductory Lab will guide you through the steps necessary to utilize state-of-the-art technology to acquire and graph data of mechanics experiments. Throughout Visual Physics, you will be using

More information

Chun-Min Su, Ph.D. Center for Measurement Standards, ITRI, Taiwan TCFF Workshop, Da Nang, Vietnam Nov. 12, 2016

Chun-Min Su, Ph.D. Center for Measurement Standards, ITRI, Taiwan TCFF Workshop, Da Nang, Vietnam Nov. 12, 2016 Progress in 3-D Pitot Tube and Related Research in Taiwan Chun-Min Su, Ph.D. Center for Measurement Standards, ITRI, Taiwan TCFF Workshop, Da Nang, Vietnam Nov. 12, 2016 Introduction Where on earth are

More information

Strömningslära Fluid Dynamics. Computer laboratories using COMSOL v4.4

Strömningslära Fluid Dynamics. Computer laboratories using COMSOL v4.4 UMEÅ UNIVERSITY Department of Physics Claude Dion Olexii Iukhymenko May 15, 2015 Strömningslära Fluid Dynamics (5FY144) Computer laboratories using COMSOL v4.4!! Report requirements Computer labs must

More information

2015 APMP TC Initiative Project

2015 APMP TC Initiative Project 015 APMP TC Initiative Project - Research on the Uncertainty Evaluation and Inter-comparison of 3D Pitot Tubes for Measuring Greenhouse Gas Emission Speaker: Chun-Min Su Participants: CMS: Hsin-Hung Lee,

More information

Lab 1- Introduction to Motion

Lab 1- Introduction to Motion Partner : Purpose Partner 2: Lab - Section: The purpose of this lab is to learn via a motion detector the relationship between position and velocity. Remember that this device measures the position of

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

Transducers and Transducer Calibration GENERAL MEASUREMENT SYSTEM

Transducers and Transducer Calibration GENERAL MEASUREMENT SYSTEM Transducers and Transducer Calibration Abstracted from: Figliola, R.S. and Beasley, D. S., 1991, Theory and Design for Mechanical Measurements GENERAL MEASUREMENT SYSTEM Assigning a specific value to a

More information

Wind tunnel experiments on a rotor model in yaw

Wind tunnel experiments on a rotor model in yaw Nord-Jan ermeer Faculty of Civil Engineering and Geosciences Stevinweg 8 CN Delft The Netherlands Tel: + 78 Fax: + 78 7 E-mail: n.vermeer@ct.tudelft.nl http://www.ct.tudelft.nl/windenergy/ivwhome.htm The

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information

Visual Physics - Introductory Lab Lab 0

Visual Physics - Introductory Lab Lab 0 Your Introductory Lab will guide you through the steps necessary to utilize state-of-the-art technology to acquire and graph data of mechanics experiments. Throughout Visual Physics, you will be using

More information

Hands-on Lab. Open-Loop Response: System Identification

Hands-on Lab. Open-Loop Response: System Identification Hands-on Lab Open-Loop Response: System Identification v r Motorized tethered cart A step or impulse response provides useful information that characterizes the system. With such data, one can then begin

More information

Experimental and Computational Investigation of Flow Distortion Around a Tubular Meteorological Mast

Experimental and Computational Investigation of Flow Distortion Around a Tubular Meteorological Mast CanWEA Conference Toronto, Ontario October 2005 Experimental and Computational Investigation of Flow Distortion Around a Tubular Meteorological Mast Matthew Filippelli - Pawel Mackiewicz mfilippelli@awstruewind.com

More information

Lab Activity #2- Statistics and Graphing

Lab Activity #2- Statistics and Graphing Lab Activity #2- Statistics and Graphing Graphical Representation of Data and the Use of Google Sheets : Scientists answer posed questions by performing experiments which provide information about a given

More information

Multi-Hole Velocity Probes

Multi-Hole Velocity Probes Multi-Hole Velocity Probes 5-Hole Probes 7-Hole Probes Calibration Services Multiprobe Reduction software Applications: Determination of Three Components of Flow Velocity Plus Total and Static Pressure

More information

Measurements in Fluid Mechanics

Measurements in Fluid Mechanics Measurements in Fluid Mechanics 13.1 Introduction The purpose of this chapter is to provide the reader with a basic introduction to the concepts and techniques applied by engineers who measure flow parameters

More information

252 APPENDIX D EXPERIMENT 1 Introduction to Computer Tools and Uncertainties

252 APPENDIX D EXPERIMENT 1 Introduction to Computer Tools and Uncertainties 252 APPENDIX D EXPERIMENT 1 Introduction to Computer Tools and Uncertainties Objectives To become familiar with the computer programs and utilities that will be used throughout the semester. You will learn

More information

Computational Simulation of the Wind-force on Metal Meshes

Computational Simulation of the Wind-force on Metal Meshes 16 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 2007 Computational Simulation of the Wind-force on Metal Meshes Ahmad Sharifian & David R. Buttsworth Faculty

More information

1. Learn about LabView software and its different components

1. Learn about LabView software and its different components SfwrEng 4aa3/4ga3 Lab 1 Lab Sessions: Week starting Sept. 21, 2009. Pre-lab reports Due: Week Starting Sept. 21, 2009 at the start of lab sessions. Lab-Reports Due: Week Starting Oct. 5, 2009 at the start

More information

Course Syllabus MECHANICAL ENGINEERING LABORATORY I Spring 2006

Course Syllabus MECHANICAL ENGINEERING LABORATORY I Spring 2006 Course Syllabus 22.302 - MECHANICAL ENGINEERING LABORATORY I Spring 2006 Classes: Instructors: Teaching Assistants: Textbook: Tuesday at 12:30 2:30 PM Majid Charmchi, B224, 934-2969; Majid_Charmchi@uml.edu

More information

Boundary Layer Wind Tunnel

Boundary Layer Wind Tunnel Basic v1.0 April 6, 2017 Powell Family Structures & Materials Laboratory Professor: Forrest Masters, PhD TABLE OF CONTENTS 1 Overview... 1 1.1 SYSTEM SOFTWARE INTRODUCTION... 1 1.2 SOFTWARE COMPONENTS...

More information

ME 365 EXPERIMENT 3 INTRODUCTION TO LABVIEW

ME 365 EXPERIMENT 3 INTRODUCTION TO LABVIEW ME 365 EXPERIMENT 3 INTRODUCTION TO LABVIEW Objectives: The goal of this exercise is to introduce the Laboratory Virtual Instrument Engineering Workbench, or LabVIEW software. LabVIEW is the primary software

More information

Strain and Force Measurement

Strain and Force Measurement NORTHEASTERN UNIVERSITY DEPARTMENT OF MECHANICAL, INDUSTRIAL AND MANUFACTURING ENGINEERING MIMU 0-MEASUREMENT AND ANALYSIS Strain and Force Measurement OBJECTIVES The primary objective of this experiment

More information

Small rectangles (and sometimes squares like this

Small rectangles (and sometimes squares like this Lab exercise 1: Introduction to LabView LabView is software for the real time acquisition, processing and visualization of measured data. A LabView program is called a Virtual Instrument (VI) because it,

More information

Quantitative flow visualization using the hydraulic analogy

Quantitative flow visualization using the hydraulic analogy Experiments in Fluids 27 (2000) 165 169 Springer-Verlag 2000 Quantitative flow visualization using the hydraulic analogy S. L. Rani, M. S. Wooldridge 165 Abstract The current work describes the development

More information

SPC 307 Aerodynamics. Lecture 1. February 10, 2018

SPC 307 Aerodynamics. Lecture 1. February 10, 2018 SPC 307 Aerodynamics Lecture 1 February 10, 2018 Sep. 18, 2016 1 Course Materials drahmednagib.com 2 COURSE OUTLINE Introduction to Aerodynamics Review on the Fundamentals of Fluid Mechanics Euler and

More information

Appendix A - Calibration Data Sheets for Pika T701 Test Instruments Primary Anemometer Pre-Test Calibration

Appendix A - Calibration Data Sheets for Pika T701 Test Instruments Primary Anemometer Pre-Test Calibration Appendix A - Calibration Data Sheets for Pika T701 Test Instruments Primary Anemometer Pre-Test Calibration Figure A1. Primary anemometer manufacturer calibration sheet pg 1 of 2. 29 Figure A2. Primary

More information

Using Excel for Graphical Analysis of Data

Using Excel for Graphical Analysis of Data Using Excel for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable physical parameters. Graphs are

More information

Hands-on Lab 2: LabVIEW NI-DAQ Basics 2

Hands-on Lab 2: LabVIEW NI-DAQ Basics 2 Hands-on Lab 2: LabVIEW NI-DAQ Basics 2 Recall that the final objective is position regulation using computer-controlled state feedback. Computer control requires both software, like LabVIEW and hardware,

More information

To make sense of data, you can start by answering the following questions:

To make sense of data, you can start by answering the following questions: Taken from the Introductory Biology 1, 181 lab manual, Biological Sciences, Copyright NCSU (with appreciation to Dr. Miriam Ferzli--author of this appendix of the lab manual). Appendix : Understanding

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS Dr W. Malalasekera Version 3.0 August 2013 1 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE

More information

Graphical Analysis of Data using Microsoft Excel [2016 Version]

Graphical Analysis of Data using Microsoft Excel [2016 Version] Graphical Analysis of Data using Microsoft Excel [2016 Version] Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable physical parameters.

More information

Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow

Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow Excerpt from the Proceedings of the COMSOL Conference 8 Boston Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow E. Kaufman

More information

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus How do you roll? Purpose: Observe and compare the motion of a cart rolling down hill versus a cart rolling up hill. Develop a mathematical model of the position versus time and velocity versus time for

More information

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workshop 2 Transonic Flow Over a NACA 0012 Airfoil. Introduction to CFX WS2-1 Goals The purpose of this tutorial is to introduce the user to modelling flow in high speed external aerodynamic applications.

More information

with 3 allocated blocks (1,2,3 containing 32,32,8 bytes), file B

with 3 allocated blocks (1,2,3 containing 32,32,8 bytes), file B EE345M Quiz 1 Spring 2009 Page 1 of 5 First Name: Last Name: February 27, 2009, 10:00 to 10:50am Open book, open notes, calculator (no laptops, phones, devices with screens larger than a TI-89 calculator,

More information

Measurement of Magnitude and Direction of Hot Gas Flow in a Fire Compartment with a Five-Hole Probe

Measurement of Magnitude and Direction of Hot Gas Flow in a Fire Compartment with a Five-Hole Probe Measurement of Magnitude and Direction of Hot Gas Flow in a Fire Compartment with a Five-Hole Probe by J. K. Schulz Supervised by Dr. Charley Fleischmann Fire Engineering Research Report 2002 February

More information

Appendix C. Vernier Tutorial

Appendix C. Vernier Tutorial C-1. Vernier Tutorial Introduction: In this lab course, you will collect, analyze and interpret data. The purpose of this tutorial is to teach you how to use the Vernier System to collect and transfer

More information

An introduction to plotting data

An introduction to plotting data An introduction to plotting data Eric D. Black California Institute of Technology February 25, 2014 1 Introduction Plotting data is one of the essential skills every scientist must have. We use it on a

More information

Appendix E: Software

Appendix E: Software Appendix E: Software Video Analysis of Motion Analyzing pictures (movies or videos) is a powerful tool for understanding how objects move. Like most forms of data, video is most easily analyzed using a

More information

Updated Sections 3.5 and 3.6

Updated Sections 3.5 and 3.6 Addendum The authors recommend the replacement of Sections 3.5 3.6 and Table 3.15 with the content of this addendum. Consequently, the recommendation is to replace the 13 models and their weights with

More information

MONITORING THE REPEATABILITY AND REPRODUCIBILTY OF A NATURAL GAS CALIBRATION FACILITY

MONITORING THE REPEATABILITY AND REPRODUCIBILTY OF A NATURAL GAS CALIBRATION FACILITY MONITORING THE REPEATABILITY AND REPRODUCIBILTY OF A NATURAL GAS CALIBRATION FACILITY T.M. Kegel and W.R. Johansen Colorado Engineering Experiment Station, Inc. (CEESI) 54043 WCR 37, Nunn, CO, 80648 USA

More information

Lab 8: Sensor Characterization Lab (Analog)

Lab 8: Sensor Characterization Lab (Analog) Objectives Lab 8: Sensor Characterization Lab (Analog) This lab introduces the methods and importance for characterizing sensors. Students will learn about how the Arduino interprets an analog signal.

More information

A New Advancement in the Complex Variable Boundary Element Method with a Potential Flow Application

A New Advancement in the Complex Variable Boundary Element Method with a Potential Flow Application A A New Advancement in Complex Variable Boundary Element Method with a Potential Flow Massachusetts Institute of Technology, United States Military Academy bdwilkins95@gmail.com November 2, 2018 A Overview

More information

Isotropic Porous Media Tutorial

Isotropic Porous Media Tutorial STAR-CCM+ User Guide 3927 Isotropic Porous Media Tutorial This tutorial models flow through the catalyst geometry described in the introductory section. In the porous region, the theoretical pressure drop

More information

ANSYS FLUENT. Airfoil Analysis and Tutorial

ANSYS FLUENT. Airfoil Analysis and Tutorial ANSYS FLUENT Airfoil Analysis and Tutorial ENGR083: Fluid Mechanics II Terry Yu 5/11/2017 Abstract The NACA 0012 airfoil was one of the earliest airfoils created. Its mathematically simple shape and age

More information

Presenting author Biodata

Presenting author Biodata Presenting author Biodata Name : A. Rajiv Designation : Asst. Engineering Manager (Instrumentation) Company : L&T Construction, Chennai, India Qualification : Bachelor of Engineering in Electronics and

More information

Automated calculation report (example) Date 05/01/2018 Simulation type

Automated calculation report (example) Date 05/01/2018 Simulation type Automated calculation report (example) Project name Tesla Semi Date 05/01/2018 Simulation type Moving Table of content Contents Table of content... 2 Introduction... 3 Project details... 3 Disclaimer...

More information

Optimizing Building Geometry to Increase the Energy Yield in the Built Environment

Optimizing Building Geometry to Increase the Energy Yield in the Built Environment Cornell University Laboratory for Intelligent Machine Systems Optimizing Building Geometry to Increase the Energy Yield in the Built Environment Malika Grayson Dr. Ephrahim Garcia Laboratory for Intelligent

More information

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET After reading through the Introduction, Purpose and Principles sections of the lab manual (and skimming through the procedures), answer the following

More information

Chapter 6 : Results and Discussion

Chapter 6 : Results and Discussion Refinement and Verification of the Virginia Tech Doppler Global Velocimeter (DGV) 86 Chapter 6 : Results and Discussion 6.1 Background The tests performed as part of this research were the second attempt

More information

Appendix 6: New Features in V 3.0 E

Appendix 6: New Features in V 3.0 E Appendix 6: New Features in V 3.0 E During the 3 years version 3.0 has been available, several minor bugs have been fixed and several new features added. Listed below are some of the main new features

More information

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK Exploration Drive Aberdeen Science and Energy Park Aberdeen AB23 8HZ Contact: Mr Graham Robertson Tel: +44(0)1224 708500 Fax: +44(0)1224 772

More information

Acquisition of experimental data

Acquisition of experimental data Otto-von-Guericke-Univ. Magdeburg Vorlesung «Messtechnik» Acquisition of experimental data Dominique Thévenin, Katja Zähringer Lehrstuhl für Strömungsmechanik und Strömungstechnik (LSS) thevenin@ovgu.de,

More information

Modeling & Simulation of Supersonic Flow Using McCormack s Technique

Modeling & Simulation of Supersonic Flow Using McCormack s Technique Modeling & Simulation of Supersonic Flow Using McCormack s Technique M. Saif Ullah Khalid*, Afzaal M. Malik** Abstract In this work, two-dimensional inviscid supersonic flow around a wedge has been investigated

More information

Middle School Math Course 3

Middle School Math Course 3 Middle School Math Course 3 Correlation of the ALEKS course Middle School Math Course 3 to the Texas Essential Knowledge and Skills (TEKS) for Mathematics Grade 8 (2012) (1) Mathematical process standards.

More information

Bootstrapping Method for 14 June 2016 R. Russell Rhinehart. Bootstrapping

Bootstrapping Method for  14 June 2016 R. Russell Rhinehart. Bootstrapping Bootstrapping Method for www.r3eda.com 14 June 2016 R. Russell Rhinehart Bootstrapping This is extracted from the book, Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation,

More information

System Block Diagram. Tracking Trajectories of Migrating Birds Around a Skyscraper. Brian Crombie Matt Zivney

System Block Diagram. Tracking Trajectories of Migrating Birds Around a Skyscraper. Brian Crombie Matt Zivney System Block Diagram Tracking Trajectories of Migrating Birds Around a Skyscraper Brian Crombie Matt Zivney Project Advisors Dr. Huggins Dr. Stewart Dr. Malinowski System Level Block Diagram The goal of

More information

CFD-1. Introduction: What is CFD? T. J. Craft. Msc CFD-1. CFD: Computational Fluid Dynamics

CFD-1. Introduction: What is CFD? T. J. Craft. Msc CFD-1. CFD: Computational Fluid Dynamics School of Mechanical Aerospace and Civil Engineering CFD-1 T. J. Craft George Begg Building, C41 Msc CFD-1 Reading: J. Ferziger, M. Peric, Computational Methods for Fluid Dynamics H.K. Versteeg, W. Malalasekara,

More information

Two-Dimensional Projectile Motion

Two-Dimensional Projectile Motion Two-Dimensional Projectile Motion I. Introduction. This experiment involves the study of motion using a CCD video camera in which a sequence of video frames (a movie ) is recorded onto computer disk and

More information

EXPERIMENTAL INVESTIGATION OF THE FLOW PATTERN BEHIND CYLINDER. Ing. Rut Vitkovičová, Ing. Vladislav Skála, Ing. Jan Čížek Ph.D.

EXPERIMENTAL INVESTIGATION OF THE FLOW PATTERN BEHIND CYLINDER. Ing. Rut Vitkovičová, Ing. Vladislav Skála, Ing. Jan Čížek Ph.D. EXPERIMENTAL INVESTIGATION OF THE FLOW PATTERN BEHIND CYLINDER Ing. Rut Vitkovičová, Ing. Vladislav Skála, Ing. Jan Čížek Ph.D. Abstract Investigation of the flow behind bluff bodies, especially for cylinder,

More information

Good Practice guide to measure roundness on roller machines and to estimate their uncertainty

Good Practice guide to measure roundness on roller machines and to estimate their uncertainty Good Practice guide to measure roundness on roller machines and to estimate their uncertainty Björn Hemming, VTT Technical Research Centre of Finland Ltd, Finland Thomas Widmaier, Aalto University School

More information

On the flow and noise of a two-dimensional step element in a turbulent boundary layer

On the flow and noise of a two-dimensional step element in a turbulent boundary layer On the flow and noise of a two-dimensional step element in a turbulent boundary layer Danielle J. Moreau 1, Jesse L. Coombs 1 and Con J. Doolan 1 Abstract This paper presents results of a study on the

More information

MI5 Multishot Orientation Tool Quick Start Guide

MI5 Multishot Orientation Tool Quick Start Guide MI5 Multishot Orientation Tool Quick Start Guide V1.1; B. Novak Introduction This guide is meant to help technicians set up the MI5 multishot orientation tools, deploy the tools, and collect and process

More information

Abstract. Heat and Power Technology. Internship Report. Jack Siman

Abstract. Heat and Power Technology. Internship Report. Jack Siman Heat and Power Technology Internship Report Jack Siman john.siman@duke.edu Submission Date 2017-July-28 Supervisor Jens Fridh Abstract The post processing methods for interpreting flow characteristics

More information

Education & Research

Education & Research Education & Research Subsonic Wind Tunnels and Instrumentation Lasting Quality Since 1947, AEROLAB wind tunnels have been shipped to over thirty countries on six continents. AEROLAB products last for generations!

More information

Introduction to Electronics Workbench

Introduction to Electronics Workbench Introduction to Electronics Workbench Electronics Workbench (EWB) is a design tool that provides you with all the components and instruments to create board-level designs on your PC. The user interface

More information

One Dimensional Motion (Part I and Part II)

One Dimensional Motion (Part I and Part II) One Dimensional Motion (Part I and Part II) Purpose:To understand the relationship between displacement (position), motion (velocity), and change in motion (acceleration). Topics of PART I and PART II:

More information

CH142 Spring Spectrophotometers with Vernier Data Acquisition Software

CH142 Spring Spectrophotometers with Vernier Data Acquisition Software Spectrophotometers with Vernier Data Acquisition Software The absorbance of a sample is given as A = log I o I, where I o is the intensity without sample present and I is the intensity with the sample

More information

COMPUTATIONAL AND EXPERIMENTAL INTERFEROMETRIC ANALYSIS OF A CONE-CYLINDER-FLARE BODY. Abstract. I. Introduction

COMPUTATIONAL AND EXPERIMENTAL INTERFEROMETRIC ANALYSIS OF A CONE-CYLINDER-FLARE BODY. Abstract. I. Introduction COMPUTATIONAL AND EXPERIMENTAL INTERFEROMETRIC ANALYSIS OF A CONE-CYLINDER-FLARE BODY John R. Cipolla 709 West Homeway Loop, Citrus Springs FL 34434 Abstract A series of computational fluid dynamic (CFD)

More information

Summary and additional notes for Static ti pressure measurements:

Summary and additional notes for Static ti pressure measurements: Summary and additional notes for Static ti pressure measurements: Determination of static pressure a) Wall tapping b) static tube Error in pressure is function of: Error in pressure is function of: And

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

Determination of Angle of Attack (AOA) for Rotating Blades

Determination of Angle of Attack (AOA) for Rotating Blades Downloaded from orbit.dtu.dk on: Sep 1, 218 Determination of Angle of Attack (AOA) for Rotating Blades Shen, Wen Zhong; Hansen, Martin Otto Laver; Sørensen, Jens Nørkær Published in: Wind Energy Publication

More information

Inclusion of Aleatory and Epistemic Uncertainty in Design Optimization

Inclusion of Aleatory and Epistemic Uncertainty in Design Optimization 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Inclusion of Aleatory and Epistemic Uncertainty in Design Optimization Sirisha Rangavajhala

More information

Work in Progress Ohio Northern University Wind Tunnel Upgrade Senior Capstone

Work in Progress Ohio Northern University Wind Tunnel Upgrade Senior Capstone Work in Progress Ohio Northern University Wind Tunnel Upgrade Senior Capstone Sean Lemke, Robert Money, Garrett Petty Ohio Northern University, s-lemke@onu.edu, r-money@onu.edu, g-petty@onu.edu Abstract

More information

Simulation of Turbulent Flow around an Airfoil

Simulation of Turbulent Flow around an Airfoil 1. Purpose Simulation of Turbulent Flow around an Airfoil ENGR:2510 Mechanics of Fluids and Transfer Processes CFD Lab 2 (ANSYS 17.1; Last Updated: Nov. 7, 2016) By Timur Dogan, Michael Conger, Andrew

More information

Laser speckle based background oriented schlieren measurements in a fire backlayering front

Laser speckle based background oriented schlieren measurements in a fire backlayering front Laser speckle based background oriented schlieren measurements in a fire backlayering front Philipp Bühlmann 1*, Alexander H. Meier 1, Martin Ehrensperger 1, Thomas Rösgen 1 1: ETH Zürich, Institute of

More information

Sample 3D velocity at up to 200 Hz for use in hydraulic models and laboratory flumes

Sample 3D velocity at up to 200 Hz for use in hydraulic models and laboratory flumes Sample 3D velocity at up to 200 Hz for use in hydraulic models and laboratory flumes The is a high-resolution acoustic velocimeter used to measure 3D water velocity fluctuations within a very small sampling

More information

Simulation of Turbulent Flow around an Airfoil

Simulation of Turbulent Flow around an Airfoil Simulation of Turbulent Flow around an Airfoil ENGR:2510 Mechanics of Fluids and Transfer Processes CFD Pre-Lab 2 (ANSYS 17.1; Last Updated: Nov. 7, 2016) By Timur Dogan, Michael Conger, Andrew Opyd, Dong-Hwan

More information

Computational Flow Analysis of Para-rec Bluff Body at Various Reynold s Number

Computational Flow Analysis of Para-rec Bluff Body at Various Reynold s Number International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 5 (2013), pp. 667-674 International Research Publication House http://www.irphouse.com Computational Flow Analysis

More information

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Objective: The objective of this laboratory is to introduce how to use FLUENT to solve both transient and natural convection problems.

More information

INTRODUCTION TO LABVIEW

INTRODUCTION TO LABVIEW INTRODUCTION TO LABVIEW 2nd Year Microprocessors Laboratory 2012-2013 INTRODUCTION For the first afternoon in the lab you will learn to program using LabVIEW. This handout is designed to give you an introduction

More information

and to the following students who assisted in the creation of the Fluid Dynamics tutorials:

and to the following students who assisted in the creation of the Fluid Dynamics tutorials: Fluid Dynamics CAx Tutorial: Pressure Along a Streamline Basic Tutorial #3 Deryl O. Snyder C. Greg Jensen Brigham Young University Provo, UT 84602 Special thanks to: PACE, Fluent, UGS Solutions, Altair

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1975-4 (Physical Optics) a. Light of a single wavelength is incident on a single slit of width w. (w is a few wavelengths.) Sketch a graph of the intensity as

More information

Systematic errors Random errors

Systematic errors Random errors Where are we in our discussion of error analysis? Let s revisit: 1 From Lecture 1: Quick Start, Replicate Errors: Measurements are affected by errors (uncertainty) There are two general categories of errors

More information

PEER Report Addendum.

PEER Report Addendum. PEER Report 2017-03 Addendum. The authors recommend the replacement of Section 3.5.1 and Table 3.15 with the content of this Addendum. Consequently, the recommendation is to replace the 13 models and their

More information

Data Acquisition Laboratory

Data Acquisition Laboratory Session 2559 Data Acquisition Laboratory Asad Yousuf Savannah State University Abstract The essential element to automate your system for data collection and analysis is termed as the data acquisition.

More information

LAB 2: DATA FILTERING AND NOISE REDUCTION

LAB 2: DATA FILTERING AND NOISE REDUCTION NAME: LAB TIME: LAB 2: DATA FILTERING AND NOISE REDUCTION In this exercise, you will use Microsoft Excel to generate several synthetic data sets based on a simplified model of daily high temperatures in

More information

Specific Accreditation Criteria

Specific Accreditation Criteria Specific Accreditation Criteria ISO/IEC 17025 Application Document Infrastructure and Asset Integrity - Annex July 2018 Copyright National Association of Testing Authorities, Australia 2013 This publication

More information

Data Presentation. Figure 1. Hand drawn data sheet

Data Presentation. Figure 1. Hand drawn data sheet Data Presentation The purpose of putting results of experiments into graphs, charts and tables is two-fold. First, it is a visual way to look at the data and see what happened and make interpretations.

More information

Analysis of an airfoil

Analysis of an airfoil UNDERGRADUATE RESEARCH FALL 2010 Analysis of an airfoil using Computational Fluid Dynamics Tanveer Chandok 12/17/2010 Independent research thesis at the Georgia Institute of Technology under the supervision

More information

Fog Monitor 100 (FM 100) Module Manual

Fog Monitor 100 (FM 100) Module Manual Particle Analysis and Display System (PADS): Fog Monitor 100 (FM 100) Module Manual DOC-0285 Rev A PADS 3.6.0 FM 100 Module 3.6.0 2545 Central Avenue Boulder, CO 80301 USA C O P Y R I G H T 2 0 1 1 D R

More information

PHY 351/651 LABORATORY 1 Introduction to LabVIEW

PHY 351/651 LABORATORY 1 Introduction to LabVIEW PHY 351/651 LABORATORY 1 Introduction to LabVIEW Introduction Generally speaking, modern data acquisition systems include four basic stages 1 : o o A sensor (or transducer) circuit that transforms a physical

More information

Motion I. Goals and Introduction

Motion I. Goals and Introduction Motion I Goals and Introduction As you have probably already seen in lecture or homework, it is important to develop a strong understanding of how to model an object s motion for success in this course.

More information

Aerodynamic Performance of the NACA 2412 Airfoil at Low Reynolds Number

Aerodynamic Performance of the NACA 2412 Airfoil at Low Reynolds Number Paper ID #15014 Aerodynamic Performance of the NACA 2412 Airfoil at Low Reynolds Number Dr. John E Matsson, Oral Roberts University John Matsson is a Professor of Mechanical Engineering at Oral Roberts

More information