Inversion via Bayesian Multimodal Iterative Adaptive Processing (MIAP)

Size: px
Start display at page:

Download "Inversion via Bayesian Multimodal Iterative Adaptive Processing (MIAP)"

Transcription

1 Inversion via Bayesian Multimodal Iterative Adaptive Processing (MIAP) Leslie Collins, Yongli Yu, Peter Torrione, and Mark Kolba Electrical and Computer Engineering Duke University Work supported by DARPA/ARO MURI

2 Outline RDOF Feature Selection Adaptive Uncertainty Processing Tracking/Classification Sensor Management Processing Georgia Tech Data

3 Adaptive Feature Selection

4 Subsurface Sensing (Landmines, UXO, Subsurface Structures) Simulate seismic, EMI, and MAG data Large number of features available Pre-screener needed based on RDOF feature set Issue: best features function of sensor implementation, test site, etc. In some scenarios, need to adaptively select features Ultimately: AMMP applied to results of prescreener

5 RDOF Feature Selection Guide initial selection of features Adaptively prune features based on input from multiple sensors Carin et al. proposed RDOF for induction sensing Induction, mag, seismic still produce many features JCFO verified by Carin on acoustic data not previously applied to EMI/MAG/Seismic data Evaluated JCFO/adaptive feature selection on: EMI and MAG for UXO EMI and GPR for landmines

6 JCFO Classification of a feature vector, x, performed using kernel-based technique N c( x) = wnk( x, xn) + w n= 1 For a binary classifier with labels, l, of +1 and 1, training data T and weights w 1 pl ( = 1/ xtw,, ) = ( ) 1 + c x e pl ( = 1/ xtw,, ) = 1 pl ( = 1/ xtw,, ) A Laplacian sparseness prior is placed on the weights of the training samples x n 0

7 JCFO, Cont. Associate each training sample with parameter Beta, and each feature with parameter Theta example: training data of 128 samples, 17 features for each sample Theta[1] Theta[2] Theta[3] Theta[4] Theta[17] Object1: Object2: feature1 feature2 feature3 feature4 feature17 feature1 feature2 feature3 feature4 feature17 Beta[1] Beta[2]. Object128: feature1 feature2 feature3 feature4 feature17 Beta[128] Training Objective : Estimating parameters of Theta and Beta Feature Selection: Sparsity in Theta implies that it finds only a few features highly relevant for classification. (making some Theta[i]=0) Kernel function selection: Sparsity in Beta implies that it finds a small subset of data highly representative of the different classes (making some Beta[i]=0) Find the maximum a posterior (MAP) estimate of Theta and Beta using EM algorithm

8 EMI Results FPDS System

9 MIAP

10 Traditional Versus Collaborative/MIAP Approach Traditional: Sensor Algorithm Threshold Sensor Algorithm Threshold Data or Feature Fusion Collaborative/MIAP: Sensor Sensor Algorithm Fusion Algorithm Algorithm Decision Fusion Adaptive Control

11 MIAP Bayesian Processing Λ ( r) = f ( r / Θ, H ) f ( Θ/ H ) dθ 1 1 f ( r / Ω, H ) f ( Ω/ H ) dω 0 0 Two modes of adaptation Statistical parameters tracked and updated (e.g. covariance matrix) Priors on uncertain parameters modified based on context (e.g. size, depth of of radar response indicates an anti-tank mine, EMI library modified accordingly)

12 MIAP for Landmine Detection Prior work suggests adaptively pruning EMI/MD library using signature magnitude improved processor performance: LM vs vs HM Multi-modality processing suggests adaptively pruning EMI/MD library using GPR magnitude: AP vs vs AT suggests adaptively pruning GPR library using EMI/MD discrimination algorithms: mine type New work: incorporate uncertainty in in pruning algorithm into processing algorithm Sensor fusion at at data level or or decision level

13 MD Signature Library AP Response Library 2 θ LM HM Sig 1 Sig 1 Sig 2 Sig 2 Sig 3 Sig 3 AP 1 θ AT Sig N-1 Sig N *Sources of uncertainty Sig M-1 Sig M 2 Nt ( θi ) 1 x 1 = θi rx θi, j 1 θi, j i= 1 j= 1 f( r / H ) p( )[ f( / t, H ) p( t )] 1 Nt( θ ) i AT θ = AP, θ = AT

14 Simulations: Proof of Concept MIAP can reduce P f by ΦΦ + ΦΦ ( ( Pd) d) ( ( Pd) d0) d ( µ ) ( µ ) = < d 2 0 = 2 2 ( µ ) δ 0 δ Experimental gains mimic these (2 test cases)

15 Follow-on Developments Theoretical treatment of imperfect class decision algorithms (assuming perfect performance hurts performance!) Theoretical proof of performance gain (previous page) Derivation of weight parameters for the multi- Gaussian case Determination of the optimal threshold (operating point) of individual classifiers Consider uncertainty in imperfect class decision algorithms

16 Substantial differences in pdfs of sensor outputs between testing and training sets (data from old JUXOCO grid)

17 PD training testing Fusion GPR test Processed MD test GPR training Processed MD training PF Resulting ROCs are quite different, and threshold settings do not translate. Need to consider uncertainty in threshold settings and performance metrics of individual sensors across testing and training sets (f)

18 Full uncertainty case

19 Even when not considering testing/training feature uncertainty, MIAP is more robust than full uncertainty case

20

21 Uncertainty in Feature Distributions Assume the mean of the test data is a variable which has a uniform distribution centered at the training value. To incorporate this uncertainty into the MIAP algorithm use λ( c% ) = = c c c c max µ min µ max µ min µ c µ c c µ c c c P( x µ, c,mine) P( µ ) dµ w c c c c P( x µ, c, clutter) P( µ ) dµ w c c c c Px ( µ, c,mine) dµ w c c c Px ( µ, c,clutter) dµ w c c c

22

23

24 Tracking

25 Adaptive Prescreening Previously used adaptive prescreener in depth bins (LMS) Extended subsurface anomalies across depth bins cause false alarms First approach: SSAD Second approach: target tracking

26 Segmented Shifting And Differencing Multiple Anomalies may move in opposite time/depth directions simultaneously Need to cancel all anomalies using nearby shifted versions of them if available

27 SSAD

28 Results of SSAD Processing Mode1 and Mode 2 Data Pre-SSAD Processing Post-SSAD Processing

29 Tracking/Discrimination Based on JMPD formulation developed by Kastella and colleagues and others using information-based metrics Can track unknown # of targets using Bayesian precepts Targets can be born and can die Well suited to GPR subsurface structure tracking.. Will evaluate extensions using particle filtering and alternative information metrics Must extend to consider coincident targets

30 Off-road NIITEK GPR processing

31 Sensor Management

32 Discrimination-Based Sensor Management Initial algorithm based on Kastella et al. S DPQ (, ) = Ps ( )ln( Ps ( )/ Qs ( )) s= 1 Select a cell which maximizes D Can be calculated recursively Initial simulations manage sensor threshold, cell sampling

33 Preliminary Results Error probability vs. number of measurements for 1 sensor and 1 target disc: 0 db direct: 0 db direct: 3 db direct: 6 db Pe Measurements

34 Work in Progress Extend to multiple sensors Consider unknown Pd, Pf for each sensor Constrained search (for ground based sensing as opposed to airborne) Overlapping targets Alternative measures of D (may not allow recursive formulation)

35 Application to Lab Data: Georgia Tech s EMI, GPR and Seismic Sensors

36 R31 CD D E A C AP2 S2 G R4 F S1 AP3 C2 B H I L N M K AP4 S3 S5 S4 Y AT2 X W V U AP1 TR T J DS AT1 S Stick O R C1 P Q AP5 19 Rocks Burial Scenario #3

37 This photograph shows the locations and orientations of the rocks, the aluminum can, and the VS-50 AP mine buried in the boxed region shown on the layout (previous slide). The corners of the region are indicated by the red and green markers. (90,0) (180,0) (90,-90) (180,-90)

38 EMI Energy

39 EMI Q-MSD (Train 3, Test 4)

40 Seismic Pre-processed Energy

41 GPR Pre-screener and Matched (Train 3, Test 4)

42 EMI Train & Test

43 GPR LMS & Energy

44 Seismic Results

45 Simple Fusion Results (Train 3, Test 4)

46 MIAP Processing Split data according to AP/AT classification Can utilize GPR pre-screener decision statistics to accomplish this Estimate Gaussian PDFs for other features for both AP and AT targets Utilize a-priori information from GPR (AP or AT) before calculating likelihood ratio based on Gaussian PDFs

47 Decision Statistics By Target Type AT DSs AP DSs

48 MIAP Results with Perfect AP/AT Classification

49 MIAP Results with Gaussian AP/AT Classification Only Change

50 MIAP and Fusion (Train 3, Test 4)

51 ICA Results (VS50 & Metal Clutter)

52 Accomplishments Adaptive Feature Selection (JCFO) successfully applied to landmine problem Uncertainties incorporated into MIAP processor improve robustness Adaptive tracking technique improves GPR detection performance Encouraging sensor management results Multi-sensor data from Georgia Tech processed using adaptive fusion

Inversion via Bayesian Adaptive Multi-Modality Processing (AMMP)

Inversion via Bayesian Adaptive Multi-Modality Processing (AMMP) Inversion via Bayesian Adaptive Multi-Modality Processing (AMMP) Leslie Collins Electrical and Computer Engineering Duke University Work supported by DARPA/ARO MURI Outline Problem Background and Setup

More information

Multi-Sensor Adaptive Signal Processing for Landmines

Multi-Sensor Adaptive Signal Processing for Landmines Multi-Sensor Adaptive Signal Processing for Landmines Leslie Collins, Mark Kolba, Peter Torrione, and Yongli Yu Electrical and Computer Engineering Duke University Work supported by DARPA/ARO MURI Overview

More information

Ground Tracking in Ground Penetrating Radar

Ground Tracking in Ground Penetrating Radar Ground Tracking in Ground Penetrating Radar Kyle Bradbury, Peter Torrione, Leslie Collins QMDNS Conference May 19, 2008 The Landmine Problem Landmine Monitor Report, 2007 Cost of Landmine Detection Demining

More information

Application of Markov Random Fields to Landmine Discrimination in Ground Penetrating Radar Data

Application of Markov Random Fields to Landmine Discrimination in Ground Penetrating Radar Data Application of Markov Random Fields to Landmine Discrimination in Ground Penetrating Radar Data Peter Torrione & Leslie Collins Duke University QMDNS; May 21, 2008 This work was supported under a grant

More information

Information-Driven Dynamic Sensor Collaboration for Tracking Applications

Information-Driven Dynamic Sensor Collaboration for Tracking Applications Information-Driven Dynamic Sensor Collaboration for Tracking Applications Feng Zhao, Jaewon Shin and James Reich IEEE Signal Processing Magazine, March 2002 CS321 Class Presentation Fall 2005 Main Points

More information

FINAL REPORT JANUARY Leslie M. Collins, Ph.D. Duke University

FINAL REPORT JANUARY Leslie M. Collins, Ph.D. Duke University FINAL REPORT Robust Detection, Discrimination, and Remediation of UXO: Statistical Signal Processing Approaches to Address Uncertainties Encountered in Field Test Scenarios SERDP Project MR-1663 Leslie

More information

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach Truth Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 2.04.205 Discriminative Approaches (5 weeks)

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

GPR IMAGING USING COMPRESSED MEASUREMENTS

GPR IMAGING USING COMPRESSED MEASUREMENTS GPR IMAGING USING COMPRESSED MEASUREMENTS A presentation by Prof. James H. McClellan School of Electrical and Computer Engineering Georgia Institute of Technology 26-Feb-09 Acknowledgements Dr. Ali Cafer

More information

Adaptive Learning of an Accurate Skin-Color Model

Adaptive Learning of an Accurate Skin-Color Model Adaptive Learning of an Accurate Skin-Color Model Q. Zhu K.T. Cheng C. T. Wu Y. L. Wu Electrical & Computer Engineering University of California, Santa Barbara Presented by: H.T Wang Outline Generic Skin

More information

Feature Selection for Image Retrieval and Object Recognition

Feature Selection for Image Retrieval and Object Recognition Feature Selection for Image Retrieval and Object Recognition Nuno Vasconcelos et al. Statistical Visual Computing Lab ECE, UCSD Presented by Dashan Gao Scalable Discriminant Feature Selection for Image

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

SD 372 Pattern Recognition

SD 372 Pattern Recognition SD 372 Pattern Recognition Lab 2: Model Estimation and Discriminant Functions 1 Purpose This lab examines the areas of statistical model estimation and classifier aggregation. Model estimation will be

More information

Measuring Intrusion Detection Capability: An Information- Theoretic Approach

Measuring Intrusion Detection Capability: An Information- Theoretic Approach Measuring Intrusion Detection Capability: An Information- Theoretic Approach Guofei Gu, Prahlad Fogla, David Dagon, Wenke Lee Georgia Tech Boris Skoric Philips Research Lab Outline Motivation Problem Why

More information

Tri-modal Human Body Segmentation

Tri-modal Human Body Segmentation Tri-modal Human Body Segmentation Master of Science Thesis Cristina Palmero Cantariño Advisor: Sergio Escalera Guerrero February 6, 2014 Outline 1 Introduction 2 Tri-modal dataset 3 Proposed baseline 4

More information

I How does the formulation (5) serve the purpose of the composite parameterization

I How does the formulation (5) serve the purpose of the composite parameterization Supplemental Material to Identifying Alzheimer s Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis I How does the formulation (5)

More information

Radar Target Identification Using Spatial Matched Filters. L.M. Novak, G.J. Owirka, and C.M. Netishen MIT Lincoln Laboratory

Radar Target Identification Using Spatial Matched Filters. L.M. Novak, G.J. Owirka, and C.M. Netishen MIT Lincoln Laboratory Radar Target Identification Using Spatial Matched Filters L.M. Novak, G.J. Owirka, and C.M. Netishen MIT Lincoln Laboratory Abstract The application of spatial matched filter classifiers to the synthetic

More information

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu

More information

Leaning Graphical Model Structures using L1-Regularization Paths (addendum)

Leaning Graphical Model Structures using L1-Regularization Paths (addendum) Leaning Graphical Model Structures using -Regularization Paths (addendum) Mark Schmidt and Kevin Murphy Computer Science Dept. University of British Columbia {schmidtm,murphyk}@cs.ubc.ca 1 Introduction

More information

Graphical Models for Resource- Constrained Hypothesis Testing and Multi-Modal Data Fusion

Graphical Models for Resource- Constrained Hypothesis Testing and Multi-Modal Data Fusion Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation Graphical Models for Resource- Constrained Hypothesis Testing and Multi-Modal Data Fusion MURI Annual

More information

Motion illusion, rotating snakes

Motion illusion, rotating snakes Motion illusion, rotating snakes Local features: main components 1) Detection: Find a set of distinctive key points. 2) Description: Extract feature descriptor around each interest point as vector. x 1

More information

Adaptive radar sensing strategies

Adaptive radar sensing strategies Adaptive radar sensing strategies A.Hero Univ. of Michigan Ann Arbor 1st Year Review, AFRL, 09/07 AFOSR MURI Integrated fusion, performance prediction, and sensor management for ATE (PI: R. Moses) Outline

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim,

More information

Pattern recognition (4)

Pattern recognition (4) Pattern recognition (4) 1 Things we have discussed until now Statistical pattern recognition Building simple classifiers Supervised classification Minimum distance classifier Bayesian classifier (1D and

More information

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD Expectation-Maximization Nuno Vasconcelos ECE Department, UCSD Plan for today last time we started talking about mixture models we introduced the main ideas behind EM to motivate EM, we looked at classification-maximization

More information

Multivariate Data Analysis and Machine Learning in High Energy Physics (V)

Multivariate Data Analysis and Machine Learning in High Energy Physics (V) Multivariate Data Analysis and Machine Learning in High Energy Physics (V) Helge Voss (MPI K, Heidelberg) Graduierten-Kolleg, Freiburg, 11.5-15.5, 2009 Outline last lecture Rule Fitting Support Vector

More information

Confidence Measures: how much we can trust our speech recognizers

Confidence Measures: how much we can trust our speech recognizers Confidence Measures: how much we can trust our speech recognizers Prof. Hui Jiang Department of Computer Science York University, Toronto, Ontario, Canada Email: hj@cs.yorku.ca Outline Speech recognition

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 26.04.206 Discriminative Approaches (5 weeks) Linear

More information

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Lincoln Laboratory ASAP-2001 Workshop Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Shawn Kraut and Jeffrey Krolik Duke University Department of Electrical and Computer

More information

A Neural Network for Real-Time Signal Processing

A Neural Network for Real-Time Signal Processing 248 MalkofT A Neural Network for Real-Time Signal Processing Donald B. Malkoff General Electric / Advanced Technology Laboratories Moorestown Corporate Center Building 145-2, Route 38 Moorestown, NJ 08057

More information

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes.

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes. Outliers Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Concepts What is an outlier? The set of data points that are considerably different than the remainder of the

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Discrete Filters and Particle Filters Models Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book SA-1 Probabilistic

More information

3D from Photographs: Automatic Matching of Images. Dr Francesco Banterle

3D from Photographs: Automatic Matching of Images. Dr Francesco Banterle 3D from Photographs: Automatic Matching of Images Dr Francesco Banterle francesco.banterle@isti.cnr.it 3D from Photographs Automatic Matching of Images Camera Calibration Photographs Surface Reconstruction

More information

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints Last week Multi-Frame Structure from Motion: Multi-View Stereo Unknown camera viewpoints Last week PCA Today Recognition Today Recognition Recognition problems What is it? Object detection Who is it? Recognizing

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

FUSION OF MULTITEMPORAL AND MULTIRESOLUTION REMOTE SENSING DATA AND APPLICATION TO NATURAL DISASTERS

FUSION OF MULTITEMPORAL AND MULTIRESOLUTION REMOTE SENSING DATA AND APPLICATION TO NATURAL DISASTERS FUSION OF MULTITEMPORAL AND MULTIRESOLUTION REMOTE SENSING DATA AND APPLICATION TO NATURAL DISASTERS Ihsen HEDHLI, Josiane ZERUBIA INRIA Sophia Antipolis Méditerranée (France), Ayin team, in collaboration

More information

Metric Learning for Large Scale Image Classification:

Metric Learning for Large Scale Image Classification: Metric Learning for Large Scale Image Classification: Generalizing to New Classes at Near-Zero Cost Thomas Mensink 1,2 Jakob Verbeek 2 Florent Perronnin 1 Gabriela Csurka 1 1 TVPA - Xerox Research Centre

More information

IMAGE RESTORATION VIA EFFICIENT GAUSSIAN MIXTURE MODEL LEARNING

IMAGE RESTORATION VIA EFFICIENT GAUSSIAN MIXTURE MODEL LEARNING IMAGE RESTORATION VIA EFFICIENT GAUSSIAN MIXTURE MODEL LEARNING Jianzhou Feng Li Song Xiaog Huo Xiaokang Yang Wenjun Zhang Shanghai Digital Media Processing Transmission Key Lab, Shanghai Jiaotong University

More information

Sensor Networks for the Detection and Tracking of Radiation and Other Threats in Cities

Sensor Networks for the Detection and Tracking of Radiation and Other Threats in Cities Fakultät Informatik Institut für Systemarchitektur Professur Rechnernetze Sensor Networks for the Detection and Tracking of Radiation and Other Threats in Cities Annie H. Liu, Julian J. Bunn, K. Mani Chandy

More information

Stat 602X Exam 2 Spring 2011

Stat 602X Exam 2 Spring 2011 Stat 60X Exam Spring 0 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed . Below is a small p classification training set (for classes) displayed in

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017 Gaussian Processes for Robotics McGill COMP 765 Oct 24 th, 2017 A robot must learn Modeling the environment is sometimes an end goal: Space exploration Disaster recovery Environmental monitoring Other

More information

PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D.

PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D. PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D. Rhodes 5/10/17 What is Machine Learning? Machine learning

More information

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures:

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures: Homework Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression 3.0-3.2 Pod-cast lecture on-line Next lectures: I posted a rough plan. It is flexible though so please come with suggestions Bayes

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Spring 2018 http://vllab.ee.ntu.edu.tw/dlcv.html (primary) https://ceiba.ntu.edu.tw/1062dlcv (grade, etc.) FB: DLCV Spring 2018 Yu Chiang Frank Wang 王鈺強, Associate Professor

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Machine Learning Lecture 3 Probability Density Estimation II 19.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Exam dates We re in the process

More information

Classification Key Concepts

Classification Key Concepts http://poloclub.gatech.edu/cse6242 CSE6242 / CX4242: Data & Visual Analytics Classification Key Concepts Duen Horng (Polo) Chau Assistant Professor Associate Director, MS Analytics Georgia Tech 1 How will

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision Object Recognition Using Pictorial Structures Daniel Huttenlocher Computer Science Department Joint work with Pedro Felzenszwalb, MIT AI Lab In This Talk Object recognition in computer vision Brief definition

More information

Laplacian Eigenmaps and Bayesian Clustering Based Layout Pattern Sampling and Its Applications to Hotspot Detection and OPC

Laplacian Eigenmaps and Bayesian Clustering Based Layout Pattern Sampling and Its Applications to Hotspot Detection and OPC Laplacian Eigenmaps and Bayesian Clustering Based Layout Pattern Sampling and Its Applications to Hotspot Detection and OPC Tetsuaki Matsunawa 1, Bei Yu 2 and David Z. Pan 3 1 Toshiba Corporation 2 The

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

Sampling Approaches to Metrology in Semiconductor Manufacturing

Sampling Approaches to Metrology in Semiconductor Manufacturing Sampling Approaches to Metrology in Semiconductor Manufacturing Tyrone Vincent 1 and Broc Stirton 2, Kameshwar Poolla 3 1 Colorado School of Mines, Golden CO 2 GLOBALFOUNDRIES, Austin TX 3 University of

More information

A Simple Metal Detector Model to Predict the Probability of Detection in Landmine Detection

A Simple Metal Detector Model to Predict the Probability of Detection in Landmine Detection A Simple to Predict the Probability of Detection in Landmine Detection Y. Yvinec, P. Druyts, and M. Acheroy Yann.Yvinec@rma.ac.be Royal Military Academy, CISS, Signal and Image Centre, Brussels, Belgium

More information

Multi-task Multi-modal Models for Collective Anomaly Detection

Multi-task Multi-modal Models for Collective Anomaly Detection Multi-task Multi-modal Models for Collective Anomaly Detection Tsuyoshi Ide ( Ide-san ), Dzung T. Phan, J. Kalagnanam PhD, Senior Technical Staff Member IBM Thomas J. Watson Research Center This slides

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Many slides adapted from B. Schiele Machine Learning Lecture 3 Probability Density Estimation II 26.04.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course

More information

Loop detection and extended target tracking using laser data

Loop detection and extended target tracking using laser data Licentiate seminar 1(39) Loop detection and extended target tracking using laser data Karl Granström Division of Automatic Control Department of Electrical Engineering Linköping University Linköping, Sweden

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 10 130221 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Canny Edge Detector Hough Transform Feature-Based

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Bayes Filter Implementations Discrete filters, Particle filters Piecewise Constant Representation of belief 2 Discrete Bayes Filter Algorithm 1. Algorithm Discrete_Bayes_filter(

More information

Metric Learning for Large-Scale Image Classification:

Metric Learning for Large-Scale Image Classification: Metric Learning for Large-Scale Image Classification: Generalizing to New Classes at Near-Zero Cost Florent Perronnin 1 work published at ECCV 2012 with: Thomas Mensink 1,2 Jakob Verbeek 2 Gabriela Csurka

More information

Uncertainties: Representation and Propagation & Line Extraction from Range data

Uncertainties: Representation and Propagation & Line Extraction from Range data 41 Uncertainties: Representation and Propagation & Line Extraction from Range data 42 Uncertainty Representation Section 4.1.3 of the book Sensing in the real world is always uncertain How can uncertainty

More information

Voxel selection algorithms for fmri

Voxel selection algorithms for fmri Voxel selection algorithms for fmri Henryk Blasinski December 14, 2012 1 Introduction Functional Magnetic Resonance Imaging (fmri) is a technique to measure and image the Blood- Oxygen Level Dependent

More information

Classification. 1 o Semestre 2007/2008

Classification. 1 o Semestre 2007/2008 Classification Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008 Slides baseados nos slides oficiais do livro Mining the Web c Soumen Chakrabarti. Outline 1 2 3 Single-Class

More information

Data Mining Classification: Bayesian Decision Theory

Data Mining Classification: Bayesian Decision Theory Data Mining Classification: Bayesian Decision Theory Lecture Notes for Chapter 2 R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, 2nd ed. New York: Wiley, 2001. Lecture Notes for Chapter

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

DUAL MODE SCANNER for BROKEN RAIL DETECTION

DUAL MODE SCANNER for BROKEN RAIL DETECTION DUAL MODE SCANNER for BROKEN RAIL DETECTION ROBERT M. KNOX President; Epsilon Lambda Electronics Dr. BENEDITO FONSECA Northern Illinois University Presenting a concept for improved rail safety; not a tested

More information

Expectation Maximization (EM) and Gaussian Mixture Models

Expectation Maximization (EM) and Gaussian Mixture Models Expectation Maximization (EM) and Gaussian Mixture Models Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 2 3 4 5 6 7 8 Unsupervised Learning Motivation

More information

MSA220 - Statistical Learning for Big Data

MSA220 - Statistical Learning for Big Data MSA220 - Statistical Learning for Big Data Lecture 13 Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Clustering Explorative analysis - finding groups

More information

Pattern Recognition Lecture Sequential Clustering

Pattern Recognition Lecture Sequential Clustering Pattern Recognition Lecture Prof. Dr. Marcin Grzegorzek Research Group for Pattern Recognition Institute for Vision and Graphics University of Siegen, Germany Pattern Recognition Chain patterns sensor

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

Lecture 7: Decision Trees

Lecture 7: Decision Trees Lecture 7: Decision Trees Instructor: Outline 1 Geometric Perspective of Classification 2 Decision Trees Geometric Perspective of Classification Perspective of Classification Algorithmic Geometric Probabilistic...

More information

Ensemble learning method for hidden markov models.

Ensemble learning method for hidden markov models. University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 12-2014 Ensemble learning method for hidden markov models. Anis Hamdi University

More information

Nearest Neighbor with KD Trees

Nearest Neighbor with KD Trees Case Study 2: Document Retrieval Finding Similar Documents Using Nearest Neighbors Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox January 22 nd, 2013 1 Nearest

More information

VoI for adversarial information structures

VoI for adversarial information structures ARO ARO MURI MURI on on Value-centered Theory for for Adaptive Learning, Inference, Tracking, and and Exploitation VoI for adversarial information structures Kickf Emre Ertin, Nithin Sugavanam The Ohio

More information

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves Machine Learning A 708.064 11W 1sst KU Exercises Problems marked with * are optional. 1 Conditional Independence I [2 P] a) [1 P] Give an example for a probability distribution P (A, B, C) that disproves

More information

Discriminative Clustering for Image Co-segmentation

Discriminative Clustering for Image Co-segmentation Discriminative Clustering for Image Co-segmentation Armand Joulin 1,2 Francis Bach 1,2 Jean Ponce 2 1 INRIA 2 Ecole Normale Supérieure January 15, 2010 Introduction Introduction problem: dividing simultaneously

More information

Remote Sensing & Photogrammetry W4. Beata Hejmanowska Building C4, room 212, phone:

Remote Sensing & Photogrammetry W4. Beata Hejmanowska Building C4, room 212, phone: Remote Sensing & Photogrammetry W4 Beata Hejmanowska Building C4, room 212, phone: +4812 617 22 72 605 061 510 galia@agh.edu.pl 1 General procedures in image classification Conventional multispectral classification

More information

Sensor Tasking and Control

Sensor Tasking and Control Sensor Tasking and Control Outline Task-Driven Sensing Roles of Sensor Nodes and Utilities Information-Based Sensor Tasking Joint Routing and Information Aggregation Summary Introduction To efficiently

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2007 c 2007,

More information

(W: 12:05-1:50, 50-N202)

(W: 12:05-1:50, 50-N202) 2016 School of Information Technology and Electrical Engineering at the University of Queensland Schedule of Events Week Date Lecture (W: 12:05-1:50, 50-N202) 1 27-Jul Introduction 2 Representing Position

More information

Exploiting Multi-Look Information for Landmine Detection in Forward Looking. Infrared Video. Jordan Milton Malof

Exploiting Multi-Look Information for Landmine Detection in Forward Looking. Infrared Video. Jordan Milton Malof Exploiting Multi-Look Information for Landmine Detection in Forward Looking Infrared Video by Jordan Milton Malof Department of Electrical and Computer Engineering Duke University Date: Approved: Leslie

More information

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane DATA MINING AND MACHINE LEARNING Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Data preprocessing Feature normalization Missing

More information

Weka ( )

Weka (  ) Weka ( http://www.cs.waikato.ac.nz/ml/weka/ ) The phases in which classifier s design can be divided are reflected in WEKA s Explorer structure: Data pre-processing (filtering) and representation Supervised

More information

Segmentation and Tracking of Partial Planar Templates

Segmentation and Tracking of Partial Planar Templates Segmentation and Tracking of Partial Planar Templates Abdelsalam Masoud William Hoff Colorado School of Mines Colorado School of Mines Golden, CO 800 Golden, CO 800 amasoud@mines.edu whoff@mines.edu Abstract

More information

Classification Key Concepts

Classification Key Concepts http://poloclub.gatech.edu/cse6242 CSE6242 / CX4242: Data & Visual Analytics Classification Key Concepts Duen Horng (Polo) Chau Assistant Professor Associate Director, MS Analytics Georgia Tech Parishit

More information

INDUCTIVE AND CAPACITIVE ARRAY IMAGING OF BURIED OBJECTS

INDUCTIVE AND CAPACITIVE ARRAY IMAGING OF BURIED OBJECTS INDUCTIVE AND CAPACITIVE ARRAY IMAGING OF BURIED OBJECTS D. Schlicker, A. Washabaugh, I. Shay, N. Goldfine JENTEK Sensors, Inc., Waltham, MA, USA Abstract: Despite ongoing research and development efforts,

More information

Robust Event Boundary Detection in Sensor Networks A Mixture Model Based Approach

Robust Event Boundary Detection in Sensor Networks A Mixture Model Based Approach Robust Event Boundary Detection in Sensor Networks A Mixture Model Based Approach Min Ding Department of Computer Science The George Washington University Washington DC 20052, USA Email: minding@gwu.edu

More information

Object recognition (part 1)

Object recognition (part 1) Recognition Object recognition (part 1) CSE P 576 Larry Zitnick (larryz@microsoft.com) The Margaret Thatcher Illusion, by Peter Thompson Readings Szeliski Chapter 14 Recognition What do we mean by object

More information

Adaptive spatial resampling as a Markov chain Monte Carlo method for uncertainty quantification in seismic reservoir characterization

Adaptive spatial resampling as a Markov chain Monte Carlo method for uncertainty quantification in seismic reservoir characterization 1 Adaptive spatial resampling as a Markov chain Monte Carlo method for uncertainty quantification in seismic reservoir characterization Cheolkyun Jeong, Tapan Mukerji, and Gregoire Mariethoz Department

More information

Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing

Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing Tomoyuki Nagahashi 1, Hironobu Fujiyoshi 1, and Takeo Kanade 2 1 Dept. of Computer Science, Chubu University. Matsumoto 1200,

More information

Based on Raymond J. Mooney s slides

Based on Raymond J. Mooney s slides Instance Based Learning Based on Raymond J. Mooney s slides University of Texas at Austin 1 Example 2 Instance-Based Learning Unlike other learning algorithms, does not involve construction of an explicit

More information

Fitting. Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! EECS Fall 2014! Foundations of Computer Vision!

Fitting. Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! EECS Fall 2014! Foundations of Computer Vision! Fitting EECS 598-08 Fall 2014! Foundations of Computer Vision!! Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! Readings: FP 10; SZ 4.3, 5.1! Date: 10/8/14!! Materials on these

More information

Data Mining. 3.5 Lazy Learners (Instance-Based Learners) Fall Instructor: Dr. Masoud Yaghini. Lazy Learners

Data Mining. 3.5 Lazy Learners (Instance-Based Learners) Fall Instructor: Dr. Masoud Yaghini. Lazy Learners Data Mining 3.5 (Instance-Based Learners) Fall 2008 Instructor: Dr. Masoud Yaghini Outline Introduction k-nearest-neighbor Classifiers References Introduction Introduction Lazy vs. eager learning Eager

More information

Mine Classification With Imbalanced Data

Mine Classification With Imbalanced Data 1 Mine Classification With Imbalanced Data David P. Williams, Vincent Myers, and Miranda Schatten Silvious Abstract In many remote-sensing classification problems, the number of targets (e.g., mines) present

More information

Lecture 16: Object recognition: Part-based generative models

Lecture 16: Object recognition: Part-based generative models Lecture 16: Object recognition: Part-based generative models Professor Stanford Vision Lab 1 What we will learn today? Introduction Constellation model Weakly supervised training One-shot learning (Problem

More information

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a Week 9 Based in part on slides from textbook, slides of Susan Holmes Part I December 2, 2012 Hierarchical Clustering 1 / 1 Produces a set of nested clusters organized as a Hierarchical hierarchical clustering

More information

The K-modes and Laplacian K-modes algorithms for clustering

The K-modes and Laplacian K-modes algorithms for clustering The K-modes and Laplacian K-modes algorithms for clustering Miguel Á. Carreira-Perpiñán Electrical Engineering and Computer Science University of California, Merced http://faculty.ucmerced.edu/mcarreira-perpinan

More information

Iterative methods for use with the Fast Multipole Method

Iterative methods for use with the Fast Multipole Method Iterative methods for use with the Fast Multipole Method Ramani Duraiswami Perceptual Interfaces and Reality Lab. Computer Science & UMIACS University of Maryland, College Park, MD Joint work with Nail

More information