Mixing Monte Carlo and Progressive Rendering for Improved Global Illumination

Size: px
Start display at page:

Download "Mixing Monte Carlo and Progressive Rendering for Improved Global Illumination"

Transcription

1 Mixing Monte Carlo and Progressive Rendering for Improved Global Illumination Ian C. Doidge Mark W. Jones Benjamin Mora Swansea University, Wales Thursday 14 th June Computer Graphics International 2012

2 ? Motivation X Remove caustics MC Path tracing Add 16x samples 128 filtered samples 128 samples 2048 samples 2

3 Monte Carlo Integration Path Tracing (PT) [Kajiya 86] Bidirectional Path Tracing Path Tracing Iterate [Lafortune & Willems 93] [Veach & Guibas 94] Metropolis Light Transport Modify existing paths [Veach & Guibas 97] 3

4 Monte Carlo Integration Path Tracing (PT) [Kajiya 86] Bidirectional Path Tracing Bidirectional PT Iterate [Lafortune & Willems 93] [Veach & Guibas 94] Metropolis Light Transport Modify existing paths [Veach & Guibas 97] 4

5 Monte Carlo Integration Path Tracing (PT) [Kajiya 86] Bidirectional Path Tracing Metropolis Iterate [Lafortune & Willems 93] [Veach & Guibas 94] Metropolis Light Transport Modify existing paths [Veach & Guibas 97] 5

6 Monte Carlo Integration Path Tracing Good for diffuse lighting Sample stratification Explicit camera/light source connections Poor caustic evaluation Low probability, high luminance paths Result in spiked noise: Converged Reference (PT)

7 Monte Carlo Integration Path Tracing Path Tracing (PT): [Kajiya 86] Bidirectional Path Tracing (BDPT): [Lafortune & Willems 93] [Veach & Guibas 94] Metropolis Light Transport (MLT): Modify existing paths [Veach & Guibas 97] Converged Reference (PT)

8 Monte Carlo Integration Good for diffuse lighting Sample stratification Explicit camera/light source connections Poor caustic evaluation Path Tracing Low probability, high luminance paths Result in spiked noise: Iterate 8

9 Density Estimation SPPM Much better for caustic lighting High photon density regions Inefficient for diffuse lighting Diffuse bounces lead to poor distributions Too few photons in density estimates Photon Mapping (PM): [Jensen 96] Stochastic Progressive PM (SPPM): [Hachisuka 09] Converged Reference (PT)

10 Stochastic Progressive Photon Mapping (SPPM) Ray Tracing Pass Photon Pass Update & Iterate 10

11 Contributions Path Tracing Filter path space and evaluate independently... Efficiently combine MC with density estimation On the fly path filtering Superior RMSE convergence (vs. PT and SPPM) Related Work Our Method Progressive Point-Light-Based Global Illumination [Dammertz et al. 2010] Density Based Outlier Rejection [DeCoro et al. 2010] SPPM 11

12 Algorithm Overview Trace Camera Paths Filter path vertices Compute vertex contributions Diffuse buffer Generate caustic photons Output image Primary hitpoints Gather photons Caustic buffer Iterate 12

13 Path Filtering Separate path space Diffuse and Caustic lighting Based on path/surface interactions Two disjoint sub-spaces Account for all possible light transport 13

14 D Diffuse interaction S Specular interaction L Implicit lighting (L) Explicit lighting Apply pattern matching Path Filtering Diffuse subspace: Caustic subspace: X 14

15 Filtered Path Tracing X X Path Tracing Iterate Filtered Path Tracing Iterate 15

16 D Diffuse interaction S Specular interaction L Implicit lighting (L) Explicit lighting Filtering Example E D D D D S D Binary Path Encoding: D D D S D D E Diffuse subspace: Vertex Interactions 16

17 D Diffuse interaction S Specular interaction L Implicit lighting (L) Explicit lighting Filtering Example E (L) (L) X (L) (L) D D D D S D Binary Path Encoding: D D D S D D E Diffuse subspace: Perform table lookup Implicit Lighting Explicit Lighting 17

18 D Diffuse interaction S Specular interaction L Implicit lighting (L) Explicit lighting Filtering Example E (L) (L) X (L) (L) D D D D S D X 18

19 Overview Trace Camera Paths Filter path vertices Compute vertex contributions Diffuse buffer Generate caustic photons Output image Primary hitpoints Gather photons Caustic buffer Iterate 19

20 Filtered SPPM X Primary Hitpoints X Photon Pass Update 20

21 Photon Filtering L D X Caustic subspace: D L S D D D Deposit only caustic photons: Lower memory cost (~10%) Faster photon gathering Similar caustic convergence 21

22 Image Reconstruction Diffuse Buffer Caustic Buffer Full Global Illumination Combine diffuse and caustic buffers: Pixel-wise addition Obtain intermediate results after each iteration 22

23 Path Tracing Results SPPM Equal time comparison after 30 minutes 23

24 Path Tracing Results SPPM Equal time comparison after 30 minutes 24

25 Results SPPM Path Tracing Converged PT Our Method Equal time comparison after 5 minutes 25

26 Results Path Tracing Our Method SPPM Equal time comparison after 5 minutes 26

27 Error comparison (RMSE) 27

28 Conclusion Efficiently render diffuse and caustic lighting: Progressive multi-pass method Diffuse lighting using Monte Carlo integration Caustic lighting via reduced SPPM No additional bias Future Work Automatic adjustment of camera paths vs. photons Adaptive photon generation Improve efficiency and photon distribution 28

29 Thank you for listening! Questions? (and Answers) 29

30 Thank you for listening! Questions? (and Answers) 30

31 31

32 Error comparison (RMSE)

33 Error comparison (RMSE)

34 Error comparison (RMSE)

35 Motivation Path Tracing Our Method Converged Reference (PT) SPPM 35

36 Overview Trace Camera Paths Filter path vertices Compute vertex contributions Diffuse buffer Generate caustic photons Output image Primary hit points Gather photons Caustic buffer Iterate

37 Caustic only SPPM X X X Filtered Path Tracing Pass X Filtered Photon Pass Iterate

38 Filtered SPPM X X Filtered Photon Pass Iterate

39 Diffuse photon Caustic photon Our Method Photon Filtering SPPM Caustic subspace: Deposit only caustic photons: Lower memory cost Faster photon gathering Same rate of convergence

40 Stochastic Progressive Photon Mapping (SPPM) Ray Tracing Pass Photon Pass Iterate

41 The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location. The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location. The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location. The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location. Path Filtering Direct lighting: ES*DL Multiple Bounce Diffuse: ES*DDD+L Single Bounce Diffuse: ES*DDL Caustic Lighting: E(S D)*D+S*L E(S D)*D+S*DL

42 Monte Carlo Integration Path Tracing Iterate Bidirectional Path Tracing Iterate 42

43 Stochastic Progressive Photon Mapping (SPPM) Ray Tracing Pass Photon Pass Iterate

44 Monte Carlo Integration Path Tracing Monte Carlo Integration methods: Good for diffuse lighting Sample stratification Explicit camera/light source connections Poor caustic evaluation Low probability, high luminance paths Result in spiked noise: Converged Reference (PT)

45 Density Estimation SPPM Density Estimation methods: Much better for caustic lighting Higher photon density regions Can handle difficult specular paths Inefficient for diffuse lighting Diffuse bounces lead to poor photon distribution Insufficient photons in density estimates Converged Reference (PT)

46 Overview Multi-pass progressive algorithm: Path Tracing for diffuse lighting (No bias) SPPM for 'caustic' lighting (Progressively decreasing bias) Filter path space and evaluate independently... Efficiently combine MC and density estimation methods On the fly path filtering Superior RMSE convergence (vs. PT and SPPM) Related Work Density-based outlier rejection [Decoro et al. 2010] Progressive point-light based global illumination [Dammertz et al. 2010] Caustic Forecasting [Budge et al. 2008]

47 The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location. The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location. Progressive Photon Mapping Ray Tracing Pass Photon Pass Iterate

48 Related Work Density-based outlier rejection [Decoro et al. 2010] Progressive point-light based global illumination [Dammertz et al. 2010] Caustic Forecasting [Budge et al. 2008]

Choosing the Right Algorithm & Guiding

Choosing the Right Algorithm & Guiding Choosing the Right Algorithm & Guiding PHILIPP SLUSALLEK & PASCAL GRITTMANN Topics for Today What does an implementation of a high-performance renderer look like? Review of algorithms which to choose for

More information

rendering equation camera all

rendering equation camera all 1 Even the most recent existing methods are either not good at or not capable of handling complex illumination, such as reflected caustics on the floor. In this work we will show how to combine the strengths

More information

Metropolis Light Transport

Metropolis Light Transport Metropolis Light Transport CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Announcements Final presentation June 13 (Tuesday)

More information

In this part, I will mostly talk about the vertex merging technique (a.k.a. kernel estimation).

In this part, I will mostly talk about the vertex merging technique (a.k.a. kernel estimation). 1 As it was thoroughly discussed by the previous course speakers, photon mapping methods are good at handling such difficult light transport methods, as caustics and reflected caustics. However, on the

More information

Advanced Graphics. Path Tracing and Photon Mapping Part 2. Path Tracing and Photon Mapping

Advanced Graphics. Path Tracing and Photon Mapping Part 2. Path Tracing and Photon Mapping Advanced Graphics Path Tracing and Photon Mapping Part 2 Path Tracing and Photon Mapping Importance Sampling Combine importance sampling techniques Reflectance function (diffuse + specular) Light source

More information

Path Tracing part 2. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Path Tracing part 2. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Path Tracing part 2 Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Monte Carlo Integration Monte Carlo Integration The rendering (& radiance) equation is an infinitely recursive integral

More information

Stochastic Progressive Photon Mapping

Stochastic Progressive Photon Mapping Stochastic Progressive Photon Mapping Toshiya Hachisuka Henrik Wann Jensen UC San Diego Figure : Tools with a flashlight. The scene is illuminated by caustics from the flashlight, which cause SDS paths

More information

Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes

Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes Miloš Hašan Jaroslav Křivánek * Bruce Walter Kavita Bala Cornell University * Charles University in Prague Global Illumination Effects

More information

COMBINING VOLUMETRIC ESTIMATORS

COMBINING VOLUMETRIC ESTIMATORS COMBINING VOLUMETRIC ESTIMATORS Jaroslav Křivánek Charles University Render Legion Chaos Group UNIFYING POINTS, BEAMS, AND PATHS IN VOLUMETRIC LIGHT TRANSPORT SIMULATION Jaroslav Křivánek Charles University

More information

Raytracing & Epsilon. Today. Last Time? Forward Ray Tracing. Does Ray Tracing Simulate Physics? Local Illumination

Raytracing & Epsilon. Today. Last Time? Forward Ray Tracing. Does Ray Tracing Simulate Physics? Local Illumination Raytracing & Epsilon intersects light @ t = 25.2 intersects sphere1 @ t = -0.01 & Monte Carlo Ray Tracing intersects sphere1 @ t = 10.6 Solution: advance the ray start position epsilon distance along the

More information

Monte Carlo Path Tracing. The Rendering Equation

Monte Carlo Path Tracing. The Rendering Equation Monte Carlo Path Tracing Today Path tracing starting from the eye Path tracing starting from the lights Which direction is best? Bidirectional ray tracing Random walks and Markov chains Next Irradiance

More information

GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao

GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao GAMES Webinar: Rendering Tutorial 2 Monte Carlo Methods Shuang Zhao Assistant Professor Computer Science Department University of California, Irvine GAMES Webinar Shuang Zhao 1 Outline 1. Monte Carlo integration

More information

A Comparison of Global Illumination Methods Using Perceptual Quality Metrics

A Comparison of Global Illumination Methods Using Perceptual Quality Metrics A Comparison of Global Illumination Methods Using Perceptual Quality Metrics Giovani Balen Meneghel, Marcio Lobo Netto Departamento de Engenharia de Sistemas Eletronicos Escola Politecnica, Universidade

More information

Realistic Image Synthesis

Realistic Image Synthesis Realistic Image Synthesis Bidirectional Path Tracing & Reciprocity Karol Myszkowski Gurprit Singh Path Sampling Techniques Different techniques of sampling paths from both sides Numbers in parenthesis

More information

A Brief Overview of. Global Illumination. Thomas Larsson, Afshin Ameri Mälardalen University

A Brief Overview of. Global Illumination. Thomas Larsson, Afshin Ameri Mälardalen University A Brief Overview of Global Illumination Thomas Larsson, Afshin Ameri Mälardalen University 1 What is Global illumination? Global illumination is a general name for realistic rendering algorithms Global

More information

Discussion. Smoothness of Indirect Lighting. History and Outline. Irradiance Calculation. Irradiance Caching. Advanced Computer Graphics (Spring 2013)

Discussion. Smoothness of Indirect Lighting. History and Outline. Irradiance Calculation. Irradiance Caching. Advanced Computer Graphics (Spring 2013) Advanced Computer Graphics (Spring 2013 CS 283, Lecture 12: Recent Advances in Monte Carlo Offline Rendering Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/sp13 Some slides/ideas courtesy Pat Hanrahan,

More information

Photon Mapping. Michael Doggett Department of Computer Science Lund university

Photon Mapping. Michael Doggett Department of Computer Science Lund university Photon Mapping Michael Doggett Department of Computer Science Lund university Outline Photon Mapping (ch. 14 in textbook) Progressive Stochastic 2011 Michael Doggett How to make light sampling faster?

More information

CS 563 Advanced Topics in Computer Graphics Irradiance Caching and Particle Tracing. by Stephen Kazmierczak

CS 563 Advanced Topics in Computer Graphics Irradiance Caching and Particle Tracing. by Stephen Kazmierczak CS 563 Advanced Topics in Computer Graphics Irradiance Caching and Particle Tracing by Stephen Kazmierczak Introduction Unbiased light transport algorithms can sometimes take a large number of rays to

More information

Energy Redistribution Path Tracing

Energy Redistribution Path Tracing Energy Redistribution Path Tracing David Cline Justin Talbot Parris Egbert Brigham Young University Abstract We present Energy Redistribution (ER) sampling as an unbiased method to solve correlated integral

More information

Global Illumination. COMP 575/770 Spring 2013

Global Illumination. COMP 575/770 Spring 2013 Global Illumination COMP 575/770 Spring 2013 Final Exam and Projects COMP 575 Final Exam Friday, May 3 4:00 pm COMP 770 (and 575 extra credit) Projects Final report due by end of day, May 1 Presentations:

More information

11/2/2010. In the last lecture. Monte-Carlo Ray Tracing : Path Tracing. Today. Shadow ray towards the light at each vertex. Path Tracing : algorithm

11/2/2010. In the last lecture. Monte-Carlo Ray Tracing : Path Tracing. Today. Shadow ray towards the light at each vertex. Path Tracing : algorithm Comuter Grahics Global Illumination: Monte-Carlo Ray Tracing and Photon Maing Lecture 11 In the last lecture We did ray tracing and radiosity Ray tracing is good to render secular objects but cannot handle

More information

Recent Advances in Monte Carlo Offline Rendering

Recent Advances in Monte Carlo Offline Rendering CS294-13: Special Topics Lecture #6 Advanced Computer Graphics University of California, Berkeley Monday, 21 September 2009 Recent Advances in Monte Carlo Offline Rendering Lecture #6: Monday, 21 September

More information

Final Project: Real-Time Global Illumination with Radiance Regression Functions

Final Project: Real-Time Global Illumination with Radiance Regression Functions Volume xx (200y), Number z, pp. 1 5 Final Project: Real-Time Global Illumination with Radiance Regression Functions Fu-Jun Luan Abstract This is a report for machine learning final project, which combines

More information

Global Illumination. Why Global Illumination. Pros/Cons and Applications. What s Global Illumination

Global Illumination. Why Global Illumination. Pros/Cons and Applications. What s Global Illumination Global Illumination Why Global Illumination Last lecture Basic rendering concepts Primitive-based rendering Today: Global illumination Ray Tracing, and Radiosity (Light-based rendering) What s Global Illumination

More information

Variance Reduction. Computer Graphics CMU /15-662, Fall 2016

Variance Reduction. Computer Graphics CMU /15-662, Fall 2016 Variance Reduction Computer Graphics CMU 15-462/15-662, Fall 2016 Last time: Rendering Equation Recursive description of incident illumination Difficult to integrate; tour de force of numerical integration

More information

Progressive Photon Mapping: A Probabilistic Approach

Progressive Photon Mapping: A Probabilistic Approach Progressive Photon Mapping: A Probabilistic Approach Claude Knaus and Matthias Zwicker University of Bern, Switzerland In this paper we present a novel formulation of progressive photon mapping. Similar

More information

Introduction to Photon Mapping RADIANCE Workshop 2010 Course Advanced Fenestration

Introduction to Photon Mapping RADIANCE Workshop 2010 Course Advanced Fenestration Introduction to Photon Mapping RADIANCE Workshop 2010 Course Advanced Fenestration Roland Schregle Motivation: Caustics Light transport from specular surfaces gives rise to caustics on diffuse surfaces.

More information

The Rendering Equation and Path Tracing

The Rendering Equation and Path Tracing The Rendering Equation and Path Tracing Louis Feng April 22, 2004 April 21, 2004 Realistic Image Synthesis (Spring 2004) 1 Topics The rendering equation Original form Meaning of the terms Integration Path

More information

SOME THEORY BEHIND REAL-TIME RENDERING

SOME THEORY BEHIND REAL-TIME RENDERING SOME THEORY BEHIND REAL-TIME RENDERING Jaroslav Křivánek Charles University in Prague Off-line realistic rendering (not yet in rea-time) Ray tracing 3 4 Image created by Bertrand Benoit Rendered in Corona

More information

Interactive Light Transport with Virtual Point Lights

Interactive Light Transport with Virtual Point Lights Interactive Light Transport with Virtual Point Lights 1,2 1 ENTPE: Ecole Nationale des Travaux Publics de l Etat 2 LIRIS: Laboratoire d InfoRmatique en Image et Systèmes d information 1/59 Presentation

More information

Monte-Carlo Ray Tracing. Antialiasing & integration. Global illumination. Why integration? Domains of integration. What else can we integrate?

Monte-Carlo Ray Tracing. Antialiasing & integration. Global illumination. Why integration? Domains of integration. What else can we integrate? Monte-Carlo Ray Tracing Antialiasing & integration So far, Antialiasing as signal processing Now, Antialiasing as integration Complementary yet not always the same in particular for jittered sampling Image

More information

Korrigeringar: An introduction to Global Illumination. Global Illumination. Examples of light transport notation light

Korrigeringar: An introduction to Global Illumination. Global Illumination. Examples of light transport notation light An introduction to Global Illumination Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Korrigeringar: Intel P4 (200): ~42M transistorer Intel P4 EE (2004): 78M

More information

Motivation. Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi

Motivation. Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283 Acknowledgements and many slides courtesy: Thomas Funkhouser, Szymon

More information

To Do. Real-Time High Quality Rendering. Motivation for Lecture. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing

To Do. Real-Time High Quality Rendering. Motivation for Lecture. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing Real-Time High Quality Rendering CSE 274 [Fall 2015], Lecture 5 Tour of Modern Offline Rendering To Do Project milestone (1-2 pages), final project proposal Due on Oct 27 Please get in touch with me if

More information

Motivation: Monte Carlo Path Tracing. Sampling and Reconstruction of Visual Appearance. Monte Carlo Path Tracing. Monte Carlo Path Tracing

Motivation: Monte Carlo Path Tracing. Sampling and Reconstruction of Visual Appearance. Monte Carlo Path Tracing. Monte Carlo Path Tracing Sampling and Reconstruction of Visual Appearance CSE 274 [Winter 2018], Lecture 4 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Motivation: Key application area for sampling/reconstruction Core method

More information

Photon Mapping. Due: 3/24/05, 11:59 PM

Photon Mapping. Due: 3/24/05, 11:59 PM CS224: Interactive Computer Graphics Photon Mapping Due: 3/24/05, 11:59 PM 1 Math Homework 20 Ray Tracing 20 Photon Emission 10 Russian Roulette 10 Caustics 15 Diffuse interreflection 15 Soft Shadows 10

More information

In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple

In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple 1 In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple times) until they are absorbed. On their way, they

More information

Philipp Slusallek Karol Myszkowski. Realistic Image Synthesis SS18 Instant Global Illumination

Philipp Slusallek Karol Myszkowski. Realistic Image Synthesis SS18 Instant Global Illumination Realistic Image Synthesis - Instant Global Illumination - Karol Myszkowski Overview of MC GI methods General idea Generate samples from lights and camera Connect them and transport illumination along paths

More information

Illumination Algorithms

Illumination Algorithms Global Illumination Illumination Algorithms Digital Lighting and Rendering CGT 340 The goal of global illumination is to model all possible paths of light to the camera. Global Illumination Global illumination

More information

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity Schedule Review Session: Tuesday November 18 th, 7:30 pm, Room 2-136 bring lots of questions! MIT 6.837 Monte-Carlo Ray Tracing Quiz 2: Thursday November 20 th, in class (one weeks from today) MIT EECS

More information

Milton. Travis Fischer 09 Advised by Professors John Hughes and Andy van Dam

Milton. Travis Fischer 09 Advised by Professors John Hughes and Andy van Dam Milton Travis Fischer 09 Advised by Professors John Hughes and Andy van Dam A Thesis submitted in partial fulfillment of the requirements for Honors in the Brown University Department of Computer Science

More information

Monte Carlo Path Tracing

Monte Carlo Path Tracing Page 1 Monte Carlo Path Tracing Today Path tracing Random wals and Marov chains Eye vs. light ray tracing Bidirectional ray tracing Next Irradiance caching Photon mapping Light Path Sx (, x) 0 1 f ( x,

More information

Bidirectional Lightcuts

Bidirectional Lightcuts Bidirectional Lightcuts Bruce Walter Pramook Khungurn Kavita Bala Cornell University 1 Realistic Rendering Challenge Complex light sources Global illumination Wide range of materials Images: Autodesk 360

More information

The Rendering Equation & Monte Carlo Ray Tracing

The Rendering Equation & Monte Carlo Ray Tracing Last Time? Local Illumination & Monte Carlo Ray Tracing BRDF Ideal Diffuse Reflectance Ideal Specular Reflectance The Phong Model Radiosity Equation/Matrix Calculating the Form Factors Aj Ai Reading for

More information

A Survey of Radiosity and Ray-tracing. Methods in Global Illumination

A Survey of Radiosity and Ray-tracing. Methods in Global Illumination A Survey of Radiosity and Ray-tracing Methods in Global Illumination Submitted by Ge Jin 12 th Dec 2000 To Dr. James Hahn Final Project of CS368 Advanced Topics in Computer Graphics Contents Abstract...3

More information

Lecture 12: Photon Mapping. Biased Methods

Lecture 12: Photon Mapping. Biased Methods Lecture 12: Photon Mapping CS 6620, Spring 2009 Kavita Bala Computer Science Cornell University MC problems Biased Methods Biased methods: store information (caching) Better type of noise: blurring Greg

More information

Motivation. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing

Motivation. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing Advanced Computer Graphics (Spring 2013) CS 283, Lecture 11: Monte Carlo Path Tracing Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/sp13 Motivation General solution to rendering and global illumination

More information

Stochastic ray tracing methods in problems of photorealistic image synthesis for augmented reality systems

Stochastic ray tracing methods in problems of photorealistic image synthesis for augmented reality systems Stochastic ray tracing methods in problems of photorealistic image synthesis for augmented reality systems D.D. Zhdanov 1, I.S. Potemin 1, A.A. Kishalov 2, A.D. Zhdanov 1, N.N. Bogdanov 1 ddzhdanov@mail.ru

More information

Ongoing Developments in Photon Mapping

Ongoing Developments in Photon Mapping Ongoing Developments in Photon Mapping Roland Schregle, Stephen Wittkopf Competence Centre Envelopes and Solar Energy (CC-EASE) 13th International RADIANCE Workshop 2014 London, UK Outline 1. Introduction

More information

Global Illumination and Monte Carlo

Global Illumination and Monte Carlo Global Illumination and Monte Carlo MIT EECS 6.837 Computer Graphics Wojciech Matusik with many slides from Fredo Durand and Jaakko Lehtinen ACM. All rights reserved. This content is excluded from our

More information

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1 MIT 6.837 Monte-Carlo Ray Tracing MIT EECS 6.837, Cutler and Durand 1 Schedule Review Session: Tuesday November 18 th, 7:30 pm bring lots of questions! Quiz 2: Thursday November 20 th, in class (one weeks

More information

Photon Mapping. Kadi Bouatouch IRISA

Photon Mapping. Kadi Bouatouch IRISA Kadi Bouatouch IRISA Email: kadi@irisa.fr 1 Photon emission and transport 2 Photon caching 3 Spatial data structure for fast access 4 Radiance estimation 5 Kd-tree Balanced Binary Tree When a splitting

More information

Lecture 18: Primer on Ray Tracing Techniques

Lecture 18: Primer on Ray Tracing Techniques Lecture 18: Primer on Ray Tracing Techniques 6.172: Performance Engineering of Software Systems Joshua Slocum November 16, 2010 A Little Background Image rendering technique Simulate rays of light - ray

More information

Motivation: Monte Carlo Rendering. Sampling and Reconstruction of Visual Appearance. Caustics. Illumination Models. Overview of lecture.

Motivation: Monte Carlo Rendering. Sampling and Reconstruction of Visual Appearance. Caustics. Illumination Models. Overview of lecture. Sampling and Reconstruction of Visual Appearance CSE 74 [Winter 8], Lecture 3 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Motivation: Monte Carlo Rendering Key application area for sampling/reconstruction

More information

Optimal Strategy for Connecting Light Paths in Bidirectional Methods for Global Illumination Computation

Optimal Strategy for Connecting Light Paths in Bidirectional Methods for Global Illumination Computation Charles University in Prague, Czech Republick Faculty of Mathematics and Physics DIPLOMA THESIS Jiří Vorba Optimal Strategy for Connecting Light Paths in Bidirectional Methods for Global Illumination Computation

More information

Implementation of Bidirectional Ray Tracing Algorithm

Implementation of Bidirectional Ray Tracing Algorithm Implementation of Bidirectional Ray Tracing Algorithm PÉTER DORNBACH jet@inf.bme.hu Technical University of Budapest, Department of Control Engineering and Information Technology, Mûegyetem rkp. 9, 1111

More information

Massively Parallel GPU-friendly Algorithms for PET. Szirmay-Kalos László, Budapest, University of Technology and Economics

Massively Parallel GPU-friendly Algorithms for PET. Szirmay-Kalos László,   Budapest, University of Technology and Economics Massively Parallel GPU-friendly Algorithms for PET Szirmay-Kalos László, http://cg.iit.bme.hu, Budapest, University of Technology and Economics (GP)GPU: CUDA (OpenCL) Multiprocessor N Multiprocessor 2

More information

An introduction to Global Illumination. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology

An introduction to Global Illumination. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology An introduction to Global Illumination Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Misc Till alla lärare på masternivån, Undervisningen på Chalmers masterprogram

More information

The Rendering Equation. Computer Graphics CMU /15-662

The Rendering Equation. Computer Graphics CMU /15-662 The Rendering Equation Computer Graphics CMU 15-462/15-662 Review: What is radiance? Radiance at point p in direction N is radiant energy ( #hits ) per unit time, per solid angle, per unit area perpendicular

More information

Practical Product Importance Sampling for Direct Illumination

Practical Product Importance Sampling for Direct Illumination Eurographics 2008 Practical Product Importance Sampling for Direct Illumination Petrik Clarberg Tomas Akenine-Möller Lund University Sweden This work was presented by Petrik Clarberg at Eurographics 2008

More information

Part I The Basic Algorithm. Principles of Photon Mapping. A two-pass global illumination method Pass I Computing the photon map

Part I The Basic Algorithm. Principles of Photon Mapping. A two-pass global illumination method Pass I Computing the photon map Part I The Basic Algorithm 1 Principles of A two-pass global illumination method Pass I Computing the photon map A rough representation of the lighting in the scene Pass II rendering Regular (distributed)

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Ground Truth. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Ground Truth. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2015 - Lecture 10: Ground Truth Welcome! Today s Agenda: Limitations of Whitted-style Ray Tracing Monte Carlo Path Tracing INFOGR Lecture 10 Ground Truth

More information

Reducing the Number of Shadow Rays. in Bidirectional Path Tracing. Department of Computer Science, Katholieke Universiteit Leuven

Reducing the Number of Shadow Rays. in Bidirectional Path Tracing. Department of Computer Science, Katholieke Universiteit Leuven Reducing the Number of Shadow Rays in Bidirectional Path Tracing Eric P. Lafortune Yves D. Willems Department of Computer Science, Katholieke Universiteit Leuven Celestijnenlaan 200A, 3001 Heverlee, Belgium

More information

The Rendering Equation Philip Dutré. Course 4. State of the Art in Monte Carlo Global Illumination Sunday, Full Day, 8:30 am - 5:30 pm

The Rendering Equation Philip Dutré. Course 4. State of the Art in Monte Carlo Global Illumination Sunday, Full Day, 8:30 am - 5:30 pm The Rendering Equation Philip Dutré Course 4. State of the Art in Monte Carlo Global Illumination Sunday, Full Day, 8:30 am - 5:30 pm 1 Overview Rendering Equation Path tracing Path Formulation Various

More information

Manifold Exploration: A Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport

Manifold Exploration: A Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport Manifold Exploration: A Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport Wenzel Jakob teve Marschner Cornell University Figure 1: Two views of an interior scene

More information

Representativity for Robust and Adaptive Multiple Importance Sampling

Representativity for Robust and Adaptive Multiple Importance Sampling IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. Y, MONTH 9 1 Representativity for Robust and Adaptive Multiple Importance Sampling Anthony Pajot, Loïc Barthe, Mathias Paulin, and

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Sampling, Aliasing, & Mipmaps Last Time? Monte-Carlo Integration Importance Sampling Ray Tracing vs. Path Tracing source hemisphere Sampling sensitive to choice of samples less sensitive to choice of samples

More information

Gradient-domain bidirectional path tracing (G-BDPT)

Gradient-domain bidirectional path tracing (G-BDPT) Eurographics Symposium on Rering - Experimental Ideas & Implementations (2015) J. Lehtinen and D. Nowrouzezahrai (Editors) Gradient-Domain Bidirectional Path Tracing Marco Manzi1 Markus Kettunen2 1 University

More information

Efficient Caustic Rendering with Lightweight Photon Mapping

Efficient Caustic Rendering with Lightweight Photon Mapping Efficient Caustic Rendering with Lightweight Photon Mapping Pascal Grittmann 1,3 Arsène Pérard-Gayot 1 Philipp Slusallek 1,2 Jaroslav Kr ivánek 3,4 1 Saarland University 2 DFKI Saarbrücken 3 Charles University,

More information

Bidirectional Path Tracing

Bidirectional Path Tracing Bidirectional Path Tracing CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Last Lecture Path integral formulation II Light path

More information

Density-based Outlier Rejection in Monte Carlo Rendering

Density-based Outlier Rejection in Monte Carlo Rendering Pacific Graphics 2010 P. Alliez, K. Bala, and K. Zhou (Guest Editors) Volume 29 (2010), Number 7 Density-based Outlier Rejection in Monte Carlo Rendering Christopher DeCoro Tim Weyrich Szymon Rusinkiewicz

More information

Global Illumination using Photon Maps

Global Illumination using Photon Maps This paper is a slightly extended version of the paper in Rendering Techniques 96 (Proceedings of the Seventh Eurographics Workshop on Rendering), pages 21 30, 1996 Global Illumination using Photon Maps

More information

Monte Carlo Ray Tracing. Computer Graphics CMU /15-662

Monte Carlo Ray Tracing. Computer Graphics CMU /15-662 Monte Carlo Ray Tracing Computer Graphics CMU 15-462/15-662 TODAY: Monte Carlo Ray Tracing How do we render a photorealistic image? Put together many of the ideas we ve studied: - color - materials - radiometry

More information

Biased Monte Carlo Ray Tracing:

Biased Monte Carlo Ray Tracing: Biased Monte Carlo Ray Tracing: Filtering, Irradiance Caching and Photon Mapping Dr. Henrik Wann Jensen Stanford University May 24, 2001 Unbiased and consistent Monte Carlo methods Unbiased estimator:

More information

In this part of the course, I will discuss various approaches for generating VPLs where they are most needed for a given camera view.

In this part of the course, I will discuss various approaches for generating VPLs where they are most needed for a given camera view. In this part of the course, I will discuss various approaches for generating VPLs where they are most needed for a given camera view. Let me start by reviewing the classic many lights rendering algorithm,

More information

Metropolis Light Transport

Metropolis Light Transport Metropolis Light Transport Eric Veach Leonidas J. Guibas Computer Science Department Stanford University Abstract We present a new Monte Carlo method for solving the light transport problem, inspired by

More information

Rendering: Reality. Eye acts as pinhole camera. Photons from light hit objects

Rendering: Reality. Eye acts as pinhole camera. Photons from light hit objects Basic Ray Tracing Rendering: Reality Eye acts as pinhole camera Photons from light hit objects Rendering: Reality Eye acts as pinhole camera Photons from light hit objects Rendering: Reality Eye acts as

More information

Progressive Photon Beams

Progressive Photon Beams From the ACM SIGGRAPH Asia 2011 conference proceedings. Progressive Photon Beams Wojciech Jarosz 1 Derek Nowrouzezahrai 1 Robert Thomas 1 Peter-Pike Sloan 2 Matthias Zwicker 3 1 Disney Research Zürich

More information

Progressive photon mapping can be interpreted as an estimator that constructs the full paths from camera to light by constantly connecting two fresh

Progressive photon mapping can be interpreted as an estimator that constructs the full paths from camera to light by constantly connecting two fresh 1 Progressive photon mapping can be interpreted as an estimator that constructs the full paths from camera to light by constantly connecting two fresh subpaths. The estimation is a sum, where W_n is the

More information

THE goal of rendering algorithms is to synthesize images of virtual scenes. Global illumination

THE goal of rendering algorithms is to synthesize images of virtual scenes. Global illumination 2 Fundamentals of Light Transport He who loves practice without theory is like the sailor who boards ship without a rudder and compass and never knows where he may cast. Leonardo Da Vinci, 1452 1519 THE

More information

A Practical Introduction to Metropolis Light Transport

A Practical Introduction to Metropolis Light Transport A Practical Introduction to Metropolis Light Transport David Cline Brigham Young University Parris Egbert Brigham Young University May 6, 5 Abstract Most descriptions of Metropolis Light Transport (MLT)

More information

SAMPLING AND NOISE. Increasing the number of samples per pixel gives an anti-aliased image which better represents the actual scene.

SAMPLING AND NOISE. Increasing the number of samples per pixel gives an anti-aliased image which better represents the actual scene. SAMPLING AND NOISE When generating an image, Mantra must determine a color value for each pixel by examining the scene behind the image plane. Mantra achieves this by sending out a number of rays from

More information

A Survey of Adaptive Sampling in Realistic Image Synthesis

A Survey of Adaptive Sampling in Realistic Image Synthesis WDS'13 Proceedings of Contributed Papers, Part I, 63 68, 2013. ISBN 978-80-7378-250-4 MATFYZPRESS A Survey of Adaptive Sampling in Realistic Image Synthesis M. S ik Charles University in Prague, Faculty

More information

Coherent Metropolis Light Transport on the GPU using Speculative Mutations

Coherent Metropolis Light Transport on the GPU using Speculative Mutations Coherent Metropolis Light Transport on the GPU using Speculative Mutations Martin Schmidt martin.schmidt@unibayreuth.de Oleg Lobachev University Bayreuth, AI5: Visual Computing Universitätsstr. 30 95447

More information

Interactive Methods in Scientific Visualization

Interactive Methods in Scientific Visualization Interactive Methods in Scientific Visualization GPU Volume Raycasting Christof Rezk-Salama University of Siegen, Germany Volume Rendering in a Nutshell Image Plane Eye Data Set Back-to-front iteration

More information

Introduction to Radiosity

Introduction to Radiosity Introduction to Radiosity John F. Hughes, Andries van Dam Applets by Nick Diakopoulos Andries van Dam November 12, 2009 Radiosity 1/48 Radiosity for Inter-Object Diffuse Reflection Color Bleeding Soft

More information

Outline of Lecture. Real-Time High Quality Rendering. Geometry or Vertex Pipeline. Basic Hardware Pipeline. Pixel or Fragment Pipeline

Outline of Lecture. Real-Time High Quality Rendering. Geometry or Vertex Pipeline. Basic Hardware Pipeline. Pixel or Fragment Pipeline Real-Time High Quality Rendering CSE 274 [Fall 2015], Lecture 2 Graphics Hardware Pipeline, Reflection and Rendering Equations, Taonomy of Methods http://www.cs.ucsd.edu/~ravir Outline of Lecture Taonomy

More information

Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker

Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker Rendering Algorithms: Real-time indirect illumination Spring 2010 Matthias Zwicker Today Real-time indirect illumination Ray tracing vs. Rasterization Screen space techniques Visibility & shadows Instant

More information

Towards Interactive Global Illumination Effects via Sequential Monte Carlo Adaptation. Carson Brownlee Peter S. Shirley Steven G.

Towards Interactive Global Illumination Effects via Sequential Monte Carlo Adaptation. Carson Brownlee Peter S. Shirley Steven G. Towards Interactive Global Illumination Effects via Sequential Monte Carlo Adaptation Vincent Pegoraro Carson Brownlee Peter S. Shirley Steven G. Parker Outline Motivation & Applications Monte Carlo Integration

More information

Photon Mapping. Photon Mapping. Why Map Photons? Sources. What is a Photon? Refrac=on of a Caus=c. Jan Kautz

Photon Mapping. Photon Mapping. Why Map Photons? Sources. What is a Photon? Refrac=on of a Caus=c. Jan Kautz Refrac=on of a Caus=c Photon Mapping Jan Kautz Monte Carlo ray tracing handles all paths of light: L(D S)*E, but not equally well Has difficulty sampling LS*DS*E paths, e.g. refrac=on of a caus=c Path

More information

Bidirectional Instant Radiosity

Bidirectional Instant Radiosity Eurographics Symposium on Rendering (2006) Tomas Akenine-Möller and Wolfgang Heidrich (Editors) Bidirectional Instant Radiosity B. Segovia 1,2, J. C. Iehl 2, R. Mitanchey 1 and B. Péroche 2 1 LIRIS: Lyon

More information

Greg Ward / SIGGRAPH 2003

Greg Ward / SIGGRAPH 2003 Global Illumination Global Illumination & HDRI Formats Greg Ward Anyhere Software Accounts for most (if not all) visible light interactions Goal may be to maximize realism, but more often visual reproduction

More information

Scalable many-light methods

Scalable many-light methods Scalable many-light methods Jaroslav Křivánek Charles University in Prague Instant radiosity Approximate indirect illumination by 1. Generate VPLs 2. Render with VPLs 2 Instant radiosity with glossy surfaces

More information

Supervised Learning of How to Blend Light Transport Simulations

Supervised Learning of How to Blend Light Transport Simulations Supervised Learning of How to Blend Light Transport Simulations Hisanari Otsu, Shinichi Kinuwaki, and Toshiya Hachisuka Abstract Light transport simulation is a popular approach for rendering photorealistic

More information

A NEW APPROACH OF DENSITY ESTIMATION FOR GLOBAL ILLUMINATION

A NEW APPROACH OF DENSITY ESTIMATION FOR GLOBAL ILLUMINATION A NEW APPROACH OF DENSITY ESTIMATION FOR GLOBAL ILLUMINATION Fabien Lavignotte, Mathias Paulin IRIT Université Paul Sabatier 8, route de Narbonne, 306 Toulouse cedex Toulouse, France e-mail : {lavignot,

More information

Biased Monte Carlo Ray Tracing

Biased Monte Carlo Ray Tracing Biased Monte Carlo Ray Tracing Filtering, Irradiance Caching, and Photon Mapping Henrik Wann Jensen Stanford University May 23, 2002 Unbiased and Consistent Unbiased estimator: E{X} =... Consistent estimator:

More information

I have a meeting with Peter Lee and Bob Cosgrove on Wednesday to discuss the future of the cluster. Computer Graphics

I have a meeting with Peter Lee and Bob Cosgrove on Wednesday to discuss the future of the cluster. Computer Graphics Announcements Assignment 4 will be out later today Problem Set 3 is due today or tomorrow by 9am in my mail box (4 th floor NSH) How are the machines working out? I have a meeting with Peter Lee and Bob

More information

Single Scattering in Refractive Media with Triangle Mesh Boundaries

Single Scattering in Refractive Media with Triangle Mesh Boundaries Single Scattering in Refractive Media with Triangle Mesh Boundaries Bruce Walter Shuang Zhao Nicolas Holzschuch Kavita Bala Cornell Univ. Cornell Univ. Grenoble Univ. Cornell Univ. Presented at SIGGRAPH

More information

Monte Carlo Ray-tracing and Rendering

Monte Carlo Ray-tracing and Rendering ITN, Norrko ping February 3, 2012 Monte Carlo Ray-tracing and Rendering P ROJECT IN A DVANCED G LOBAL I LLUMINATION AND R ENDERING TNCG15 Authors: Henrik Ba cklund Niklas Neijman Contact: henba892@student.liu.se

More information

Chapter 7 - Light, Materials, Appearance

Chapter 7 - Light, Materials, Appearance Chapter 7 - Light, Materials, Appearance Types of light in nature and in CG Shadows Using lights in CG Illumination models Textures and maps Procedural surface descriptions Literature: E. Angel/D. Shreiner,

More information