VoI for adversarial information structures

Size: px
Start display at page:

Download "VoI for adversarial information structures"

Transcription

1 ARO ARO MURI MURI on on Value-centered Theory for for Adaptive Learning, Inference, Tracking, and and Exploitation VoI for adversarial information structures Kickf Emre Ertin, Nithin Sugavanam The Ohio State University

2 Research program Resource Exploitation Performance tradefs Distributed algorithms Mission and Objectives Resource Exploitation Kickf Cochran (Lead); Ertin, Hero, How, Moses, Soatto Adversarial Info Structures Complexity Management Actionable Robust Mission Planning Scalable, Actionable VoI measures

3 Design for Adversarial Opponent Sensor systems do not compete against nature but against adversaries with opposing interests. Adversarial action extends to: Countermeasures for avoiding detection Dynamic strategies for avoiding capture Coordinated team actions We focus on sensor control and sensor system design to maximize VoI assessed in adversarial setting Contrast this to differential game Kickf theory literature for pursuer motion control which assumes perfect state observability Our approach combines Design for adversary (target) and Design for uncertainty (Sensor, Noise) Optimal sensor control strategies to maximize information rate Adversary models that attempts to minimize information rate to the observer Omniscient adversary models are employed to provide performance guarantees

4 Goals and Relation to other research thrusts Quantifying VoI in adversarial structures New measures performance for area and barrier coverage Optimal controlled sensing strategies in adversarial setting Sensor system design to maximize VoI controlled sensing systems This will lead to Task specific measures for Kickf fused information (Moses) Computationally tractable, distributed algorithms to manage VoI (Fisher) New insights for developing sensor management and placement strategies (Cochran) Collaborative Project with J. Fisher on VoI past vs current measurements

5 DARPA ExScal Project: 1,200 nodes over 1,200m x 300m Detect, Track and Classify vehicles and personnel to protect a long linear asset from intruders Motivating Scenario Multimodal sensors provide local detections, fusion center computes Kickf global detections and tracks Intruders Long Linear Asset

6 Sensor Selection in Adversarial Setting Surveillance game between two players with opposing objectives. The observer is choosing an open loop randomized strategy to choose sensor observations to maximize probability detection. Sensor 1 (q 1m,p 1 ) The adversary (target) is using an open Kickf loop randomized control strategy over the available evading actions to minimize the probability being detected. Observer Sensor 2 (q 2m,p 2 ) H1 (m) H 0 Min-max composite detection problem Sensor K (q Km,p K ) Focus on asymptotic performance in finite sample size problems

7 Sensor Selection in Adversarial Setting For each observation period The observer chooses among K sensors with observations in finite space X, ( X = J) The target chooses among M evading actions H 0 : P [s k = x j ]=p k j Kickf H 1 : P [s k (m) =x j ]=qj km Observer Sensor 1 (q 1m,p 1 ) Sensor 2 (q 2m,p 2 ) H1 (m) H 0 Observer and Target are employing open loop randomized control strategies r = {r 1,...,r K } ( X r k = 1) k Sensor K (q Km,p K ) s = {s 1,...,s M } ( X m s m = 1)

8 Related Work Controlled Sensing Tsitsiklis(1988) Open loop strategies against random opponent Veeravalli (2012) Closed loop strategies against random opponent Robust Detection Classical treatment classes under each Hypothesis are defined as small neighborhoods the nominal distributions Kickf Huber ( ) Contamination Total Variation Performance and the classes are defined through asymptotical error metrics Dabak and Johnson (2003)

9 Sensor Selection in Adversarial Setting Given sensor observations y collected over N periods using sensors I = {i 1,...,i N } use decision rule given by the partition (U 0, U 1 ) Decide H 0 if (y, I) 2 U 0 Decide H 1 if (y, I) 2 U 1 Sensor 1 (q 1m,p 1 ) Type I and II errors are given by Kickf Observer Sensor 2 (q 2m,p 2 ) H1 (m) H 0 P M N (r, s) = P FA N (r, s) = X NY (y,i)2u 0 n=1 X NY (y,i)2u 1 n=1 r in X m r in p i n yn s m q i nm y n Sensor K (q Km,p K )

10 Random Opponent with known random strategy Start with observer against random opponent problem with known strategy s Consider all decision rules P FA N (r, s) < Observer chooses sensors to maximize asymptotic error exponent Kickf J (r s) = lim N!1 X Optimal strategy is non-randomized 1 inf {U:PN FA(r,s)< } N log(p N M (r s)) k = arg max k D p k q k (s) J. N. Tsitsiklis, Decentralized detection by a large number sensors, Mathematics Control, Signals, and Systems, vol. 1, no. 2, pp , Closed Loop: Veeravalli 2012

11 Adversarial Target This time we assume an intelligent adversary Again consider all decision rules P FA N (r, s) < Observer (Target) chooses strategies to maximize (minimize) asymptotic error exponent Kickf 1 J (r, s) = lim inf N!1 {U:PN FA(r,s)< } N log(p N M (r, s)) Decision rule for the Observer has to be optimized jointly with the sensing strategy r. We cannot form the likelihood-ratio test without the knowledge s.

12 Detection against an unknown strategy Hoeffding test: Perform a test using distance the empirical histogram from U1 H = {y : D p k ˆp(y) > } The type I and type II error exponent the Hoeffding test is given by 1 FA lim log PN = N!1 N Kickf 1 lim N!1 N log P N M = X r k D p k q k (s) ( ) k For fixed false alarm constraint, we can drive the type II error to zero at the clairvoyant rate J (r, s) = X k r k D p k q k (s)

13 Surveillance Game Looking for equilibrium strategies satisfying the saddle point property J (r, s ) apple J (r,s ) apple J (r,s) At the Nash equilibrium min-max inequality is satisfied V (J )=J (r,s ) = max r min Kickf J (r, s) =min s s max r J (r, s) In this case the strategy spaces are compact and the objectives are convex/ concave functions the strategy space so a fixed point equilibrium strategies exists

14 Searching for Optimal Strategies The equilibrium can be computed using an interior method, using log barrier terms to express inequality constraints The solution corresponds to the saddle point the Lagrangian Kickf Convergence as, exit criteria can be based on the duality gap

15 Example 1: Pruning Tripline Sensors Network K Sensors randomly deployed (Energy Detector-Tripline) Target employs open loop control between locations to evade detection, Generically with K sensors and M locations K>M, target occupies all M locations with M positive probability, M out K sensors can be selected to support the optimal min-max equilibrium K=40 sensors shown with 0dB SNR contours M=9 locations for target Kickf

16 Example 1: Pruning Tripline Sensors Network K Sensors randomly deployed (Energy Detector-Tripline) Target employs open loop control between locations to evade detection, Generically with K sensors and M locations K>M, target occupies all M locations with M positive probability, M out K sensors can be selected to support the optimal min-max equilibrium x 10 3 Kickf 0.7 Duality Gap Number Iterations in Saddle Point Search

17 Optimizing Sensor Placement Given the sensor locations define the value the game x = {x k } K k=1,optimal strategies (r (x),s (x)) V(x) =J (r (x),s (x),x) Sensor locations can be optimized for maximizing the observer advantage in the surveillance game Kickf x = arg max J x (r (x),s (x),x) Envelope theorem provides an efficient way to compute the gradient dj (r (x),s (x),x) dx k s,, k = r k X j p k j q k j (s ) r,s, X k j k s m

18 Example 2: Optimal Sensor Placement For 16 target positions Locations the 4 tripwire sensors are chosen to maximize the value the surveillance game for the observer. Value Game Kickf 250 Y Target Sensors Number Iterations X

19 Value Example 2: Optimal Sensor Placement Sensor Placement and Control in the presence Obstacles Propagation Model [Vecherin 2009] Z r e = (r) dr E(r) = S(r) r st Y 14 Kickf X Simulation Model with Obstructions Random Initialization Optimization trajectory Optimal Placement 1st year review. UCLA 2012

20 Summary and Future Work Value for sensors has to be computed in a task specific context Insight into competitive sensing problems can be obtained through adversarial modeling. Problems Area and Barrier Coverage, Asset Protection Optimizing open-loop control strategies in adversarial setting for fixed sensor locations Kickf Optimize sensor placement to maximize advantage in the surveillance game Future work: Closed loop control in adversarial setting Design for Barrier coverage versus Area Coverage

Topological Abstraction and Planning for the Pursuit-Evasion Problem

Topological Abstraction and Planning for the Pursuit-Evasion Problem Topological Abstraction and Planning for the Pursuit-Evasion Problem Alberto Speranzon*, Siddharth Srivastava (UTRC) Robert Ghrist, Vidit Nanda (UPenn) IMA 1/1/2015 *Now at Honeywell Aerospace Advanced

More information

Optimal Channel Selection for Cooperative Spectrum Sensing Using Coordination Game

Optimal Channel Selection for Cooperative Spectrum Sensing Using Coordination Game 2012 7th International ICST Conference on Communications and Networking in China (CHINACOM) Optimal Channel Selection for Cooperative Spectrum Sensing Using Coordination Game Yuhua Xu, Zhan Gao and Wei

More information

Principles of Wireless Sensor Networks. Fast-Lipschitz Optimization

Principles of Wireless Sensor Networks. Fast-Lipschitz Optimization http://www.ee.kth.se/~carlofi/teaching/pwsn-2011/wsn_course.shtml Lecture 5 Stockholm, October 14, 2011 Fast-Lipschitz Optimization Royal Institute of Technology - KTH Stockholm, Sweden e-mail: carlofi@kth.se

More information

Detection and Mitigation of Cyber-Attacks using Game Theory

Detection and Mitigation of Cyber-Attacks using Game Theory Detection and Mitigation of Cyber-Attacks using Game Theory João P. Hespanha Kyriakos G. Vamvoudakis Correlation Engine COAs Data Data Data Data Cyber Situation Awareness Framework Mission Cyber-Assets

More information

Lagrangian Relaxation: An overview

Lagrangian Relaxation: An overview Discrete Math for Bioinformatics WS 11/12:, by A. Bockmayr/K. Reinert, 22. Januar 2013, 13:27 4001 Lagrangian Relaxation: An overview Sources for this lecture: D. Bertsimas and J. Tsitsiklis: Introduction

More information

Adversarial Signal Processing and the Hypothesis Testing Game

Adversarial Signal Processing and the Hypothesis Testing Game HKBU May 23, 2017 Distinguished Lecture Series Adversarial Signal Processing and the Hypothesis Testing Game Mauro Barni University of Sienna, Italy Outline of the talk Motivation Adversarial signal processing

More information

Finding optimal configurations Adversarial search

Finding optimal configurations Adversarial search CS 171 Introduction to AI Lecture 10 Finding optimal configurations Adversarial search Milos Hauskrecht milos@cs.pitt.edu 39 Sennott Square Announcements Homework assignment is out Due on Thursday next

More information

Fast-Lipschitz Optimization

Fast-Lipschitz Optimization Fast-Lipschitz Optimization DREAM Seminar Series University of California at Berkeley September 11, 2012 Carlo Fischione ACCESS Linnaeus Center, Electrical Engineering KTH Royal Institute of Technology

More information

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING KELLER VANDEBOGERT AND CHARLES LANNING 1. Introduction Interior point methods are, put simply, a technique of optimization where, given a problem

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming SECOND EDITION Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book Information and Orders http://world.std.com/~athenasc/index.html Athena Scientific, Belmont,

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco 2016-09-13 Generative Modeling Density estimation Sample generation Training examples Model samples

More information

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 5, MAY

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 5, MAY IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 55, NO 5, MAY 2007 1911 Game Theoretic Cross-Layer Transmission Policies in Multipacket Reception Wireless Networks Minh Hanh Ngo, Student Member, IEEE, and

More information

A Game-Theoretic Framework for Congestion Control in General Topology Networks

A Game-Theoretic Framework for Congestion Control in General Topology Networks A Game-Theoretic Framework for Congestion Control in General Topology SYS793 Presentation! By:! Computer Science Department! University of Virginia 1 Outline 2 1 Problem and Motivation! Congestion Control

More information

A Game-Theoretic Approach to Anonymous Networking

A Game-Theoretic Approach to Anonymous Networking 892 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 3, JUNE 2012 A Game-Theoretic Approach to Anonymous Networking Parv Venkitasubramaniam, Member, IEEE, and Lang Tong, Fellow, IEEE Abstract Anonymous

More information

ON SECURITY-ENERGY TRADEOFFS AND COOPERATION FOR WIRELESS AD HOC NETWORKS

ON SECURITY-ENERGY TRADEOFFS AND COOPERATION FOR WIRELESS AD HOC NETWORKS ON SECURITY-ENERGY TRADEOFFS AND COOPERATION FOR WIRELESS AD HOC NETWORKS 1 Cristina Comaniciu Stevens Institute of Technology A DIFFERENT PERSPECTIVE ON SECURITY FOR WIRELESS Security is a key requirement

More information

Advanced Robotics Path Planning & Navigation

Advanced Robotics Path Planning & Navigation Advanced Robotics Path Planning & Navigation 1 Agenda Motivation Basic Definitions Configuration Space Global Planning Local Planning Obstacle Avoidance ROS Navigation Stack 2 Literature Choset, Lynch,

More information

Solution Methods Numerical Algorithms

Solution Methods Numerical Algorithms Solution Methods Numerical Algorithms Evelien van der Hurk DTU Managment Engineering Class Exercises From Last Time 2 DTU Management Engineering 42111: Static and Dynamic Optimization (6) 09/10/2017 Class

More information

AN ad-hoc network is a group of nodes without requiring

AN ad-hoc network is a group of nodes without requiring 240 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 2, NO. 2, JUNE 2007 Securing Cooperative Ad-Hoc Networks Under Noise and Imperfect Monitoring: Strategies and Game Theoretic Analysis Wei

More information

Decentralized Stochastic Planning for Nonparametric Bayesian Models

Decentralized Stochastic Planning for Nonparametric Bayesian Models Decentralized Stochastic Planning for Nonparametric Bayesian Models Silvia Ferrari Professor of Engineering and Computer Science Department of Mechanical Engineering and Materials Science Duke University

More information

Solving Pursuit-Evasion Problems with Graph-Clear: an Overview

Solving Pursuit-Evasion Problems with Graph-Clear: an Overview Solving Pursuit-Evasion Problems with Graph-Clear: an Overview Andreas Kolling Stefano Carpin School of Information Sciences University of Pittsburgh, USA School of Engineering University of California,

More information

Dynamic Cooperative Routing (DCR) in Wireless Sensor Networks

Dynamic Cooperative Routing (DCR) in Wireless Sensor Networks Dynamic Cooperative Routing () in Wireless Sensor Networks Sivasankari H. 1, Leelavathi R. 1, Shaila K. 1, Venugopal K.R. 1, S.S. Iyengar 2, and L.M. Patnaik 3 1 Department of Computer Science and Engineering,

More information

Learning to generate with adversarial networks

Learning to generate with adversarial networks Learning to generate with adversarial networks Gilles Louppe June 27, 2016 Problem statement Assume training samples D = {x x p data, x X } ; We want a generative model p model that can draw new samples

More information

Generalized Nash Equilibrium Problem: existence, uniqueness and

Generalized Nash Equilibrium Problem: existence, uniqueness and Generalized Nash Equilibrium Problem: existence, uniqueness and reformulations Univ. de Perpignan, France CIMPA-UNESCO school, Delhi November 25 - December 6, 2013 Outline of the 7 lectures Generalized

More information

ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints

ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints Instructor: Kevin Ross Scribe: Pritam Roy May 0, 2005 Outline of topics for the lecture We will discuss

More information

Multi-Sensor Adaptive Signal Processing for Landmines

Multi-Sensor Adaptive Signal Processing for Landmines Multi-Sensor Adaptive Signal Processing for Landmines Leslie Collins, Mark Kolba, Peter Torrione, and Yongli Yu Electrical and Computer Engineering Duke University Work supported by DARPA/ARO MURI Overview

More information

Loop detection and extended target tracking using laser data

Loop detection and extended target tracking using laser data Licentiate seminar 1(39) Loop detection and extended target tracking using laser data Karl Granström Division of Automatic Control Department of Electrical Engineering Linköping University Linköping, Sweden

More information

Empirical risk minimization (ERM) A first model of learning. The excess risk. Getting a uniform guarantee

Empirical risk minimization (ERM) A first model of learning. The excess risk. Getting a uniform guarantee A first model of learning Let s restrict our attention to binary classification our labels belong to (or ) Empirical risk minimization (ERM) Recall the definitions of risk/empirical risk We observe the

More information

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Lincoln Laboratory ASAP-2001 Workshop Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Shawn Kraut and Jeffrey Krolik Duke University Department of Electrical and Computer

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

A Hierarchical Approach to Probabilistic Pursuit-Evasion Games with Unmanned Ground and Aerial Vehicles 1

A Hierarchical Approach to Probabilistic Pursuit-Evasion Games with Unmanned Ground and Aerial Vehicles 1 A Hierarchical Approach to Probabilistic Pursuit-Evasion Games with Unmanned Ground and Aerial Vehicles 1 H. Jin Kim René Vidal David H. Shim Omid Shakernia Shankar Sastry Department of Electrical Engineering

More information

I How does the formulation (5) serve the purpose of the composite parameterization

I How does the formulation (5) serve the purpose of the composite parameterization Supplemental Material to Identifying Alzheimer s Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis I How does the formulation (5)

More information

Compressive Sensing for Multimedia. Communications in Wireless Sensor Networks

Compressive Sensing for Multimedia. Communications in Wireless Sensor Networks Compressive Sensing for Multimedia 1 Communications in Wireless Sensor Networks Wael Barakat & Rabih Saliba MDDSP Project Final Report Prof. Brian L. Evans May 9, 2008 Abstract Compressive Sensing is an

More information

S+U Learning through ANs - Pranjit Kalita

S+U Learning through ANs - Pranjit Kalita S+U Learning through ANs - Pranjit Kalita - (from paper) Learning from Simulated and Unsupervised Images through Adversarial Training - Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda

More information

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2 (1 Given the following system of linear equations, which depends on a parameter a R, x + 2y 3z = 4 3x y + 5z = 2 4x + y + (a 2 14z = a + 2 (a Classify the system of equations depending on the values of

More information

Ian Mitchell. Department of Computer Science The University of British Columbia

Ian Mitchell. Department of Computer Science The University of British Columbia CPSC 542D: Level Set Methods Dynamic Implicit Surfaces and the Hamilton-Jacobi Equation or What Water Simulation, Robot Path Planning and Aircraft Collision Avoidance Have in Common Ian Mitchell Department

More information

3.6.2 Generating admissible heuristics from relaxed problems

3.6.2 Generating admissible heuristics from relaxed problems 3.6.2 Generating admissible heuristics from relaxed problems To come up with heuristic functions one can study relaxed problems from which some restrictions of the original problem have been removed The

More information

What is Computer Vision?

What is Computer Vision? Perceptual Grouping in Computer Vision Gérard Medioni University of Southern California What is Computer Vision? Computer Vision Attempt to emulate Human Visual System Perceive visual stimuli with cameras

More information

Game Theory with Learning for Cybersecurity Monitoring

Game Theory with Learning for Cybersecurity Monitoring Game Theory with Learning for Cybersecurity Monitoring Keywhan Chung advised by : Professor Ravishankar Iyer Professor Zbigniew Kalbarczyk In collaboration with Dr. Charles Kamhoua, Dr. Kevin Kwiat at

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

The Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers The Alternating Direction Method of Multipliers With Adaptive Step Size Selection Peter Sutor, Jr. Project Advisor: Professor Tom Goldstein October 8, 2015 1 / 30 Introduction Presentation Outline 1 Convex

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

MITIGATE: A NEW APPROACH TO PORT SECURITY

MITIGATE: A NEW APPROACH TO PORT SECURITY MITIGATE: A NEW APPROACH TO PORT SECURITY MEDUSA CONFERENCE CYBER-SECURIT Y IN THE SUPPLY CHAIN Stefan Schauer AIT 06 MAY 2016 CONTENTS MITIGATE Project Overview Risk Assessment Methodology Game Theory

More information

Ulrik Söderström 16 Feb Image Processing. Segmentation

Ulrik Söderström 16 Feb Image Processing. Segmentation Ulrik Söderström ulrik.soderstrom@tfe.umu.se 16 Feb 2011 Image Processing Segmentation What is Image Segmentation? To be able to extract information from an image it is common to subdivide it into background

More information

Super-Resolution from Image Sequences A Review

Super-Resolution from Image Sequences A Review Super-Resolution from Image Sequences A Review Sean Borman, Robert L. Stevenson Department of Electrical Engineering University of Notre Dame 1 Introduction Seminal work by Tsai and Huang 1984 More information

More information

DUAL MODE SCANNER for BROKEN RAIL DETECTION

DUAL MODE SCANNER for BROKEN RAIL DETECTION DUAL MODE SCANNER for BROKEN RAIL DETECTION ROBERT M. KNOX President; Epsilon Lambda Electronics Dr. BENEDITO FONSECA Northern Illinois University Presenting a concept for improved rail safety; not a tested

More information

Inversion via Bayesian Multimodal Iterative Adaptive Processing (MIAP)

Inversion via Bayesian Multimodal Iterative Adaptive Processing (MIAP) Inversion via Bayesian Multimodal Iterative Adaptive Processing (MIAP) Leslie Collins, Yongli Yu, Peter Torrione, and Mark Kolba Electrical and Computer Engineering Duke University Work supported by DARPA/ARO

More information

Constrained optimization

Constrained optimization Constrained optimization A general constrained optimization problem has the form where The Lagrangian function is given by Primal and dual optimization problems Primal: Dual: Weak duality: Strong duality:

More information

Automation-Assisted Capture-the-Flag: A. Differential Game Approach

Automation-Assisted Capture-the-Flag: A. Differential Game Approach Automation-Assisted Capture-the-Flag: A 1 Differential Game Approach Haomiao Huang*, Jerry Ding*, Wei Zhang*, and Claire J. Tomlin Abstract Capture-the-flag is a complex, challenging game that is a useful

More information

CME307/MS&E311 Optimization Theory Summary

CME307/MS&E311 Optimization Theory Summary CME307/MS&E311 Optimization Theory Summary Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

More information

A primal-dual framework for mixtures of regularizers

A primal-dual framework for mixtures of regularizers A primal-dual framework for mixtures of regularizers Baran Gözcü baran.goezcue@epfl.ch Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

More information

ADVANCED MACHINE LEARNING MACHINE LEARNING. Kernel for Clustering kernel K-Means

ADVANCED MACHINE LEARNING MACHINE LEARNING. Kernel for Clustering kernel K-Means 1 MACHINE LEARNING Kernel for Clustering ernel K-Means Outline of Today s Lecture 1. Review principle and steps of K-Means algorithm. Derive ernel version of K-means 3. Exercise: Discuss the geometrical

More information

Directional Sensor Control for Maximizing Information Gain

Directional Sensor Control for Maximizing Information Gain Directional Sensor Control for Maximizing Information Gain Shankarachary Ragi a, Hans D. Mittelmann b, and Edwin K. P. Chong a a Department of Electrical and Computer Engineering, Colorado State University,

More information

3282 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 7, JULY Collaborative Sensing in a Distributed PTZ Camera Network

3282 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 7, JULY Collaborative Sensing in a Distributed PTZ Camera Network 3282 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 7, JULY 2012 Collaborative Sensing in a Distributed PTZ Camera Network Chong Ding, Bi Song, Akshay Morye, Jay A. Farrell, and Amit K. Roy-Chowdhury

More information

Delay-minimal Transmission for Energy Constrained Wireless Communications

Delay-minimal Transmission for Energy Constrained Wireless Communications Delay-minimal Transmission for Energy Constrained Wireless Communications Jing Yang Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, M0742 yangjing@umd.edu

More information

FLoWS Overview and Update

FLoWS Overview and Update Information Theory for Mobile Ad-Hoc Networks (ITMANET): The FLoWS Project FLoWS Overview and Update Andrea Goldsmith DARPA s Grand Challenge Develop and exploit a more powerful information theory for

More information

Recent Developments in Model-based Derivative-free Optimization

Recent Developments in Model-based Derivative-free Optimization Recent Developments in Model-based Derivative-free Optimization Seppo Pulkkinen April 23, 2010 Introduction Problem definition The problem we are considering is a nonlinear optimization problem with constraints:

More information

Distributed Coverage Control for Mobile Sensors with Location-dependent Sensing Models

Distributed Coverage Control for Mobile Sensors with Location-dependent Sensing Models Distributed Coverage Control for Mobile Sensors with Location-dependent Sensing Models Ajay Deshpande, Sameera Poduri, Daniela Rus and Gaurav S. Sukhatme Abstract This paper addresses the problem of coverage

More information

Beyond Minimax: Nonzero-Sum Game Tree Search with Knowledge Oriented Players

Beyond Minimax: Nonzero-Sum Game Tree Search with Knowledge Oriented Players Beyond Minimax: Nonzero-Sum Game Tree Search with Knowledge Oriented Players Tian Sang & Jiun-Hung Chen Department of Computer Science & Engineering University of Washington AAAI Metareasoning Workshop,

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

Fast Convergence of Regularized Learning in Games

Fast Convergence of Regularized Learning in Games Fast Convergence of Regularized Learning in Games Vasilis Syrgkanis Alekh Agarwal Haipeng Luo Robert Schapire Microsoft Research NYC Microsoft Research NYC Princeton University Microsoft Research NYC Strategic

More information

CME307/MS&E311 Theory Summary

CME307/MS&E311 Theory Summary CME307/MS&E311 Theory Summary Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

More information

IE598 Big Data Optimization Summary Nonconvex Optimization

IE598 Big Data Optimization Summary Nonconvex Optimization IE598 Big Data Optimization Summary Nonconvex Optimization Instructor: Niao He April 16, 2018 1 This Course Big Data Optimization Explore modern optimization theories, algorithms, and big data applications

More information

Using Game Theory for Image Segmentation

Using Game Theory for Image Segmentation Using Game Theory for Image Segmentation Elizabeth Cassell Sumanth Kolar Alex Yakushev 1 Introduction 21st March 2007 The goal of image segmentation, is to distinguish objects from background. Robust segmentation

More information

Numerical schemes for Hamilton-Jacobi equations, control problems and games

Numerical schemes for Hamilton-Jacobi equations, control problems and games Numerical schemes for Hamilton-Jacobi equations, control problems and games M. Falcone H. Zidani SADCO Spring School Applied and Numerical Optimal Control April 23-27, 2012, Paris Lecture 2/3 M. Falcone

More information

Learning to Detect Partially Labeled People

Learning to Detect Partially Labeled People Learning to Detect Partially Labeled People Yaron Rachlin 1, John Dolan 2, and Pradeep Khosla 1,2 Department of Electrical and Computer Engineering, Carnegie Mellon University 1 Robotics Institute, Carnegie

More information

Dynamic Shape Tracking via Region Matching

Dynamic Shape Tracking via Region Matching Dynamic Shape Tracking via Region Matching Ganesh Sundaramoorthi Asst. Professor of EE and AMCS KAUST (Joint work with Yanchao Yang) The Problem: Shape Tracking Given: exact object segmentation in frame1

More information

A Game Theoretic Approach to Distributed Coverage of Graphs by Heterogeneous Mobile Agents

A Game Theoretic Approach to Distributed Coverage of Graphs by Heterogeneous Mobile Agents A Game Theoretic Approach to Distributed Coverage of Graphs by Heterogeneous Mobile Agents A. Yasin Yazıcıoğlu Magnus Egerstedt Jeff S. Shamma Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:

More information

Asynchronous Distributed Optimization With Event-Driven Communication Minyi Zhong, Student Member, IEEE, and Christos G. Cassandras, Fellow, IEEE

Asynchronous Distributed Optimization With Event-Driven Communication Minyi Zhong, Student Member, IEEE, and Christos G. Cassandras, Fellow, IEEE IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 12, DECEMBER 2010 2735 Asynchronous Distributed Optimization With Event-Driven Communication Minyi Zhong, Student Member, IEEE, Christos G. Cassras,

More information

Using Game Theory To Solve Network Security. A brief survey by Willie Cohen

Using Game Theory To Solve Network Security. A brief survey by Willie Cohen Using Game Theory To Solve Network Security A brief survey by Willie Cohen Network Security Overview By default networks are very insecure There are a number of well known methods for securing a network

More information

Towards Practical Differential Privacy for SQL Queries. Noah Johnson, Joseph P. Near, Dawn Song UC Berkeley

Towards Practical Differential Privacy for SQL Queries. Noah Johnson, Joseph P. Near, Dawn Song UC Berkeley Towards Practical Differential Privacy for SQL Queries Noah Johnson, Joseph P. Near, Dawn Song UC Berkeley Outline 1. Discovering real-world requirements 2. Elastic sensitivity & calculating sensitivity

More information

Blackbox Optimization

Blackbox Optimization Blackbox Optimization Algorithm and Applications Sébastien Le Digabel Charles Audet Christophe Tribes GERAD and École Polytechnique de Montréal Workshop on Nonlinear Optimization Algorithms and Industrial

More information

New Sensor Signal Processor Paradigms: When One Pass Isn t Enough

New Sensor Signal Processor Paradigms: When One Pass Isn t Enough Distribution Statement A (Approved for Public Release, Distribution Unlimited) New Sensor Signal Processor Paradigms: When One Pass Isn t Enough Dr. Edward J. Baranoski Argon ST HPEC 2008 23-25 September

More information

Placement and Motion Planning Algorithms for Robotic Sensing Systems

Placement and Motion Planning Algorithms for Robotic Sensing Systems Placement and Motion Planning Algorithms for Robotic Sensing Systems Pratap Tokekar Ph.D. Thesis Defense Adviser: Prof. Volkan Isler UNIVERSITY OF MINNESOTA Driven to Discover ROBOTIC SENSOR NETWORKS http://rsn.cs.umn.edu/

More information

Applying Machine Learning to Real Problems: Why is it Difficult? How Research Can Help?

Applying Machine Learning to Real Problems: Why is it Difficult? How Research Can Help? Applying Machine Learning to Real Problems: Why is it Difficult? How Research Can Help? Olivier Bousquet, Google, Zürich, obousquet@google.com June 4th, 2007 Outline 1 Introduction 2 Features 3 Minimax

More information

Nonsmooth Optimization and Related Topics

Nonsmooth Optimization and Related Topics Nonsmooth Optimization and Related Topics Edited by F. H. Clarke University of Montreal Montreal, Quebec, Canada V. F. Dem'yanov Leningrad State University Leningrad, USSR I and F. Giannessi University

More information

Measurements and Bits: Compressed Sensing meets Information Theory. Dror Baron ECE Department Rice University dsp.rice.edu/cs

Measurements and Bits: Compressed Sensing meets Information Theory. Dror Baron ECE Department Rice University dsp.rice.edu/cs Measurements and Bits: Compressed Sensing meets Information Theory Dror Baron ECE Department Rice University dsp.rice.edu/cs Sensing by Sampling Sample data at Nyquist rate Compress data using model (e.g.,

More information

Reach Sets and the Hamilton-Jacobi Equation

Reach Sets and the Hamilton-Jacobi Equation Reach Sets and the Hamilton-Jacobi Equation Ian Mitchell Department of Computer Science The University of British Columbia Joint work with Alex Bayen, Meeko Oishi & Claire Tomlin (Stanford) research supported

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Turing Workshop on Statistics of Network Analysis

Turing Workshop on Statistics of Network Analysis Turing Workshop on Statistics of Network Analysis Day 1: 29 May 9:30-10:00 Registration & Coffee 10:00-10:45 Eric Kolaczyk Title: On the Propagation of Uncertainty in Network Summaries Abstract: While

More information

LECTURE 18 LECTURE OUTLINE

LECTURE 18 LECTURE OUTLINE LECTURE 18 LECTURE OUTLINE Generalized polyhedral approximation methods Combined cutting plane and simplicial decomposition methods Lecture based on the paper D. P. Bertsekas and H. Yu, A Unifying Polyhedral

More information

Ec 181: Convex Analysis and Economic Theory

Ec 181: Convex Analysis and Economic Theory Division of the Humanities and Social Sciences Ec 181: Convex Analysis and Economic Theory KC Border Winter 2018 v. 2018.03.08::13.11 src: front KC Border: for Ec 181, Winter 2018 Woe to the author who

More information

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 X. Zhao 3, P. B. Luh 4, and J. Wang 5 Communicated by W.B. Gong and D. D. Yao 1 This paper is dedicated to Professor Yu-Chi Ho for his 65th birthday.

More information

ME 555: Distributed Optimization

ME 555: Distributed Optimization ME 555: Distributed Optimization Duke University Spring 2015 1 Administrative Course: ME 555: Distributed Optimization (Spring 2015) Instructor: Time: Location: Office hours: Website: Soomin Lee (email:

More information

Motion Planning with Uncertainty

Motion Planning with Uncertainty October 15, 2008 Outline Planning in Discrete State Spaces Modeling Nature Modeling Sensors Information Spaces Visibility-Based Pursuit Evasion Motivation Robots need to deal with the real world when planning

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Mining di Dati Web. Lezione 3 - Clustering and Classification

Mining di Dati Web. Lezione 3 - Clustering and Classification Mining di Dati Web Lezione 3 - Clustering and Classification Introduction Clustering and classification are both learning techniques They learn functions describing data Clustering is also known as Unsupervised

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

Introduction to Generative Adversarial Networks

Introduction to Generative Adversarial Networks Introduction to Generative Adversarial Networks Ian Goodfellow, OpenAI Research Scientist NIPS 2016 Workshop on Adversarial Training Barcelona, 2016-12-9 Adversarial Training A phrase whose usage is in

More information

Introduction to Dynamic Traffic Assignment

Introduction to Dynamic Traffic Assignment Introduction to Dynamic Traffic Assignment CE 392D January 22, 2018 WHAT IS EQUILIBRIUM? Transportation systems involve interactions among multiple agents. The basic facts are: Although travel choices

More information

Combinatorial Methods in Density Estimation

Combinatorial Methods in Density Estimation Luc Devroye Gabor Lugosi Combinatorial Methods in Density Estimation Springer Contents Preface vii 1. Introduction 1 a 1.1. References 3 2. Concentration Inequalities 4 2.1. Hoeffding's Inequality 4 2.2.

More information

A Quantitative Measure of Relevance Based on Kelly Gambling Theory

A Quantitative Measure of Relevance Based on Kelly Gambling Theory A Quantitative Measure of Relevance Based on Kelly Gambling Theory Mathias Winther Madsen Institute for Logic, Language, and Computation University of Amsterdam PLAN Why How Examples Why Why How Why not

More information

USING MULTIPLAYER DIFFERENTIAL GAME THEORY TO DERIVE EFFICIENT PURSUIT-EVASION STRATEGIES FOR UNMANNED AERIAL VEHICLES

USING MULTIPLAYER DIFFERENTIAL GAME THEORY TO DERIVE EFFICIENT PURSUIT-EVASION STRATEGIES FOR UNMANNED AERIAL VEHICLES USING MULTIPLAYER DIFFERENTIAL GAME THEORY TO DERIVE EFFICIENT PURSUIT-EVASION STRATEGIES FOR UNMANNED AERIAL VEHICLES A Thesis Presented to The Academic Faculty by Johan M. Reimann In Partial Fulfillment

More information

Game Theoretic Solutions to Cyber Attack and Network Defense Problems

Game Theoretic Solutions to Cyber Attack and Network Defense Problems Game Theoretic Solutions to Cyber Attack and Network Defense Problems 12 th ICCRTS "Adapting C2 to the 21st Century Newport, Rhode Island, June 19-21, 2007 Automation, Inc Dan Shen, Genshe Chen Cruz &

More information

Robust Shape Retrieval Using Maximum Likelihood Theory

Robust Shape Retrieval Using Maximum Likelihood Theory Robust Shape Retrieval Using Maximum Likelihood Theory Naif Alajlan 1, Paul Fieguth 2, and Mohamed Kamel 1 1 PAMI Lab, E & CE Dept., UW, Waterloo, ON, N2L 3G1, Canada. naif, mkamel@pami.uwaterloo.ca 2

More information

Introduction to Machine Learning Lecture 4. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 4. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 4 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Nearest-Neighbor Algorithms Nearest Neighbor Algorithms Definition: fix k 1, given a labeled

More information

A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems

A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems Keely L. Croxton Fisher College of Business The Ohio State University Bernard Gendron Département

More information

Composite Self-concordant Minimization

Composite Self-concordant Minimization Composite Self-concordant Minimization Volkan Cevher Laboratory for Information and Inference Systems-LIONS Ecole Polytechnique Federale de Lausanne (EPFL) volkan.cevher@epfl.ch Paris 6 Dec 11, 2013 joint

More information

Minimum Error Probability Cooperative Relay Design

Minimum Error Probability Cooperative Relay Design 1 Minimum Error Probability Cooperative Relay Design Bin Liu, Biao Chen and Rick S. Blum Abstract In wireless networks, user cooperation has been proposed to mitigate the effect of multipath fading channels.

More information