Multi-Sensor Adaptive Signal Processing for Landmines

Size: px
Start display at page:

Download "Multi-Sensor Adaptive Signal Processing for Landmines"

Transcription

1 Multi-Sensor Adaptive Signal Processing for Landmines Leslie Collins, Mark Kolba, Peter Torrione, and Yongli Yu Electrical and Computer Engineering Duke University Work supported by DARPA/ARO MURI

2 Overview RDOF Feature Selection Adaptive Uncertainty Processing Tracking/Classification Sensor Management Simulations New developments Processing Georgia Tech data

3 Issues Sensor path through cell grid for unconstrained sensor 9 Suite of available sensors Performance and cost a function of sensor modality Grid to be searched. Adaptively determine where to go? what sensor to deploy? what sensor parameters to employ?

4 Previously: Adaptive Discrimination- Based Sensor Management Initial algorithm based on Kastella et al. S DPQ (, ) = Ps ( )ln( Ps ( )/ Qs ( )) s= Select a cell which maximizes D Can be calculated recursively Progress: Focus on considering assumptions that are inconsistent with the MURI application areas

5 Simulations x grid, Uniform prior Low SNR detection problem ( db) Number of targets present variable Initial simulations manage sensor threshold, cell sampling Constrained and unconstrained sensor motion Plot probability of error (finding the target at the right location in the grid) versus number of measurements

6 Preliminary Results.9.8 Error probability vs. number of measurements for sensor and target disc: db direct: db direct: 3 db direct: 6 db.7.6 Pe Measurements

7 Progress Extend to consider other priors on target locations Extend to multiple sensors, each with different performance, cost Sequential detection in each cell once selected Unknown number of targets Consider unknown Pd, Pf for each sensor Need to estimate ROCs (performance degrades quickly if unknown) Alternative (pure Bayesian) formulation Comparison to Theory of Optimal Experiments Application to Georgia Tech data

8 Multiple Sensors Performance of different sensor combinations Discrimination Search: S, S2, S3 Discrimination Search: S, S2 Discrimination Search: S Direct Search: S, S2, S3 Direct Search: S, S2 Direct Search: S Pe S: Pd =.9, Pfa =.4, Cost = S2: Pd =.9, Pfa =., Cost = S3: Pd =.99, Pfa =.2, Cost = Time

9 Same Parameters, Uncertainty in Performance Parameters Pe Performance of different sensor combinations Discrimination Search: S, S2, S3 Discrimination Search: S, S2 Discrimination Search: S Direct Search: S, S2, S3 Direct Search: S, S2 Direct Search: S Certain Performance of different sensor combinations Discrimination Search: S, S2, S3 Discrimination Search: S, S2 Discrimination Search: S Direct Search: S, S2, S3 Direct Search: S, S2 Direct Search: S Bayesian/ Integration Time.4 Uncertain Pe Time Pe Performance of different sensor combinations Discrimination Search: S, S2, S3 Discrimination Search: S, S2 Discrimination Search: S Direct Search: S, S2, S3 Direct Search: S, S2 Direct Search: S Time

10 Potential Solutions Bayesian integration over uncertainty is time consuming, provides little improvement in performance. Consider MLE estimation of parameters (GLRT) Need to estimate ROC easiest to estimate slope and threshold/bias in log-log space? Consider Bayesian and Theory of Optimal Experiments Approaches Needs to be adaptive location specific

11 Model Parameter Estimation Response model (ROC) defined by two parameters: slope and median/offset/bias Need to estimate the parameters adaptively Comparison of two methods for parameter estimation Bayesian adaptive estimation Theory of Optimal Experiments Dual adaptation: ROC parameter estimation and sensor parameters/sensor movement/sensor selection

12 Bayesian adaptive parameter estimation Use Bayes rule to calculate the probability of a set of model parameters λ given the response r (Pd) at a specific input intensity x (Pfa). prob( r λ, x) prob( λ) prob( λ r, x) = prob( r λ, x) prob( λ) Select next input to minimize the expected entropy λ ( λ ) E[ H ( x)] = H ( x) prob( r x) where H ( x) = prob( λ r, x)log prob( r, x) r r Update probability of model parameters using the outcome of the current trial r xt ( + ) = argmin( EH [ ( x)]) prob( λ) prob( r() t r, x() t x) x = t+ λ = = λ

13 Parameter estimation using the Theory of Optimal Experiments Find the parameter values that minimize the squared error between the collected data r and the model n(x,λ) ˆ arg min λ = (, ) λ x ( r n x λ ) 2 Select the next input to maximize the information gained, calculated using T xt ( + ) = arg max log + F B F x ˆλ nx (, λ) where column vector Fi () = and B is the Fisher information λi matrix in the form Bi (, j) = ( (), λ ) n( x(), t λ ) n x t λ λ t i j

14 Simulation Result: Estimating ROC Parameters Bias in median estimation Variance in median estimation Percentage of true parameter value % Bayesian adaptive Theory of Opt. Exp..%.%.%.% Trial Percentage of true parameter value % Bayesian adaptive Theory of Opt. Exp. %.%.% Trial Percentage of true parameter value % % Bias in slope estimation Bayesian adaptive Theory of Opt. Exp..% Trial Percentage of true parameter value Variance in slope estimation Bayesian adaptive % Theory of Opt. Exp. % Trial

15 Observations Relative performance depends on parameters of simulation some regions of slope/bias space better for one or the other. Overall, similar performance TOE 5 times faster to compute than optimal Bayesian approach

16 Simulation Results Grid Search with Adaptive Estimation of Sensor Performance.9.8 Known Pd/Pfa 2 iters iters 5 iters.7.6 Pe Time

17 Georgia Tech Multi-Sensor Data Subsampled collection grid in 9 x 9 grid Initial work with first 2 collections less complicated, fewer interactions Used previously developed decision statistics as sensor outputs in each grid 8 samples in each grid available Initially, each sensor has same cost, same detection performance

18 Collection, red=mines, blue=clutter

19 Results - Collection.9 Performance of discrimination-based and direct search techniques Discrimination Search Direct Search Pe Time

20 Results Collection Performance of discrimination-based and direct search techniques Pe Discrimination Search: S, S2, S3 Direct Search: S, S2, S3 Direct Search: S Direct Search: S2 Direct Search: S Time

21 Results - Collection Time = Time = Pd Time = 3 Time = Pd Pfa Pfa

22 Results - Collection 2 Performance of discrimination-based and direct search techniques Pe Discrimination Search: S, S2, S3 Direct Search: S, S2, S3 Direct Search: S Direct Search: S2 Direct Search: S Time

23 Results - Collection 2 Time = Time = Pd Time = 3 Time = Pd Pfa Pfa

24 Work In Progress Alternative decision metrics Incorporate TOE for GA Tech Data Overlapping targets More realistic (different performances, costs) for GA Tech data All cases of GA Tech data

Inversion via Bayesian Multimodal Iterative Adaptive Processing (MIAP)

Inversion via Bayesian Multimodal Iterative Adaptive Processing (MIAP) Inversion via Bayesian Multimodal Iterative Adaptive Processing (MIAP) Leslie Collins, Yongli Yu, Peter Torrione, and Mark Kolba Electrical and Computer Engineering Duke University Work supported by DARPA/ARO

More information

Inversion via Bayesian Adaptive Multi-Modality Processing (AMMP)

Inversion via Bayesian Adaptive Multi-Modality Processing (AMMP) Inversion via Bayesian Adaptive Multi-Modality Processing (AMMP) Leslie Collins Electrical and Computer Engineering Duke University Work supported by DARPA/ARO MURI Outline Problem Background and Setup

More information

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017 Gaussian Processes for Robotics McGill COMP 765 Oct 24 th, 2017 A robot must learn Modeling the environment is sometimes an end goal: Space exploration Disaster recovery Environmental monitoring Other

More information

Information-Driven Dynamic Sensor Collaboration for Tracking Applications

Information-Driven Dynamic Sensor Collaboration for Tracking Applications Information-Driven Dynamic Sensor Collaboration for Tracking Applications Feng Zhao, Jaewon Shin and James Reich IEEE Signal Processing Magazine, March 2002 CS321 Class Presentation Fall 2005 Main Points

More information

Adaptive Multiple-Frame Image Super- Resolution Based on U-Curve

Adaptive Multiple-Frame Image Super- Resolution Based on U-Curve Adaptive Multiple-Frame Image Super- Resolution Based on U-Curve IEEE Transaction on Image Processing, Vol. 19, No. 12, 2010 Qiangqiang Yuan, Liangpei Zhang, Huanfeng Shen, and Pingxiang Li Presented by

More information

Conditional Random Fields - A probabilistic graphical model. Yen-Chin Lee 指導老師 : 鮑興國

Conditional Random Fields - A probabilistic graphical model. Yen-Chin Lee 指導老師 : 鮑興國 Conditional Random Fields - A probabilistic graphical model Yen-Chin Lee 指導老師 : 鮑興國 Outline Labeling sequence data problem Introduction conditional random field (CRF) Different views on building a conditional

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

Ground Tracking in Ground Penetrating Radar

Ground Tracking in Ground Penetrating Radar Ground Tracking in Ground Penetrating Radar Kyle Bradbury, Peter Torrione, Leslie Collins QMDNS Conference May 19, 2008 The Landmine Problem Landmine Monitor Report, 2007 Cost of Landmine Detection Demining

More information

Graphical Models for Resource- Constrained Hypothesis Testing and Multi-Modal Data Fusion

Graphical Models for Resource- Constrained Hypothesis Testing and Multi-Modal Data Fusion Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation Graphical Models for Resource- Constrained Hypothesis Testing and Multi-Modal Data Fusion MURI Annual

More information

Data Mining Classification: Bayesian Decision Theory

Data Mining Classification: Bayesian Decision Theory Data Mining Classification: Bayesian Decision Theory Lecture Notes for Chapter 2 R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, 2nd ed. New York: Wiley, 2001. Lecture Notes for Chapter

More information

INF 4300 Classification III Anne Solberg The agenda today:

INF 4300 Classification III Anne Solberg The agenda today: INF 4300 Classification III Anne Solberg 28.10.15 The agenda today: More on estimating classifier accuracy Curse of dimensionality and simple feature selection knn-classification K-means clustering 28.10.15

More information

COS Lecture 13 Autonomous Robot Navigation

COS Lecture 13 Autonomous Robot Navigation COS 495 - Lecture 13 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Uncertainties: Representation and Propagation & Line Extraction from Range data

Uncertainties: Representation and Propagation & Line Extraction from Range data 41 Uncertainties: Representation and Propagation & Line Extraction from Range data 42 Uncertainty Representation Section 4.1.3 of the book Sensing in the real world is always uncertain How can uncertainty

More information

Introduction to Image Super-resolution. Presenter: Kevin Su

Introduction to Image Super-resolution. Presenter: Kevin Su Introduction to Image Super-resolution Presenter: Kevin Su References 1. S.C. Park, M.K. Park, and M.G. KANG, Super-Resolution Image Reconstruction: A Technical Overview, IEEE Signal Processing Magazine,

More information

Inverse KKT Motion Optimization: A Newton Method to Efficiently Extract Task Spaces and Cost Parameters from Demonstrations

Inverse KKT Motion Optimization: A Newton Method to Efficiently Extract Task Spaces and Cost Parameters from Demonstrations Inverse KKT Motion Optimization: A Newton Method to Efficiently Extract Task Spaces and Cost Parameters from Demonstrations Peter Englert Machine Learning and Robotics Lab Universität Stuttgart Germany

More information

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING KELLER VANDEBOGERT AND CHARLES LANNING 1. Introduction Interior point methods are, put simply, a technique of optimization where, given a problem

More information

AN ALGORITHM FOR BLIND RESTORATION OF BLURRED AND NOISY IMAGES

AN ALGORITHM FOR BLIND RESTORATION OF BLURRED AND NOISY IMAGES AN ALGORITHM FOR BLIND RESTORATION OF BLURRED AND NOISY IMAGES Nader Moayeri and Konstantinos Konstantinides Hewlett-Packard Laboratories 1501 Page Mill Road Palo Alto, CA 94304-1120 moayeri,konstant@hpl.hp.com

More information

Optimization of Noisy Fitness Functions by means of Genetic Algorithms using History of Search with Test of Estimation

Optimization of Noisy Fitness Functions by means of Genetic Algorithms using History of Search with Test of Estimation Optimization of Noisy Fitness Functions by means of Genetic Algorithms using History of Search with Test of Estimation Yasuhito Sano and Hajime Kita 2 Interdisciplinary Graduate School of Science and Engineering,

More information

VoI for adversarial information structures

VoI for adversarial information structures ARO ARO MURI MURI on on Value-centered Theory for for Adaptive Learning, Inference, Tracking, and and Exploitation VoI for adversarial information structures Kickf Emre Ertin, Nithin Sugavanam The Ohio

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Super-Resolution from Image Sequences A Review

Super-Resolution from Image Sequences A Review Super-Resolution from Image Sequences A Review Sean Borman, Robert L. Stevenson Department of Electrical Engineering University of Notre Dame 1 Introduction Seminal work by Tsai and Huang 1984 More information

More information

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Lincoln Laboratory ASAP-2001 Workshop Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Shawn Kraut and Jeffrey Krolik Duke University Department of Electrical and Computer

More information

Vision-Motion Planning with Uncertainty

Vision-Motion Planning with Uncertainty Vision-Motion Planning with Uncertainty Jun MIURA Yoshiaki SHIRAI Dept. of Mech. Eng. for Computer-Controlled Machinery, Osaka University, Suita, Osaka 565, Japan jun@ccm.osaka-u.ac.jp Abstract This paper

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Bayes Filter Implementations Discrete filters, Particle filters Piecewise Constant Representation of belief 2 Discrete Bayes Filter Algorithm 1. Algorithm Discrete_Bayes_filter(

More information

This chapter explains two techniques which are frequently used throughout

This chapter explains two techniques which are frequently used throughout Chapter 2 Basic Techniques This chapter explains two techniques which are frequently used throughout this thesis. First, we will introduce the concept of particle filters. A particle filter is a recursive

More information

CONDITIONAL SIMULATION OF TRUNCATED RANDOM FIELDS USING GRADIENT METHODS

CONDITIONAL SIMULATION OF TRUNCATED RANDOM FIELDS USING GRADIENT METHODS CONDITIONAL SIMULATION OF TRUNCATED RANDOM FIELDS USING GRADIENT METHODS Introduction Ning Liu and Dean S. Oliver University of Oklahoma, Norman, Oklahoma, USA; ning@ou.edu The problem of estimating the

More information

Sparse & Redundant Representations and Their Applications in Signal and Image Processing

Sparse & Redundant Representations and Their Applications in Signal and Image Processing Sparse & Redundant Representations and Their Applications in Signal and Image Processing Sparseland: An Estimation Point of View Michael Elad The Computer Science Department The Technion Israel Institute

More information

Predictive Analysis: Evaluation and Experimentation. Heejun Kim

Predictive Analysis: Evaluation and Experimentation. Heejun Kim Predictive Analysis: Evaluation and Experimentation Heejun Kim June 19, 2018 Evaluation and Experimentation Evaluation Metrics Cross-Validation Significance Tests Evaluation Predictive analysis: training

More information

Compressive Sensing Applications and Demonstrations: Synthetic Aperture Radar

Compressive Sensing Applications and Demonstrations: Synthetic Aperture Radar Compressive Sensing Applications and Demonstrations: Synthetic Aperture Radar Shaun I. Kelly The University of Edinburgh 1 Outline 1 SAR Basics 2 Compressed Sensing SAR 3 Other Applications of Sparsity

More information

UNBIASED ESTIMATION OF DESTINATION CHOICE MODELS WITH ATTRACTION CONSTRAINTS

UNBIASED ESTIMATION OF DESTINATION CHOICE MODELS WITH ATTRACTION CONSTRAINTS UNBIASED ESTIMATION OF DESTINATION CHOICE MODELS WITH ATTRACTION CONSTRAINTS Vince Bernardin, PhD Steven Trevino John Gliebe, PhD APRIL 14, 2014 WHAT S WRONG WITH ESTIMATING DOUBLY CONSTRAINED DESTINATION

More information

EE 701 ROBOT VISION. Segmentation

EE 701 ROBOT VISION. Segmentation EE 701 ROBOT VISION Regions and Image Segmentation Histogram-based Segmentation Automatic Thresholding K-means Clustering Spatial Coherence Merging and Splitting Graph Theoretic Segmentation Region Growing

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 11 Point Spread Function, Inverse Filtering, Wiener Filtering, Sharpening,... Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/

More information

Lecture on Modeling Tools for Clustering & Regression

Lecture on Modeling Tools for Clustering & Regression Lecture on Modeling Tools for Clustering & Regression CS 590.21 Analysis and Modeling of Brain Networks Department of Computer Science University of Crete Data Clustering Overview Organizing data into

More information

On internal consistency, conditioning and models of uncertainty

On internal consistency, conditioning and models of uncertainty On internal consistency, conditioning and models of uncertainty Jef Caers, Stanford University Abstract Recent research has been tending towards building models of uncertainty of the Earth, not just building

More information

Locally Weighted Least Squares Regression for Image Denoising, Reconstruction and Up-sampling

Locally Weighted Least Squares Regression for Image Denoising, Reconstruction and Up-sampling Locally Weighted Least Squares Regression for Image Denoising, Reconstruction and Up-sampling Moritz Baecher May 15, 29 1 Introduction Edge-preserving smoothing and super-resolution are classic and important

More information

Classification: Linear Discriminant Functions

Classification: Linear Discriminant Functions Classification: Linear Discriminant Functions CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Discriminant functions Linear Discriminant functions

More information

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach Truth Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 2.04.205 Discriminative Approaches (5 weeks)

More information

THE classical approach to multiple target tracking (MTT) is

THE classical approach to multiple target tracking (MTT) is IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 5, MAY 2007 1589 A Bayesian Approach to Multiple Target Detection and Tracking Mark R. Morelande, Christopher M. Kreucher, and Keith Kastella Abstract

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

Learning Splines for Sparse Tomographic Reconstruction. Elham Sakhaee and Alireza Entezari University of Florida

Learning Splines for Sparse Tomographic Reconstruction. Elham Sakhaee and Alireza Entezari University of Florida Learning Splines for Sparse Tomographic Reconstruction Elham Sakhaee and Alireza Entezari University of Florida esakhaee@cise.ufl.edu 2 Tomographic Reconstruction Recover the image given X-ray measurements

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Classification Evaluation and Practical Issues Instructor: Yizhou Sun yzsun@cs.ucla.edu April 24, 2017 Homework 2 out Announcements Due May 3 rd (11:59pm) Course project proposal

More information

Adaptive radar sensing strategies

Adaptive radar sensing strategies Adaptive radar sensing strategies A.Hero Univ. of Michigan Ann Arbor 1st Year Review, AFRL, 09/07 AFOSR MURI Integrated fusion, performance prediction, and sensor management for ATE (PI: R. Moses) Outline

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup For our analysis goals we would like to do: Y X N (X, 2 I) and then interpret the coefficients

More information

Overview: motion-compensated coding

Overview: motion-compensated coding Overview: motion-compensated coding Motion-compensated prediction Motion-compensated hybrid coding Motion estimation by block-matching Motion estimation with sub-pixel accuracy Power spectral density of

More information

Machine Learning. Chao Lan

Machine Learning. Chao Lan Machine Learning Chao Lan Machine Learning Prediction Models Regression Model - linear regression (least square, ridge regression, Lasso) Classification Model - naive Bayes, logistic regression, Gaussian

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

Multiple target detection in video using quadratic multi-frame correlation filtering

Multiple target detection in video using quadratic multi-frame correlation filtering Multiple target detection in video using quadratic multi-frame correlation filtering Ryan Kerekes Oak Ridge National Laboratory B. V. K. Vijaya Kumar Carnegie Mellon University March 17, 2008 1 Outline

More information

Expectation Maximization (EM) and Gaussian Mixture Models

Expectation Maximization (EM) and Gaussian Mixture Models Expectation Maximization (EM) and Gaussian Mixture Models Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 2 3 4 5 6 7 8 Unsupervised Learning Motivation

More information

Supplementary Figure 1. Decoding results broken down for different ROIs

Supplementary Figure 1. Decoding results broken down for different ROIs Supplementary Figure 1 Decoding results broken down for different ROIs Decoding results for areas V1, V2, V3, and V1 V3 combined. (a) Decoded and presented orientations are strongly correlated in areas

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Discrete Filters and Particle Filters Models Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book SA-1 Probabilistic

More information

Adaptive Metric Nearest Neighbor Classification

Adaptive Metric Nearest Neighbor Classification Adaptive Metric Nearest Neighbor Classification Carlotta Domeniconi Jing Peng Dimitrios Gunopulos Computer Science Department Computer Science Department Computer Science Department University of California

More information

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 4: Pre-Processing Medical Images (II)

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 4: Pre-Processing Medical Images (II) SPRING 2016 1 MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 4: Pre-Processing Medical Images (II) Dr. Ulas Bagci HEC 221, Center for Research in Computer Vision (CRCV), University of Central Florida (UCF),

More information

Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions

Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions Thomas Giraud Simon Chabot October 12, 2013 Contents 1 Discriminant analysis 3 1.1 Main idea................................

More information

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization in Low Level Vision Low level vision problems concerned with estimating some quantity at each pixel Visual motion (u(x,y),v(x,y))

More information

Structured Learning. Jun Zhu

Structured Learning. Jun Zhu Structured Learning Jun Zhu Supervised learning Given a set of I.I.D. training samples Learn a prediction function b r a c e Supervised learning (cont d) Many different choices Logistic Regression Maximum

More information

Learning in Medical Image Databases. Cristian Sminchisescu. Department of Computer Science. Rutgers University, NJ

Learning in Medical Image Databases. Cristian Sminchisescu. Department of Computer Science. Rutgers University, NJ Learning in Medical Image Databases Cristian Sminchisescu Department of Computer Science Rutgers University, NJ 08854 email: crismin@paul.rutgers.edu December, 998 Abstract In this paper we present several

More information

Practical Course WS12/13 Introduction to Monte Carlo Localization

Practical Course WS12/13 Introduction to Monte Carlo Localization Practical Course WS12/13 Introduction to Monte Carlo Localization Cyrill Stachniss and Luciano Spinello 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Bayes Filter

More information

Estimation of Item Response Models

Estimation of Item Response Models Estimation of Item Response Models Lecture #5 ICPSR Item Response Theory Workshop Lecture #5: 1of 39 The Big Picture of Estimation ESTIMATOR = Maximum Likelihood; Mplus Any questions? answers Lecture #5:

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

EFFICIENT PERCEPTUAL, SELECTIVE,

EFFICIENT PERCEPTUAL, SELECTIVE, EFFICIENT PERCEPTUAL, SELECTIVE, AND ATTENTIVE SUPER-RESOLUTION RESOLUTION Image, Video & Usability (IVU) Lab School of Electrical, Computer, & Energy Engineering Arizona State University karam@asu.edu

More information

What is Learning? CS 343: Artificial Intelligence Machine Learning. Raymond J. Mooney. Problem Solving / Planning / Control.

What is Learning? CS 343: Artificial Intelligence Machine Learning. Raymond J. Mooney. Problem Solving / Planning / Control. What is Learning? CS 343: Artificial Intelligence Machine Learning Herbert Simon: Learning is any process by which a system improves performance from experience. What is the task? Classification Problem

More information

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University 1 Outline of This Week Last topic, we learned: Spatial autocorrelation of areal data Spatial regression

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

Bayes Net Learning. EECS 474 Fall 2016

Bayes Net Learning. EECS 474 Fall 2016 Bayes Net Learning EECS 474 Fall 2016 Homework Remaining Homework #3 assigned Homework #4 will be about semi-supervised learning and expectation-maximization Homeworks #3-#4: the how of Graphical Models

More information

Decentralized Stochastic Planning for Nonparametric Bayesian Models

Decentralized Stochastic Planning for Nonparametric Bayesian Models Decentralized Stochastic Planning for Nonparametric Bayesian Models Silvia Ferrari Professor of Engineering and Computer Science Department of Mechanical Engineering and Materials Science Duke University

More information

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu

More information

Fitting. Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! EECS Fall 2014! Foundations of Computer Vision!

Fitting. Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! EECS Fall 2014! Foundations of Computer Vision! Fitting EECS 598-08 Fall 2014! Foundations of Computer Vision!! Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! Readings: FP 10; SZ 4.3, 5.1! Date: 10/8/14!! Materials on these

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43 K-Means Clustering Example: Old Faithful Geyser

More information

Estimation of High Resolution Images and Registration Parameters from Low Resolution Observations

Estimation of High Resolution Images and Registration Parameters from Low Resolution Observations Estimation of High Resolution Images and Registration Parameters from Low Resolution Observations Salvador Villena 1,JavierAbad 2, Rafael Molina 2, and Aggelos K. Katsaggelos 3 1 Dpto. de Lenguajes y Sistemas

More information

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude A. Migukin *, V. atkovnik and J. Astola Department of Signal Processing, Tampere University of Technology,

More information

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes.

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes. Outliers Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Concepts What is an outlier? The set of data points that are considerably different than the remainder of the

More information

Weka ( )

Weka (  ) Weka ( http://www.cs.waikato.ac.nz/ml/weka/ ) The phases in which classifier s design can be divided are reflected in WEKA s Explorer structure: Data pre-processing (filtering) and representation Supervised

More information

Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques

Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques Sea Chen Department of Biomedical Engineering Advisors: Dr. Charles A. Bouman and Dr. Mark J. Lowe S. Chen Final Exam October

More information

FINAL REPORT JANUARY Leslie M. Collins, Ph.D. Duke University

FINAL REPORT JANUARY Leslie M. Collins, Ph.D. Duke University FINAL REPORT Robust Detection, Discrimination, and Remediation of UXO: Statistical Signal Processing Approaches to Address Uncertainties Encountered in Field Test Scenarios SERDP Project MR-1663 Leslie

More information

Computer Vision Group Prof. Daniel Cremers. 8. Boosting and Bagging

Computer Vision Group Prof. Daniel Cremers. 8. Boosting and Bagging Prof. Daniel Cremers 8. Boosting and Bagging Repetition: Regression We start with a set of basis functions (x) =( 0 (x), 1(x),..., M 1(x)) x 2 í d The goal is to fit a model into the data y(x, w) =w T

More information

Guided Image Super-Resolution: A New Technique for Photogeometric Super-Resolution in Hybrid 3-D Range Imaging

Guided Image Super-Resolution: A New Technique for Photogeometric Super-Resolution in Hybrid 3-D Range Imaging Guided Image Super-Resolution: A New Technique for Photogeometric Super-Resolution in Hybrid 3-D Range Imaging Florin C. Ghesu 1, Thomas Köhler 1,2, Sven Haase 1, Joachim Hornegger 1,2 04.09.2014 1 Pattern

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2007 c 2007,

More information

Lecture 4: Principles of Parallel Algorithm Design (part 3)

Lecture 4: Principles of Parallel Algorithm Design (part 3) Lecture 4: Principles of Parallel Algorithm Design (part 3) 1 Exploratory Decomposition Decomposition according to a search of a state space of solutions Example: the 15-puzzle problem Determine any sequence

More information

Encoding Time in seconds. Encoding Time in seconds. PSNR in DB. Encoding Time for Mandrill Image. Encoding Time for Lena Image 70. Variance Partition

Encoding Time in seconds. Encoding Time in seconds. PSNR in DB. Encoding Time for Mandrill Image. Encoding Time for Lena Image 70. Variance Partition Fractal Image Compression Project Report Viswanath Sankaranarayanan 4 th December, 1998 Abstract The demand for images, video sequences and computer animations has increased drastically over the years.

More information

Clustering and The Expectation-Maximization Algorithm

Clustering and The Expectation-Maximization Algorithm Clustering and The Expectation-Maximization Algorithm Unsupervised Learning Marek Petrik 3/7 Some of the figures in this presentation are taken from An Introduction to Statistical Learning, with applications

More information

Simulation Calibration with Correlated Knowledge-Gradients

Simulation Calibration with Correlated Knowledge-Gradients Simulation Calibration with Correlated Knowledge-Gradients Peter Frazier Warren Powell Hugo Simão Operations Research & Information Engineering, Cornell University Operations Research & Financial Engineering,

More information

Generalized least squares (GLS) estimates of the level-2 coefficients,

Generalized least squares (GLS) estimates of the level-2 coefficients, Contents 1 Conceptual and Statistical Background for Two-Level Models...7 1.1 The general two-level model... 7 1.1.1 Level-1 model... 8 1.1.2 Level-2 model... 8 1.2 Parameter estimation... 9 1.3 Empirical

More information

Optimal designs for comparing curves

Optimal designs for comparing curves Optimal designs for comparing curves Holger Dette, Ruhr-Universität Bochum Maria Konstantinou, Ruhr-Universität Bochum Kirsten Schorning, Ruhr-Universität Bochum FP7 HEALTH 2013-602552 Outline 1 Motivation

More information

ME964 High Performance Computing for Engineering Applications

ME964 High Performance Computing for Engineering Applications ME964 High Performance Computing for Engineering Applications Outlining Midterm Projects Topic 3: GPU-based FEA Topic 4: GPU Direct Solver for Sparse Linear Algebra March 01, 2011 Dan Negrut, 2011 ME964

More information

Motion Estimation using Block Overlap Minimization

Motion Estimation using Block Overlap Minimization Motion Estimation using Block Overlap Minimization Michael Santoro, Ghassan AlRegib, Yucel Altunbasak School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta, GA 30332 USA

More information

Approximately Uniform Random Sampling in Sensor Networks

Approximately Uniform Random Sampling in Sensor Networks Approximately Uniform Random Sampling in Sensor Networks Boulat A. Bash, John W. Byers and Jeffrey Considine Motivation Data aggregation Approximations to COUNT, SUM, AVG, MEDIAN Existing work does not

More information

Chapter 3. Speech segmentation. 3.1 Preprocessing

Chapter 3. Speech segmentation. 3.1 Preprocessing , as done in this dissertation, refers to the process of determining the boundaries between phonemes in the speech signal. No higher-level lexical information is used to accomplish this. This chapter presents

More information

Sensor Tasking and Control

Sensor Tasking and Control Sensor Tasking and Control Outline Task-Driven Sensing Roles of Sensor Nodes and Utilities Information-Based Sensor Tasking Joint Routing and Information Aggregation Summary Introduction To efficiently

More information

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image Histograms h(r k ) = n k Histogram: number of times intensity level rk appears in the image p(r k )= n k /NM normalized histogram also a probability of occurence 1 Histogram of Image Intensities Create

More information

A primal-dual framework for mixtures of regularizers

A primal-dual framework for mixtures of regularizers A primal-dual framework for mixtures of regularizers Baran Gözcü baran.goezcue@epfl.ch Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

More information

Chapter II. Linear Programming

Chapter II. Linear Programming 1 Chapter II Linear Programming 1. Introduction 2. Simplex Method 3. Duality Theory 4. Optimality Conditions 5. Applications (QP & SLP) 6. Sensitivity Analysis 7. Interior Point Methods 1 INTRODUCTION

More information

10. Network dimensioning

10. Network dimensioning Partly based on slide material by Samuli Aalto and Jorma Virtamo ELEC-C7210 Modeling and analysis of communication networks 1 Contents Introduction Parameters: topology, routing and traffic Dimensioning

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup Random Variables: Y i =(Y i1,...,y ip ) 0 =(Y i,obs, Y i,miss ) 0 R i =(R i1,...,r ip ) 0 ( 1

More information

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS Mobile Robotics Mathematics, Models, and Methods Alonzo Kelly Carnegie Mellon University HI Cambridge UNIVERSITY PRESS Contents Preface page xiii 1 Introduction 1 1.1 Applications of Mobile Robots 2 1.2

More information

Absolute Calibration Correction Coefficients of GOES Imager Visible Channel: DCC Reference Reflectance with Aqua MODIS C6 Data

Absolute Calibration Correction Coefficients of GOES Imager Visible Channel: DCC Reference Reflectance with Aqua MODIS C6 Data Absolute Calibration Correction Coefficients of GOES Imager Visible Channel: DCC Reference Reflectance with Aqua MODIS C6 Data Fangfang Yu and Xiangqian Wu 01/08/2014 1 Outlines DCC reference reflectance

More information

Chapter 4: Algorithms CS 795

Chapter 4: Algorithms CS 795 Chapter 4: Algorithms CS 795 Inferring Rudimentary Rules 1R Single rule one level decision tree Pick each attribute and form a single level tree without overfitting and with minimal branches Pick that

More information

GPR IMAGING USING COMPRESSED MEASUREMENTS

GPR IMAGING USING COMPRESSED MEASUREMENTS GPR IMAGING USING COMPRESSED MEASUREMENTS A presentation by Prof. James H. McClellan School of Electrical and Computer Engineering Georgia Institute of Technology 26-Feb-09 Acknowledgements Dr. Ali Cafer

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview 1. Overview of SVMs 2. Margin Geometry 3. SVM Optimization 4. Overlapping Distributions 5. Relationship to Logistic Regression 6. Dealing

More information