Bidirectional Lightcuts

Size: px
Start display at page:

Download "Bidirectional Lightcuts"

Transcription

1 Bidirectional Lightcuts Bruce Walter Pramook Khungurn Kavita Bala Cornell University 1

2 Realistic Rendering Challenge Complex light sources Global illumination Wide range of materials Images: Autodesk 360 Rendering & Autodesk Homestyler 2

3 Realistic Rendering Challenge Complex light sources Global illumination Wide range of materials Glossy, subsurface, volumetric... 3

4 Equal Time Comparison Probabilistic Photon Map Multidimensional Lightcuts (VPL) Bidirectional Path Trace [Knaus & Zwicker 11] [Walter et al. 06] [Veach & Guibas 94,95] 4

5 Equal Time Comparison Probabilistic Photon Map Multidimensional Lightcuts (VPL) Bidirectional Path Trace 5

6 Equal Time Comparison Probabilistic Photon Map Multidimensional Lightcuts (VPL) Bidirectional Path Trace 6

7 Equal Time Comparison Probabilistic Multidimensional Bidirectional New Method Photon Map Lightcuts (VPL) Path Trace 7

8 Equal Time Comparison Probabilistic Multidimensional Bidirectional New Method Photon Map Lightcuts (VPL) Path Trace 8

9 Goal: Combine Strengths Multidimensional Lightcuts Biased virtual point light (VPL) method Low noise and scalable performance Bidirectional Path Tracing Noisy and slow to converge Supports wide range of materials 9

10 Bidirectional Lightcuts Bidirectional VPL algorithm Bidirectional estimators Novel weighting scheme Control bias vs. noise tradeoff Scalable and low noise Integrated with Lightcuts 10

11 Outline Prior work: VPL and Bidirectional review New weighting strategy Integration with Multidimensional Lightcuts Results 11

12 Virtual Point Light Methods Approximate global illumination using point lights Light Source Camera 12

13 Virtual Point Light Methods Approximate global illumination using point lights Generate point lights (VPL) VPL Light Source 13

14 Virtual Point Light Methods Approximate global illumination using point lights Generate point lights (VPL) Generate point sensors (VPS) Camera VPS 14

15 Virtual Point Light Methods Approximate global illumination using point lights Generate point lights (VPL) Generate point sensors (VPS) Gather illumination More VPLs = more accurate Camera 15

16 Material Appearance Problem Naive VPL (no clamping) 16

17 Material Appearance Problem Naive VPL (no clamping) Standard VPL (with clamping) - Clamping distorts material appearance [Krivanek et al. 10] 17

18 Material Appearance Problem Naive VPL (no clamping) Standard VPL (with clamping) Our Result - Clamping distorts material appearance [Krivanek et al. 10] 18

19 Prior VPL Work Adaptive VPL generation [Segovia et al. 06, Davidovic et al. 10] Modified VPLs [Hasan et al. 09] VPL bias compensation [Kollig & Keller 04, Engelhardt et al. 10, Novak et al. 11] Specialized BSSRDF extension [Arbree et al. 08] Hybrid algorithms [Dammertz et al. 10] 19

20 Bidirectional Path Tracing Review Bidirectional Path Tracing Camera Light Source 20

21 Bidirectional Path Tracing Review Bidirectional Path Tracing Trace path from light 21

22 Bidirectional Path Tracing Review Bidirectional Path Tracing Trace path from light Trace path from camera 22

23 Bidirectional Path Tracing Review Bidirectional Path Tracing Trace path from light Trace path from camera Sum over all connections 23

24 Bidirectional Path Tracing Review Multiple ways to generate each path 24

25 Bidirectional Path Tracing Review Multiple ways to generate each path 25

26 Bidirectional Path Tracing Review Multiple ways to generate each path 26

27 Bidirectional Path Tracing Review Multiple ways to generate each path Combine using weights: wi e.g., Balance heuristic Best connection depends on path w0 Unbiased if: wi = 1 w1 w2 27

28 Bidirectional Path Tracing Review Advantages Wider range of paths handled efficiently Disadvantages Increased cost per sample Some paths are still hard to find May be noisy or slow to converge 28

29 Bidirectional VPL Rendering Standard VPL rendering Limited subset of bidirectional methods Clamping causes weight sum < 1 29

30 Bidirectional VPL Rendering Standard VPL rendering Limited subset of bidirectional methods Clamping causes weight sum < 1 Bidirectional extension 30

31 Bidirectional VPL Rendering Standard VPL rendering Limited subset of bidirectional methods Clamping causes weight sum < 1 Bidirectional extension Unbiased weighting [Kollig & Keller 04] Low noise properties of VPL rendering is lost 31

32 Outline Prior work: VPL and Bidirectional review New weighting strategy Integration with Multidimensional Lightcuts Results 32

33 New Weighting Strategy Designed for low noise while minimizing bias Four weight constraints 1) Energy conservation 2) Clamping 3) Diffuse VPLs 4) Exclude high variance eye paths Actual weight is the minimum of constraints 33

34 First Weight Constraint 1) Energy conservation Weight sum 1 Reduce amortized cost Prefer shorter eye paths Lower cost Higher cost 34

35 Second Weight Constraint 2) Clamping Control VPL noise Matches previous clamping [Walter et al. 06] No clamping With clamping 35

36 Third Weight Constraint 3) Diffuse VPLs: Primarily a cost optimization Narrowly directional VPLs are inefficient Typically expensive with little effect Glossy Surface 36

37 Third Weight Constraint 3) Diffuse VPLs: Primarily a cost optimization Narrowly directional VPLs are inefficient Typically expensive with little effect New diffuse vs. glossy classifier Independent of material model Preserves Lambertian, isotropic, etc. Applicable to other rendering algorithms 37

38 Fourth Weight Constraint 4) Exclude high variance eye paths: Control VPS noise Based on directional spread heuristic 4a) Narrow eye ray spread E.g., sharp glossy reflections Unrestricted recursion 4b) Wide eye ray spread E.g., Subsurface, diffuse indirect Restrict to short range effects only 38

39 Diffuse Back Wall Plate 1 Plate 2 Plate 3 Narrow gloss Broad gloss 39

40 Standard VPL (not bidirectional) Diffuse Back Wall Plate 1 Plate 2 Plate 3 Narrow gloss Broad gloss 40

41 Standard VPL (not bidirectional) Without constraint 4 (unbiased) Narrow gloss Broad gloss 41

42 Standard VPL (not bidirectional) With Constraint 4 Without constraint 4 (unbiased) Narrow gloss Broad gloss 42

43 Subsurface Extensions Path-based representation 2 vertices plus special segment Subsurface New BSSRDF sampling method Ray tracing random chords on spheres Applicable to other path-based algorithms

44 Outline Prior work: VPL and Bidirectional review New weighting strategy Integration with Multidimensional Lightcuts Results 44

45 Multidimensional Lightcuts Millions of sensor/light pairs per pixel Brute force expensive Multidimensional Lightcuts Evaluate small subset of pairs Grand Central [Walter et al. 05] 0.03% of sensor/light pairs evaluated 45

46 Multidimensional Lightcuts Cluster points into hierarchies Cluster Tree Adaptive select cut (partition) Bound max error per cluster Cut Refine until below perceptual threshold Sublinear cost per point Used in Autodesk 360 Rendering Time Naive Lightcut A million images this year Number of Points 46

47 Lightcuts Integration Lightcut extensions New material types Added weighting terms to bounding and evaluation Quad-tree cubemaps representation for bounds Cubemap Unfolded quad-tree cubemap 47

48 Outline Prior work: VPL and Bidirectional review New weighting strategy Integration with Multidimensional Lightcuts Results 48

49 Results: Accurate Materials Glossy Standard VPL Our Method 49

50 Results: Accurate Materials Glossy Subsurface Standard VPL Our Method 50

51 Results: Accurate Materials Glossy Subsurface Volumetric Standard VPL Our Method Anisotropic volumetric fiber model (giga-voxel resolution) 51

52 Bidirectional Lightcuts Standard VPL 52

53 Bidirectional Lightcuts Standard VPL Bidirectional Estimators + 53

54 Bidirectional Lightcuts Standard VPL Bidirectional Estimators Our Method + = Accurate rendering of complex materials - e.g., glossy counter, subsurface milk, volumetric cloth 54

55 Timing Results Standard VPL Ball Bidirectional Lightcuts Images 512x512, 1 million VPLs, 64 eye rays per pixel, 4 cores at 3.4GHz 55

56 Timing Results Standard VPL Ball Dragon Bidirectional Lightcuts Images 512x512, 1 million VPLs, 64 eye rays per pixel, 4 cores at 3.4GHz 56

57 Timing Results Standard VPL Ball Dragon SanMiguel Bidirectional Lightcuts Images 512x512, 1 million VPLs, 64 eye rays per pixel, 4 cores at 3.4GHz 57

58 Timing Results Standard VPL Ball Dragon SanMiguel Kitchen Bidirectional Lightcuts Images 512x512, 1 million VPLs, 64 eye rays per pixel, 4 cores at 3.4GHz 58

59 Timing Results Lightcuts (standard) 346s 359s 434s 1076s Bidirectional 479s (+38%) 745s (+107%) 618s (+42%) 1803s (+67%) Images 512x512, 1 million VPLs, 64 eye rays per pixel, 4 cores at 3.4GHz 59

60 Limitations and Future Work Noise control relies on heuristics Effective in our tests but without guarantees Cannot handle some phenomena (e.g., caustics) VPL methods are ill-suited to such paths Combine with specialized algorithms 60

61 Conclusion VPL-based rendering has many advantages Low noise Scalable performance Limited in materials and effects Bidirectional extension Wider range of materials Enable new applications 61

62 Edgar The End Acknowledgements Models and assistance: Velazquez-Armendariz, Shuang Zhao, Adam Arbree, John Hutchinson, Jaroslav Krivanek, Guillermo M. Leal Llaguno, Stanford Graphics Lab Funded by: National Science Foundation Autodesk Intel Science and Technology Center - Visual Computing 62

63 Summary Bidirectional VPL algorithm Recursive sensor generation Novel weighting scheme Control bias vs. noise tradeoff Scalable and low noise Integrated with Lightcuts General techniques New BSSRDF sampling Model independent diffuse classifier 63

64 Equal Time Comparison Progressive Photon Map Our Method Bidirectional Path Trace Enlarged 64

Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes

Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes Miloš Hašan Jaroslav Křivánek * Bruce Walter Kavita Bala Cornell University * Charles University in Prague Global Illumination Effects

More information

Scalable many-light methods

Scalable many-light methods Scalable many-light methods Jaroslav Křivánek Charles University in Prague Instant radiosity Approximate indirect illumination by 1. Generate VPLs 2. Render with VPLs 2 Instant radiosity with glossy surfaces

More information

Effects of Global Illumination Approximations on Material Appearance

Effects of Global Illumination Approximations on Material Appearance Effects of Global Illumination Approximations on Material Appearance Jaroslav Křivánek Cornell University & Charles University, Prague James Ferwerda Rochester Institute of Technology Kavita Bala Cornell

More information

Lightcuts: A Scalable Approach to Illumination

Lightcuts: A Scalable Approach to Illumination Lightcuts: A Scalable Approach to Illumination Bruce Walter, Sebastian Fernandez, Adam Arbree, Mike Donikian, Kavita Bala, Donald Greenberg Program of Computer Graphics, Cornell University Lightcuts Efficient,

More information

Lecture 15: Many Lights. CS 6620, Spring 2009 Kavita Bala Computer Science Cornell University. Many Lights

Lecture 15: Many Lights. CS 6620, Spring 2009 Kavita Bala Computer Science Cornell University. Many Lights Lecture 15: Many Lights CS 6620, Spring 2009 Kavita Bala Computer Science Cornell University Many Lights Most techniques work for a single light source Many light sources For environment maps For indirect

More information

In this part of the course, I will discuss various approaches for generating VPLs where they are most needed for a given camera view.

In this part of the course, I will discuss various approaches for generating VPLs where they are most needed for a given camera view. In this part of the course, I will discuss various approaches for generating VPLs where they are most needed for a given camera view. Let me start by reviewing the classic many lights rendering algorithm,

More information

LightSlice: Matrix Slice Sampling for the Many-Lights Problem

LightSlice: Matrix Slice Sampling for the Many-Lights Problem LightSlice: Matrix Slice Sampling for the Many-Lights Problem SIGGRAPH Asia 2011 Yu-Ting Wu Authors Jiawei Ou ( 歐嘉蔚 ) PhD Student Dartmouth College Fabio Pellacini Associate Prof. 2 Rendering L o ( p,

More information

Philipp Slusallek Karol Myszkowski. Realistic Image Synthesis SS18 Instant Global Illumination

Philipp Slusallek Karol Myszkowski. Realistic Image Synthesis SS18 Instant Global Illumination Realistic Image Synthesis - Instant Global Illumination - Karol Myszkowski Overview of MC GI methods General idea Generate samples from lights and camera Connect them and transport illumination along paths

More information

GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao

GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao GAMES Webinar: Rendering Tutorial 2 Monte Carlo Methods Shuang Zhao Assistant Professor Computer Science Department University of California, Irvine GAMES Webinar Shuang Zhao 1 Outline 1. Monte Carlo integration

More information

Precomputed & Hybrid Variants of Lightcuts

Precomputed & Hybrid Variants of Lightcuts Precomputed & Hybrid Variants of Lightcuts Tim Condon Bruce Walter Kavita Bala Cornell University Abstract Our extensions to multidimensional lightcuts improve rendering performance using precomputation

More information

Advanced Graphics. Path Tracing and Photon Mapping Part 2. Path Tracing and Photon Mapping

Advanced Graphics. Path Tracing and Photon Mapping Part 2. Path Tracing and Photon Mapping Advanced Graphics Path Tracing and Photon Mapping Part 2 Path Tracing and Photon Mapping Importance Sampling Combine importance sampling techniques Reflectance function (diffuse + specular) Light source

More information

Progressive photon mapping can be interpreted as an estimator that constructs the full paths from camera to light by constantly connecting two fresh

Progressive photon mapping can be interpreted as an estimator that constructs the full paths from camera to light by constantly connecting two fresh 1 Progressive photon mapping can be interpreted as an estimator that constructs the full paths from camera to light by constantly connecting two fresh subpaths. The estimation is a sum, where W_n is the

More information

Fast Agglomerative Clustering for Rendering

Fast Agglomerative Clustering for Rendering Fast Agglomerative Clustering for Rendering Bruce Walter, Kavita Bala, Cornell University Milind Kulkarni, Keshav Pingali University of Texas, Austin Clustering Tree Hierarchical data representation Each

More information

Choosing the Right Algorithm & Guiding

Choosing the Right Algorithm & Guiding Choosing the Right Algorithm & Guiding PHILIPP SLUSALLEK & PASCAL GRITTMANN Topics for Today What does an implementation of a high-performance renderer look like? Review of algorithms which to choose for

More information

Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes

Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes MilošHašan Jaroslav Křivánek Charles University in Prague Bruce Walter Kavita Bala Figure 1: Left: Many-light approaches to global illumination

More information

Lightcuts. Jeff Hui. Advanced Computer Graphics Rensselaer Polytechnic Institute

Lightcuts. Jeff Hui. Advanced Computer Graphics Rensselaer Polytechnic Institute Lightcuts Jeff Hui Advanced Computer Graphics 2010 Rensselaer Polytechnic Institute Fig 1. Lightcuts version on the left and naïve ray tracer on the right. The lightcuts took 433,580,000 clock ticks and

More information

Single Scattering in Refractive Media with Triangle Mesh Boundaries

Single Scattering in Refractive Media with Triangle Mesh Boundaries Single Scattering in Refractive Media with Triangle Mesh Boundaries Bruce Walter Shuang Zhao Nicolas Holzschuch Kavita Bala Cornell Univ. Cornell Univ. Grenoble Univ. Cornell Univ. Presented at SIGGRAPH

More information

This course covers a group of global illumination algorithms known as many light methods, or VPL rendering methods. (VPL = virtual point light)

This course covers a group of global illumination algorithms known as many light methods, or VPL rendering methods. (VPL = virtual point light) This course covers a group of global illumination algorithms known as many light methods, or VPL rendering methods. (VPL = virtual point light) 1 Our goal is to render realistic images and one of the

More information

Pixelcuts: Scalable Approximate Illumination from Many Point Lights

Pixelcuts: Scalable Approximate Illumination from Many Point Lights Pixelcuts: Scalable Approximate Illumination from Many Point Lights Pramook Khungurn, Thatchaphol Saranurak, and Chakrit Watcharopas Kasetsart University, Bangkok, 0900, Thailand Email: fscipmk@ku.ac.th,

More information

Multidimensional Lightcuts

Multidimensional Lightcuts Multidimensional Lightcuts Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg Cornell University Abstract Multidimensional lightcuts is a new scalable method for efficiently rendering rich visual

More information

Lecture 12: Photon Mapping. Biased Methods

Lecture 12: Photon Mapping. Biased Methods Lecture 12: Photon Mapping CS 6620, Spring 2009 Kavita Bala Computer Science Cornell University MC problems Biased Methods Biased methods: store information (caching) Better type of noise: blurring Greg

More information

Discussion. Smoothness of Indirect Lighting. History and Outline. Irradiance Calculation. Irradiance Caching. Advanced Computer Graphics (Spring 2013)

Discussion. Smoothness of Indirect Lighting. History and Outline. Irradiance Calculation. Irradiance Caching. Advanced Computer Graphics (Spring 2013) Advanced Computer Graphics (Spring 2013 CS 283, Lecture 12: Recent Advances in Monte Carlo Offline Rendering Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/sp13 Some slides/ideas courtesy Pat Hanrahan,

More information

CS 563 Advanced Topics in Computer Graphics Irradiance Caching and Particle Tracing. by Stephen Kazmierczak

CS 563 Advanced Topics in Computer Graphics Irradiance Caching and Particle Tracing. by Stephen Kazmierczak CS 563 Advanced Topics in Computer Graphics Irradiance Caching and Particle Tracing by Stephen Kazmierczak Introduction Unbiased light transport algorithms can sometimes take a large number of rays to

More information

Mixing Monte Carlo and Progressive Rendering for Improved Global Illumination

Mixing Monte Carlo and Progressive Rendering for Improved Global Illumination Mixing Monte Carlo and Progressive Rendering for Improved Global Illumination Ian C. Doidge Mark W. Jones Benjamin Mora Swansea University, Wales Thursday 14 th June Computer Graphics International 2012

More information

Illumination Algorithms

Illumination Algorithms Global Illumination Illumination Algorithms Digital Lighting and Rendering CGT 340 The goal of global illumination is to model all possible paths of light to the camera. Global Illumination Global illumination

More information

Practical Product Importance Sampling for Direct Illumination

Practical Product Importance Sampling for Direct Illumination Eurographics 2008 Practical Product Importance Sampling for Direct Illumination Petrik Clarberg Tomas Akenine-Möller Lund University Sweden This work was presented by Petrik Clarberg at Eurographics 2008

More information

Final Project: Real-Time Global Illumination with Radiance Regression Functions

Final Project: Real-Time Global Illumination with Radiance Regression Functions Volume xx (200y), Number z, pp. 1 5 Final Project: Real-Time Global Illumination with Radiance Regression Functions Fu-Jun Luan Abstract This is a report for machine learning final project, which combines

More information

Metropolis Light Transport

Metropolis Light Transport Metropolis Light Transport CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Announcements Final presentation June 13 (Tuesday)

More information

Motivation. Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi

Motivation. Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283 Acknowledgements and many slides courtesy: Thomas Funkhouser, Szymon

More information

Importance Sampling of Area Lights in Participating Media

Importance Sampling of Area Lights in Participating Media Importance Sampling of Area Lights in Participating Media Christopher Kulla Marcos Fajardo Outline Previous Work Single Scattering Equation Importance Sampling for Point Lights Importance Sampling for

More information

Consider a partially transparent object that is illuminated with two lights, one visible from each side of the object. Start with a ray from the eye

Consider a partially transparent object that is illuminated with two lights, one visible from each side of the object. Start with a ray from the eye Ray Tracing What was the rendering equation? Motivate & list the terms. Relate the rendering equation to forward ray tracing. Why is forward ray tracing not good for image formation? What is the difference

More information

Irradiance Gradients. Media & Occlusions

Irradiance Gradients. Media & Occlusions Irradiance Gradients in the Presence of Media & Occlusions Wojciech Jarosz in collaboration with Matthias Zwicker and Henrik Wann Jensen University of California, San Diego June 23, 2008 Wojciech Jarosz

More information

To Do. Real-Time High Quality Rendering. Motivation for Lecture. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing

To Do. Real-Time High Quality Rendering. Motivation for Lecture. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing Real-Time High Quality Rendering CSE 274 [Fall 2015], Lecture 5 Tour of Modern Offline Rendering To Do Project milestone (1-2 pages), final project proposal Due on Oct 27 Please get in touch with me if

More information

Today. Participating media. Participating media. Rendering Algorithms: Participating Media and. Subsurface scattering

Today. Participating media. Participating media. Rendering Algorithms: Participating Media and. Subsurface scattering Today Rendering Algorithms: Participating Media and Subsurface Scattering Introduction Rendering participating media Rendering subsurface scattering Spring 2009 Matthias Zwicker Participating media Participating

More information

Global Illumination. COMP 575/770 Spring 2013

Global Illumination. COMP 575/770 Spring 2013 Global Illumination COMP 575/770 Spring 2013 Final Exam and Projects COMP 575 Final Exam Friday, May 3 4:00 pm COMP 770 (and 575 extra credit) Projects Final report due by end of day, May 1 Presentations:

More information

Toward Evaluating Progressive Rendering Methods in Appearance Design Tasks

Toward Evaluating Progressive Rendering Methods in Appearance Design Tasks Toward Evaluating Progressive Rendering Methods in Appearance Design Tasks Jiawei Ou 1 Ondřej Karlík 2 Jaroslav Křivánek 2 Fabio Pellacini 1,3 1 Dartmouth College 2 Charles University in Prague 3 Sapienza

More information

Raytracing & Epsilon. Today. Last Time? Forward Ray Tracing. Does Ray Tracing Simulate Physics? Local Illumination

Raytracing & Epsilon. Today. Last Time? Forward Ray Tracing. Does Ray Tracing Simulate Physics? Local Illumination Raytracing & Epsilon intersects light @ t = 25.2 intersects sphere1 @ t = -0.01 & Monte Carlo Ray Tracing intersects sphere1 @ t = 10.6 Solution: advance the ray start position epsilon distance along the

More information

Toward Evaluating Progressive Rendering Methods in Appearance Design Tasks

Toward Evaluating Progressive Rendering Methods in Appearance Design Tasks Toward Evaluating Progressive Rendering Methods in Appearance Design Tasks Jiawei Ou 1 Ondřej Karlík 2 Jaroslav Křivánek 2 Fabio Pellacini 1,3 1 Dartmouth College 2 Charles University in Prague 3 Sapienza

More information

Real-Time Global Illumination for Games using Topological Information

Real-Time Global Illumination for Games using Topological Information Real-Time Global Illumination for Games using Topological Information Laurent Noël, Venceslas Biri To cite this version: Laurent Noël, Venceslas Biri. Real-Time Global Illumination for Games using Topological

More information

Global Illumination. Why Global Illumination. Pros/Cons and Applications. What s Global Illumination

Global Illumination. Why Global Illumination. Pros/Cons and Applications. What s Global Illumination Global Illumination Why Global Illumination Last lecture Basic rendering concepts Primitive-based rendering Today: Global illumination Ray Tracing, and Radiosity (Light-based rendering) What s Global Illumination

More information

A Brief Overview of. Global Illumination. Thomas Larsson, Afshin Ameri Mälardalen University

A Brief Overview of. Global Illumination. Thomas Larsson, Afshin Ameri Mälardalen University A Brief Overview of Global Illumination Thomas Larsson, Afshin Ameri Mälardalen University 1 What is Global illumination? Global illumination is a general name for realistic rendering algorithms Global

More information

Path Tracing part 2. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Path Tracing part 2. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Path Tracing part 2 Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Monte Carlo Integration Monte Carlo Integration The rendering (& radiance) equation is an infinitely recursive integral

More information

The Rendering Equation. Computer Graphics CMU /15-662

The Rendering Equation. Computer Graphics CMU /15-662 The Rendering Equation Computer Graphics CMU 15-462/15-662 Review: What is radiance? Radiance at point p in direction N is radiant energy ( #hits ) per unit time, per solid angle, per unit area perpendicular

More information

Biased Monte Carlo Ray Tracing:

Biased Monte Carlo Ray Tracing: Biased Monte Carlo Ray Tracing: Filtering, Irradiance Caching and Photon Mapping Dr. Henrik Wann Jensen Stanford University May 24, 2001 Unbiased and consistent Monte Carlo methods Unbiased estimator:

More information

These are the annotated slides of the real time part of the Many Lights Rendering

These are the annotated slides of the real time part of the Many Lights Rendering These are the annotated slides of the real time part of the Many Lights Rendering course at SIGGRAPH 12. This part covers techniques for making many lights methods suitable for (high quality) real time

More information

Photon Mapping. Kadi Bouatouch IRISA

Photon Mapping. Kadi Bouatouch IRISA Kadi Bouatouch IRISA Email: kadi@irisa.fr 1 Photon emission and transport 2 Photon caching 3 Spatial data structure for fast access 4 Radiance estimation 5 Kd-tree Balanced Binary Tree When a splitting

More information

Photon Mapping. Michael Doggett Department of Computer Science Lund university

Photon Mapping. Michael Doggett Department of Computer Science Lund university Photon Mapping Michael Doggett Department of Computer Science Lund university Outline Photon Mapping (ch. 14 in textbook) Progressive Stochastic 2011 Michael Doggett How to make light sampling faster?

More information

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity Schedule Review Session: Tuesday November 18 th, 7:30 pm, Room 2-136 bring lots of questions! MIT 6.837 Monte-Carlo Ray Tracing Quiz 2: Thursday November 20 th, in class (one weeks from today) MIT EECS

More information

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1 MIT 6.837 Monte-Carlo Ray Tracing MIT EECS 6.837, Cutler and Durand 1 Schedule Review Session: Tuesday November 18 th, 7:30 pm bring lots of questions! Quiz 2: Thursday November 20 th, in class (one weeks

More information

rendering equation camera all

rendering equation camera all 1 Even the most recent existing methods are either not good at or not capable of handling complex illumination, such as reflected caustics on the floor. In this work we will show how to combine the strengths

More information

Biased Monte Carlo Ray Tracing

Biased Monte Carlo Ray Tracing Biased Monte Carlo Ray Tracing Filtering, Irradiance Caching, and Photon Mapping Henrik Wann Jensen Stanford University May 23, 2002 Unbiased and Consistent Unbiased estimator: E{X} =... Consistent estimator:

More information

Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker

Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker Rendering Algorithms: Real-time indirect illumination Spring 2010 Matthias Zwicker Today Real-time indirect illumination Ray tracing vs. Rasterization Screen space techniques Visibility & shadows Instant

More information

Realistic Image Synthesis

Realistic Image Synthesis Realistic Image Synthesis Bidirectional Path Tracing & Reciprocity Karol Myszkowski Gurprit Singh Path Sampling Techniques Different techniques of sampling paths from both sides Numbers in parenthesis

More information

Monte Carlo Path Tracing. The Rendering Equation

Monte Carlo Path Tracing. The Rendering Equation Monte Carlo Path Tracing Today Path tracing starting from the eye Path tracing starting from the lights Which direction is best? Bidirectional ray tracing Random walks and Markov chains Next Irradiance

More information

Rendering: Reality. Eye acts as pinhole camera. Photons from light hit objects

Rendering: Reality. Eye acts as pinhole camera. Photons from light hit objects Basic Ray Tracing Rendering: Reality Eye acts as pinhole camera Photons from light hit objects Rendering: Reality Eye acts as pinhole camera Photons from light hit objects Rendering: Reality Eye acts as

More information

Instant Radiosity for Real-Time Global Illumination

Instant Radiosity for Real-Time Global Illumination Instant Radiosity for Real-Time Global Illumination Ingo Radax Vienna University of Technology (a) Direct Illumination, Hard Shadows, Reflections (b) + Soft Shadows (c) + Caustics (d) + Indirect Illumination

More information

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows.

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows. CSCI 420 Computer Graphics Lecture 18 Global Illumination Jernej Barbic University of Southern California BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Angel Ch. 11] 1 Global Illumination

More information

Bidirectional Path Tracing

Bidirectional Path Tracing Bidirectional Path Tracing CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Last Lecture Path integral formulation II Light path

More information

rendering equation computer graphics rendering equation 2009 fabio pellacini 1

rendering equation computer graphics rendering equation 2009 fabio pellacini 1 rendering equation computer graphics rendering equation 2009 fabio pellacini 1 physically-based rendering synthesis algorithms that compute images by simulation the physical behavior of light computer

More information

Chapter 11 Global Illumination. Part 1 Ray Tracing. Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11.

Chapter 11 Global Illumination. Part 1 Ray Tracing. Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11. Chapter 11 Global Illumination Part 1 Ray Tracing Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11.3 CG(U), Chap.11 Part 1:Ray Tracing 1 Can pipeline graphics renders images

More information

Stochastic Progressive Photon Mapping

Stochastic Progressive Photon Mapping Stochastic Progressive Photon Mapping Toshiya Hachisuka Henrik Wann Jensen UC San Diego Figure : Tools with a flashlight. The scene is illuminated by caustics from the flashlight, which cause SDS paths

More information

Progressive Expectation Maximization for Hierarchical Volumetric Photon Mapping

Progressive Expectation Maximization for Hierarchical Volumetric Photon Mapping Progressive Expectation Maximization for Hierarchical Volumetric Photon Mapping Wenzel Jakob 1,2 Christian Regg 1,3 Wojciech Jarosz 1 1 Disney Research, Zürich 2 Cornell University 3 ETH Zürich Thank you

More information

Ongoing Developments in Photon Mapping

Ongoing Developments in Photon Mapping Ongoing Developments in Photon Mapping Roland Schregle, Stephen Wittkopf Competence Centre Envelopes and Solar Energy (CC-EASE) 13th International RADIANCE Workshop 2014 London, UK Outline 1. Introduction

More information

Reusing Shading for Interactive Global Illumination GDC 2004

Reusing Shading for Interactive Global Illumination GDC 2004 Reusing Shading for Interactive Global Illumination Kavita Bala Cornell University Bruce Walter Introduction What is this course about? Schedule What is Global Illumination? Computing Global Illumination

More information

The Rendering Equation. Computer Graphics CMU /15-662, Fall 2016

The Rendering Equation. Computer Graphics CMU /15-662, Fall 2016 The Rendering Equation Computer Graphics CMU 15-462/15-662, Fall 2016 Review: What is radiance? Radiance at point p in direction N is radiant energy ( #hits ) per unit time, per solid angle, per unit area

More information

Recent Advances in Monte Carlo Offline Rendering

Recent Advances in Monte Carlo Offline Rendering CS294-13: Special Topics Lecture #6 Advanced Computer Graphics University of California, Berkeley Monday, 21 September 2009 Recent Advances in Monte Carlo Offline Rendering Lecture #6: Monday, 21 September

More information

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker CMSC427 Shading Intro Credit: slides from Dr. Zwicker 2 Today Shading Introduction Radiometry & BRDFs Local shading models Light sources Shading strategies Shading Compute interaction of light with surfaces

More information

Variance Reduction. Computer Graphics CMU /15-662, Fall 2016

Variance Reduction. Computer Graphics CMU /15-662, Fall 2016 Variance Reduction Computer Graphics CMU 15-462/15-662, Fall 2016 Last time: Rendering Equation Recursive description of incident illumination Difficult to integrate; tour de force of numerical integration

More information

Other Rendering Techniques CSE 872 Fall Intro You have seen Scanline converter (+z-buffer) Painter s algorithm Radiosity CSE 872 Fall

Other Rendering Techniques CSE 872 Fall Intro You have seen Scanline converter (+z-buffer) Painter s algorithm Radiosity CSE 872 Fall Other Rendering Techniques 1 Intro You have seen Scanline converter (+z-buffer) Painter s algorithm Radiosity 2 Intro Some more Raytracing Light maps Photon-map Reyes Shadow maps Sahdow volumes PRT BSSRF

More information

Global Illumination. CSCI 420 Computer Graphics Lecture 18. BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch

Global Illumination. CSCI 420 Computer Graphics Lecture 18. BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch CSCI 420 Computer Graphics Lecture 18 Global Illumination Jernej Barbic University of Southern California BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch. 13.4-13.5] 1 Global Illumination

More information

Variance reduction using interframe coherence for animated scenes

Variance reduction using interframe coherence for animated scenes Computational Visual Media DOI 10.1007/s41095-015-0026-0 Vol. 1, No. 4, December 2015, 343 349 Research Article Variance reduction using interframe coherence for animated scenes Peng Zhou 1 ( ), Yanyun

More information

Global Illumination The Game of Light Transport. Jian Huang

Global Illumination The Game of Light Transport. Jian Huang Global Illumination The Game of Light Transport Jian Huang Looking Back Ray-tracing and radiosity both computes global illumination Is there a more general methodology? It s a game of light transport.

More information

Monte-Carlo Ray Tracing. Antialiasing & integration. Global illumination. Why integration? Domains of integration. What else can we integrate?

Monte-Carlo Ray Tracing. Antialiasing & integration. Global illumination. Why integration? Domains of integration. What else can we integrate? Monte-Carlo Ray Tracing Antialiasing & integration So far, Antialiasing as signal processing Now, Antialiasing as integration Complementary yet not always the same in particular for jittered sampling Image

More information

Progressive Photon Mapping: A Probabilistic Approach

Progressive Photon Mapping: A Probabilistic Approach Progressive Photon Mapping: A Probabilistic Approach Claude Knaus and Matthias Zwicker University of Bern, Switzerland In this paper we present a novel formulation of progressive photon mapping. Similar

More information

REAL-TIME GPU PHOTON MAPPING. 1. Introduction

REAL-TIME GPU PHOTON MAPPING. 1. Introduction REAL-TIME GPU PHOTON MAPPING SHERRY WU Abstract. Photon mapping, an algorithm developed by Henrik Wann Jensen [1], is a more realistic method of rendering a scene in computer graphics compared to ray and

More information

RND102 - Intro to Path Tracing & RIS in RenderMan

RND102 - Intro to Path Tracing & RIS in RenderMan RND102 - Intro to Path Tracing & RIS in RenderMan Why this course? With a new version of RenderMan (19) comes an additional completely different rendering architecture: path tracing (uni & bi-directional)

More information

Real-Time Rendering with Lighting Grid Hierarchy

Real-Time Rendering with Lighting Grid Hierarchy Real-Time Rendering with Lighting Grid Hierarchy Daqi Lin University of Utah Cem Yuksel University of Utah Figure 1: An example frame rendered using our real-time global illumination solution with one

More information

Corona Sky Corona Sun Corona Light Create Camera About

Corona Sky Corona Sun Corona Light Create Camera About Plugin menu Corona Sky creates Sky object with attached Corona Sky tag Corona Sun creates Corona Sun object Corona Light creates Corona Light object Create Camera creates Camera with attached Corona Camera

More information

2/1/10. Outline. The Radiance Equation. Light: Flux Equilibrium. Light: Radiant Power. Light: Equation. Radiance. Jan Kautz

2/1/10. Outline. The Radiance Equation. Light: Flux Equilibrium. Light: Radiant Power. Light: Equation. Radiance. Jan Kautz Outline Jan Kautz Basic terms in radiometry Radiance Reflectance The operator form of the radiance equation Meaning of the operator form Approximations to the radiance equation 2005 Mel Slater, 2006 Céline

More information

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Today s Lecture Radiometry Physics of light BRDFs How materials

More information

THEA RENDER ADAPTIVE BSD ENGINE

THEA RENDER ADAPTIVE BSD ENGINE THEA RENDER ADAPTIVE BSD ENGINE ADAPTIVE (BSD) ENGINE Adaptive (BSD) is the name of the biased engine inside Thea Render. This engine is a biased one (this is why we use the abbreviation "BSD") as it uses

More information

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models Computergrafik Thomas Buchberger, Matthias Zwicker Universität Bern Herbst 2008 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation

More information

Motivation: Monte Carlo Path Tracing. Sampling and Reconstruction of Visual Appearance. Monte Carlo Path Tracing. Monte Carlo Path Tracing

Motivation: Monte Carlo Path Tracing. Sampling and Reconstruction of Visual Appearance. Monte Carlo Path Tracing. Monte Carlo Path Tracing Sampling and Reconstruction of Visual Appearance CSE 274 [Winter 2018], Lecture 4 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Motivation: Key application area for sampling/reconstruction Core method

More information

I present Adjoint-Driven Russian Roulette and Splitting for efficient light transport simulation which is a part of my PhD.

I present Adjoint-Driven Russian Roulette and Splitting for efficient light transport simulation which is a part of my PhD. I present Adjoint-Driven Russian Roulette and Splitting for efficient light transport simulation which is a part of my PhD. work at Charles University in Prague. 1 The simulation becomes expensive especially

More information

Lighting. To do. Course Outline. This Lecture. Continue to work on ray programming assignment Start thinking about final project

Lighting. To do. Course Outline. This Lecture. Continue to work on ray programming assignment Start thinking about final project To do Continue to work on ray programming assignment Start thinking about final project Lighting Course Outline 3D Graphics Pipeline Modeling (Creating 3D Geometry) Mesh; modeling; sampling; Interaction

More information

Progressive Virtual Beam Lights

Progressive Virtual Beam Lights Eurographics Symposium on Rendering 2012 Fredo Durand and Diego Gutierrez (Guest Editors) Volume 31 (2012), Number 4 Progressive Virtual Beam Lights Jan Novák 1,2 Derek Nowrouzezahrai 1,3 Carsten Dachsbacher

More information

Progressive Photon Beams

Progressive Photon Beams From the ACM SIGGRAPH Asia 2011 conference proceedings. Progressive Photon Beams Wojciech Jarosz 1 Derek Nowrouzezahrai 1 Robert Thomas 1 Peter-Pike Sloan 2 Matthias Zwicker 3 1 Disney Research Zürich

More information

COMBINING VOLUMETRIC ESTIMATORS

COMBINING VOLUMETRIC ESTIMATORS COMBINING VOLUMETRIC ESTIMATORS Jaroslav Křivánek Charles University Render Legion Chaos Group UNIFYING POINTS, BEAMS, AND PATHS IN VOLUMETRIC LIGHT TRANSPORT SIMULATION Jaroslav Křivánek Charles University

More information

Computer graphics Labs: Blender (2/3) LuxRender: Interior Scene Rendering

Computer graphics Labs: Blender (2/3) LuxRender: Interior Scene Rendering Computer graphics Labs: Blender (2/3) LuxRender: Interior Scene Rendering University of Liège Department of Aerospace and Mechanical engineering Designed with Blender 2.76b LuxRender During the first tutorial

More information

Recollection. Models Pixels. Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows

Recollection. Models Pixels. Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows Recollection Models Pixels Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows Can be computed in different stages 1 So far we came to Geometry model 3 Surface

More information

Accelerated Raytracing

Accelerated Raytracing Accelerated Raytracing Why is Acceleration Important? Vanilla ray tracing is really slow! mxm pixels, kxk supersampling, n primitives, average ray path length of d, l lights, 2 recursive ray casts per

More information

CS354R: Computer Game Technology

CS354R: Computer Game Technology CS354R: Computer Game Technology Real-Time Global Illumination Fall 2018 Global Illumination Mirror s Edge (2008) 2 What is Global Illumination? Scene recreates feel of physically-based lighting models

More information

Global Rendering. Ingela Nyström 1. Effects needed for realism. The Rendering Equation. Local vs global rendering. Light-material interaction

Global Rendering. Ingela Nyström 1. Effects needed for realism. The Rendering Equation. Local vs global rendering. Light-material interaction Effects needed for realism Global Rendering Computer Graphics 1, Fall 2005 Lecture 7 4th ed.: Ch 6.10, 12.1-12.5 Shadows Reflections (Mirrors) Transparency Interreflections Detail (Textures etc.) Complex

More information

Motivation. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing

Motivation. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing Advanced Computer Graphics (Spring 2013) CS 283, Lecture 11: Monte Carlo Path Tracing Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/sp13 Motivation General solution to rendering and global illumination

More information

SOME THEORY BEHIND REAL-TIME RENDERING

SOME THEORY BEHIND REAL-TIME RENDERING SOME THEORY BEHIND REAL-TIME RENDERING Jaroslav Křivánek Charles University in Prague Off-line realistic rendering (not yet in rea-time) Ray tracing 3 4 Image created by Bertrand Benoit Rendered in Corona

More information

Ray Tracing. Computer Graphics CMU /15-662, Fall 2016

Ray Tracing. Computer Graphics CMU /15-662, Fall 2016 Ray Tracing Computer Graphics CMU 15-462/15-662, Fall 2016 Primitive-partitioning vs. space-partitioning acceleration structures Primitive partitioning (bounding volume hierarchy): partitions node s primitives

More information

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows.

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows. CSCI 480 Computer Graphics Lecture 18 Global Illumination BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch. 13.4-13.5] March 28, 2012 Jernej Barbic University of Southern California

More information

Monte Carlo Path Tracing

Monte Carlo Path Tracing Page 1 Monte Carlo Path Tracing Today Path tracing Random wals and Marov chains Eye vs. light ray tracing Bidirectional ray tracing Next Irradiance caching Photon mapping Light Path Sx (, x) 0 1 f ( x,

More information

Rendering Part I (Basics & Ray tracing) Lecture 25 December 1, 2015

Rendering Part I (Basics & Ray tracing) Lecture 25 December 1, 2015 Rendering Part I (Basics & Ray tracing) Lecture 25 December 1, 2015 What is rendering? Generating an image from a 3D scene model Ingredients Representation of 3D geometry Specification for camera & lights

More information

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models Computergrafik Matthias Zwicker Universität Bern Herbst 2009 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation of physics Global

More information