Nonsmooth Optimization and Related Topics

Size: px
Start display at page:

Download "Nonsmooth Optimization and Related Topics"

Transcription

1 Nonsmooth Optimization and Related Topics Edited by F. H. Clarke University of Montreal Montreal, Quebec, Canada V. F. Dem'yanov Leningrad State University Leningrad, USSR I and F. Giannessi University of Pisa Pisa, Italy Plenum Press New York and London

2 CONTENTS 1 Scalar and vector generalized convexity (E. Castagnoli and P. Mazzoleni) 1. Introduction 1 2. Generalized concavity for scalar functions 2 3. Generalized concavity for vector functions 3 4. The weak Pareto ordering 7 5. Weak convex sets 8 6. Weakly concave functions A differentiable setting Conclusions 20 2 Compactness and boundedness for a class of concave-convex functions {E.Cavazzuti and N.Pacchiarotti) 1. Introduction. Notations and preliminary definitions Some properties about T-closed functions Properties of the e-h-limit of a sequence of T-closed functions Compactness results 32 3 Applications of proximal subgradients (F.H. Clarke) 1. Introduction An intersection formula A regularity theorem in the Calculus of Variations 44 4 New functionals in Calculus of Variations (E. De Giorgi and L. Ambrosio) 1. Definition of the functional Thec[sissesGBV(n,WL h ;E),GSBV{n,M. k ;E) Semicontinuity problems An example from the static theory of liquid crystals Representation of functionals in GBV(n,H k )\GSBV(n,M k ) Quasi-variational inequalities and applications to equilibrium problems with elastic demand [M. De Luca and A. Maugeri) 1. Introduction The computational procedure An existence theorem An example 74 6 Smoothness of nonsmooth functions (V.F. Dem'yanov) 1. First order approximations of a function Upper and lower first order approximations Codifferentiable functions 84

3 viii Contents 4. Calculus of codifferentials Second order approximations 87 7 Exact penalty functions for nondifferentiable programming problems (G. Di Pillo and F. Facchinei) 1. Introduction Problem formulation Preliminary results Exactness of J q (x;e) Further results Conclusions Fuzzy T-operators and convolutive approximations (S. Dolecki) 1. Introduction Fuzzy T-functionals Fuzzy T-operators Semi-fuzzy Operators and convolutive representations Comparison theorems: flexibility Mixed Fuzzy T-operators Inf- and sup-convolutive approximations On cone approximations and generalized directional derivatives {K.-H. Elster and J. Thierfelder) 1. Introduction Cone approximations of sets Generalized directional derivatives Some conclusions Some techniques for flnding the search direction in nonsmooth minimization problems (M. Gaudioso and M.F. Monaco) 1. Introduction Bündle type approaches Bündle methods and quadratic approximations Conclusions Directional derivative for the value function in mathematical programming (J. Gauvin) 1. Introduction Hypotheses and preliminaries Directional derivative for the value function Examples Necessary optimality conditions via image problem (F. Giannessi, M. Pappalardo and L. Pellegrini) 1. Introduction The image problem Generalized sernidifferentiable functions Cone-approximations and image reductions Necessary conditions Concluding remarks and extensions 214

4 Contents ix 13 From convex optimization to nonconvex optimization. Necessary and sumcient conditions for global optimality (J.-B. Hiriart-Urruly) 1. Introduction Background of convex analysis and optimization Necessary conditions for local and global optimality Sufficient conditions for local and global optimality First examples of applications Nonconvex subdifferentials (.4. loffe) 1. Introduction Non-Lipschitz functions. The finite-dimensional case An example: an optimal control problem Non-Lipschitz functions. Infinite-dimensional case G-subdifferential Calculus of G-subdifferentials G-subdifferential and proximal analysis Perturbed differential inclusion problems (P.D. Loewen) 1. Introduction The value function Sensitivity analysis A formula for the generalized gradient of V Subdifferential analysis and plates subjected to unilateral constraints (A. Marino, C. Saccon) 1. Introduction A notion of subdifferential and some properties A class of functions von Karman's plate problern with obstacle Optimization problems for aircraft flight in a windshear (A. Miele, T. Wang) 1. Introduction Equations of motion System description Algorithm Take-off problem Abort landing problem Penetration landing problem Conclusions Constrained well-posed two-level optimization problems (/. Morgan) 1. Introduction Formulation of the problem Sequential stability analysis of (S): a motivation for the well-posedness notion Well-posed two-level optimization problems The reaction set is a singleton Application to the constrained linear quadratic dynamic games.. 320

5 x Contents 19 A compactness theorem for curves of maximal slope for a class of nonsmooth and nonconvex functions (Ä. Orlandoni, 0. Petrucci and M. Tosques) 1. Introduction Convergence A compactness result Basics of minimax algorithms (E. Polak) 1. Introduction Generic algorithms for simplest minimax problems Geometrie extension of steepest descent Rate of convergence of minimax algorithm General minimax problem Constrained minimax problems Conclusions Implicit funetion theorems for multi-valued mappings (B.N. Pshenichny) 1. Introduction Implicit funetion theorems for convex mappings Locally smooth maps Perturbation of generalized Kuhn-Tucker points in finitedimensional optimization (R.T. Rockafellar ) 1. Introduction Parametrization and sensitivity Nonsmooth optimization and dual bounds (N.Z. Shor) 1. Introduction Quadratic dual estimates for nonconvex polynomial problems A unified treatment of some nonstandard problems in dynamics optimization (R.B. Vinter) 1. Introduction A maximum principle Sketch of proof Local and global directional controllability: sufficient conditions and examples (J. Warga) 1. Introduction Sufficient conditions for conical controllability Examples. (Higher order conditions) Global directional controllability Examples. (Global controllability) Stability for a class of nonlinear optimization problems and applications (C. Zälinescu) 1. Introduction Asymptotic cones and asymptotically compact sets d-stability for a class of nonconvex problems Lower semicontinuity, recession functions and e-subdifferentials for some convex functions A perturbation results Conclusions 456

6 Contents xi 27 The BT-algorithm for minimizing a nonsmooth functional subject to linear constraints (J. Zowe) 1. Introduction and example Failure of smooth methods The conceptual algorithm The trajectory d(t) The BT-algorithm Convergence Numerical results 479 Addresses of Contributors 481 Index. 485

Convex Analysis and Minimization Algorithms I

Convex Analysis and Minimization Algorithms I Jean-Baptiste Hiriart-Urruty Claude Lemarechal Convex Analysis and Minimization Algorithms I Fundamentals With 113 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming SECOND EDITION Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book Information and Orders http://world.std.com/~athenasc/index.html Athena Scientific, Belmont,

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

CONVEX OPTIMIZATION: A SELECTIVE OVERVIEW

CONVEX OPTIMIZATION: A SELECTIVE OVERVIEW 1! CONVEX OPTIMIZATION: A SELECTIVE OVERVIEW Dimitri Bertsekas! M.I.T.! Taiwan! May 2010! 2! OUTLINE! Convexity issues in optimization! Common geometrical framework for duality and minimax! Unifying framework

More information

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING DAVID G. LUENBERGER Stanford University TT ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California London Don Mills, Ontario CONTENTS

More information

of Convex Analysis Fundamentals Jean-Baptiste Hiriart-Urruty Claude Lemarechal Springer With 66 Figures

of Convex Analysis Fundamentals Jean-Baptiste Hiriart-Urruty Claude Lemarechal Springer With 66 Figures 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Jean-Baptiste Hiriart-Urruty Claude Lemarechal Fundamentals of Convex

More information

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics 1. Introduction EE 546, Univ of Washington, Spring 2016 performance of numerical methods complexity bounds structural convex optimization course goals and topics 1 1 Some course info Welcome to EE 546!

More information

Master of Science Thesis in Applied Mathematics Siarhei Charnyi

Master of Science Thesis in Applied Mathematics Siarhei Charnyi CENTRAL EUROPEAN UNIVERSITY Department of Mathematics and its Applications Master of Science Thesis in Applied Mathematics Siarhei Charnyi Solving maximin problem by decomposition to smooth and nonsmooth

More information

Convex Optimization. Lijun Zhang Modification of

Convex Optimization. Lijun Zhang   Modification of Convex Optimization Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Modification of http://stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf Outline Introduction Convex Sets & Functions Convex Optimization

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

Ec 181: Convex Analysis and Economic Theory

Ec 181: Convex Analysis and Economic Theory Division of the Humanities and Social Sciences Ec 181: Convex Analysis and Economic Theory KC Border Winter 2018 v. 2018.03.08::13.11 src: front KC Border: for Ec 181, Winter 2018 Woe to the author who

More information

Contents. Preface CHAPTER III

Contents. Preface CHAPTER III Optimization Edited by G.L. Nemhauser Georgia Institute of Technology A.H.G. Rinnooy Kan Erasmus University Rotterdam M.J. Todd Cornell Univerisity 1989 NORTH-HOLLAND AMSTERDAM NEW YORK OXFORD TOKYO Preface

More information

PRIMAL-DUAL SOLUTION PERTURBATIONS IN CONVEX OPTIMIZATION

PRIMAL-DUAL SOLUTION PERTURBATIONS IN CONVEX OPTIMIZATION Set-Valued Analysis (2001) PRIMAL-DUAL SOLUTION PERTURBATIONS IN CONVEX OPTIMIZATION A. L. Dontchev 1 and R. T. Rockafellar 2 3 Abstract. Solutions to optimization problems of convex type are typically

More information

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger For Inverse Obstacle Problems Martin Burger Outline Introduction Optimal Geometries Inverse Obstacle Problems & Shape Optimization Sensitivity Analysis based on Gradient Flows Numerical Methods University

More information

IDENTIFYING ACTIVE MANIFOLDS

IDENTIFYING ACTIVE MANIFOLDS Algorithmic Operations Research Vol.2 (2007) 75 82 IDENTIFYING ACTIVE MANIFOLDS W.L. Hare a a Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada. A.S. Lewis b b School of ORIE,

More information

Division of the Humanities and Social Sciences. Convex Analysis and Economic Theory Winter Separation theorems

Division of the Humanities and Social Sciences. Convex Analysis and Economic Theory Winter Separation theorems Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 8: Separation theorems 8.1 Hyperplanes and half spaces Recall that a hyperplane in

More information

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007 : Convex Non-Smooth Optimization April 2, 2007 Outline Lecture 19 Convex non-smooth problems Examples Subgradients and subdifferentials Subgradient properties Operations with subgradients and subdifferentials

More information

Ill-Posed Problems with A Priori Information

Ill-Posed Problems with A Priori Information INVERSE AND ILL-POSED PROBLEMS SERIES Ill-Posed Problems with A Priori Information V.V.Vasin andalageev HIV SPIII Utrecht, The Netherlands, 1995 CONTENTS Introduction 1 CHAPTER 1. UNSTABLE PROBLEMS 1 Base

More information

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Hausdorff Institute for Mathematics (HIM) Trimester: Mathematics of Signal Processing

More information

Generalized Nash Equilibrium Problem: existence, uniqueness and

Generalized Nash Equilibrium Problem: existence, uniqueness and Generalized Nash Equilibrium Problem: existence, uniqueness and reformulations Univ. de Perpignan, France CIMPA-UNESCO school, Delhi November 25 - December 6, 2013 Outline of the 7 lectures Generalized

More information

LECTURE 18 LECTURE OUTLINE

LECTURE 18 LECTURE OUTLINE LECTURE 18 LECTURE OUTLINE Generalized polyhedral approximation methods Combined cutting plane and simplicial decomposition methods Lecture based on the paper D. P. Bertsekas and H. Yu, A Unifying Polyhedral

More information

COMS 4771 Support Vector Machines. Nakul Verma

COMS 4771 Support Vector Machines. Nakul Verma COMS 4771 Support Vector Machines Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake bound for the perceptron

More information

Let and be a differentiable function. Let Then be the level surface given by

Let and be a differentiable function. Let Then be the level surface given by Module 12 : Total differential, Tangent planes and normals Lecture 35 : Tangent plane and normal [Section 35.1] > Objectives In this section you will learn the following : The notion tangent plane to a

More information

Value function and optimal trajectories for a control problem with supremum cost function and state constraints

Value function and optimal trajectories for a control problem with supremum cost function and state constraints Value function and optimal trajectories for a control problem with supremum cost function and state constraints Hasnaa Zidani ENSTA ParisTech, University of Paris-Saclay joint work with: A. Assellaou,

More information

DC Programming: A brief tutorial. Andres Munoz Medina Courant Institute of Mathematical Sciences

DC Programming: A brief tutorial. Andres Munoz Medina Courant Institute of Mathematical Sciences DC Programming: A brief tutorial. Andres Munoz Medina Courant Institute of Mathematical Sciences munoz@cims.nyu.edu Difference of Convex Functions Definition: A function exists f is said to be DC if there

More information

A Derivative-Free Approximate Gradient Sampling Algorithm for Finite Minimax Problems

A Derivative-Free Approximate Gradient Sampling Algorithm for Finite Minimax Problems 1 / 33 A Derivative-Free Approximate Gradient Sampling Algorithm for Finite Minimax Problems Speaker: Julie Nutini Joint work with Warren Hare University of British Columbia (Okanagan) III Latin American

More information

OPTIMIZATION METHODS

OPTIMIZATION METHODS D. Nagesh Kumar Associate Professor Department of Civil Engineering, Indian Institute of Science, Bangalore - 50 0 Email : nagesh@civil.iisc.ernet.in URL: http://www.civil.iisc.ernet.in/~nagesh Brief Contents

More information

A Note on Smoothing Mathematical Programs with Equilibrium Constraints

A Note on Smoothing Mathematical Programs with Equilibrium Constraints Applied Mathematical Sciences, Vol. 3, 2009, no. 39, 1943-1956 A Note on Smoothing Mathematical Programs with Equilibrium Constraints M. A. Tawhid Department of Mathematics and Statistics School of Advanced

More information

APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING

APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING Second Edition P. Venkataraman Rochester Institute of Technology WILEY JOHN WILEY & SONS, INC. CONTENTS PREFACE xiii 1 Introduction 1 1.1. Optimization Fundamentals

More information

A Truncated Newton Method in an Augmented Lagrangian Framework for Nonlinear Programming

A Truncated Newton Method in an Augmented Lagrangian Framework for Nonlinear Programming A Truncated Newton Method in an Augmented Lagrangian Framework for Nonlinear Programming Gianni Di Pillo (dipillo@dis.uniroma1.it) Giampaolo Liuzzi (liuzzi@iasi.cnr.it) Stefano Lucidi (lucidi@dis.uniroma1.it)

More information

w KLUWER ACADEMIC PUBLISHERS Global Optimization with Non-Convex Constraints Sequential and Parallel Algorithms Roman G. Strongin Yaroslav D.

w KLUWER ACADEMIC PUBLISHERS Global Optimization with Non-Convex Constraints Sequential and Parallel Algorithms Roman G. Strongin Yaroslav D. Global Optimization with Non-Convex Constraints Sequential and Parallel Algorithms by Roman G. Strongin Nizhni Novgorod State University, Nizhni Novgorod, Russia and Yaroslav D. Sergeyev Institute of Systems

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

DISCRETE CONVEX ANALYSIS

DISCRETE CONVEX ANALYSIS DISCRETE CONVEX ANALYSIS o KAZUO MUROTA University of Tokyo; PRESTO, JST Tokyo, Japan Society for Industrial and Applied Mathematics Philadelphia List of Figures Notation Preface xi xiii xxi 1 Introduction

More information

Mathematics 6 12 Section 26

Mathematics 6 12 Section 26 Mathematics 6 12 Section 26 1 Knowledge of algebra 1. Apply the properties of real numbers: closure, commutative, associative, distributive, transitive, identities, and inverses. 2. Solve linear equations

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

IE598 Big Data Optimization Summary Nonconvex Optimization

IE598 Big Data Optimization Summary Nonconvex Optimization IE598 Big Data Optimization Summary Nonconvex Optimization Instructor: Niao He April 16, 2018 1 This Course Big Data Optimization Explore modern optimization theories, algorithms, and big data applications

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - C) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know learn the proximal

More information

IE521 Convex Optimization Introduction

IE521 Convex Optimization Introduction IE521 Convex Optimization Introduction Instructor: Niao He Jan 18, 2017 1 About Me Assistant Professor, UIUC, 2016 Ph.D. in Operations Research, M.S. in Computational Sci. & Eng. Georgia Tech, 2010 2015

More information

A primal-dual framework for mixtures of regularizers

A primal-dual framework for mixtures of regularizers A primal-dual framework for mixtures of regularizers Baran Gözcü baran.goezcue@epfl.ch Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

More information

Pessimistic bilevel linear optimization

Pessimistic bilevel linear optimization Pessimistic bilevel linear optimization S. Dempe, G. Luo 2, S. Franke. TU Bergakademie Freiberg, Germany, Institute of Numerical Mathematics and Optimization 2. Guangdong University of Finance, China,

More information

Support Vector Machines. James McInerney Adapted from slides by Nakul Verma

Support Vector Machines. James McInerney Adapted from slides by Nakul Verma Support Vector Machines James McInerney Adapted from slides by Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey Chapter 4 : Optimization for Machine Learning Summary of Chapter 2 Chapter 2: Convex Optimization with Sparsity

More information

b) develop mathematical thinking and problem solving ability.

b) develop mathematical thinking and problem solving ability. Submission for Pre-Calculus MATH 20095 1. Course s instructional goals and objectives: The purpose of this course is to a) develop conceptual understanding and fluency with algebraic and transcendental

More information

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods 1 Nonlinear Programming Types of Nonlinear Programs (NLP) Convexity and Convex Programs NLP Solutions Unconstrained Optimization Principles of Unconstrained Optimization Search Methods Constrained Optimization

More information

Classification of Optimization Problems and the Place of Calculus of Variations in it

Classification of Optimization Problems and the Place of Calculus of Variations in it Lecture 1 Classification of Optimization Problems and the Place of Calculus of Variations in it ME256 Indian Institute of Science G. K. Ananthasuresh Professor, Mechanical Engineering, Indian Institute

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

N ondifferentiable optimization solver: basic theoretical assumptions

N ondifferentiable optimization solver: basic theoretical assumptions 48 N ondifferentiable optimization solver: basic theoretical assumptions Andrzej Stachurski Institute of Automatic Control, Warsaw University of Technology Nowowiejska 16/19, Warszawa, Poland. Tel: fj

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

Prerequisites: Completed Algebra 1 and Geometry and passed Algebra 2 with a C or better

Prerequisites: Completed Algebra 1 and Geometry and passed Algebra 2 with a C or better High School Course Description for Honors Math Analysis Course Title: Honors Math Analysis Course Number: MTH461/462 Grade Level: 10-12 Meets a UC a-g Requirement: Pending Curricular Area: Mathematics

More information

Applied Interval Analysis

Applied Interval Analysis Luc Jaulin, Michel Kieffer, Olivier Didrit and Eric Walter Applied Interval Analysis With Examples in Parameter and State Estimation, Robust Control and Robotics With 125 Figures Contents Preface Notation

More information

Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form

Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form Philip E. Gill Vyacheslav Kungurtsev Daniel P. Robinson UCSD Center for Computational Mathematics Technical Report

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

Columbus State Community College Mathematics Department Public Syllabus. Course and Number: MATH 1172 Engineering Mathematics A

Columbus State Community College Mathematics Department Public Syllabus. Course and Number: MATH 1172 Engineering Mathematics A Columbus State Community College Mathematics Department Public Syllabus Course and Number: MATH 1172 Engineering Mathematics A CREDITS: 5 CLASS HOURS PER WEEK: 5 PREREQUISITES: MATH 1151 with a C or higher

More information

STRUCTURAL & MULTIDISCIPLINARY OPTIMIZATION

STRUCTURAL & MULTIDISCIPLINARY OPTIMIZATION STRUCTURAL & MULTIDISCIPLINARY OPTIMIZATION Pierre DUYSINX Patricia TOSSINGS Department of Aerospace and Mechanical Engineering Academic year 2018-2019 1 Course objectives To become familiar with the introduction

More information

Combinatorial Methods in Density Estimation

Combinatorial Methods in Density Estimation Luc Devroye Gabor Lugosi Combinatorial Methods in Density Estimation Springer Contents Preface vii 1. Introduction 1 a 1.1. References 3 2. Concentration Inequalities 4 2.1. Hoeffding's Inequality 4 2.2.

More information

STATISTICS AND ANALYSIS OF SHAPE

STATISTICS AND ANALYSIS OF SHAPE Control and Cybernetics vol. 36 (2007) No. 2 Book review: STATISTICS AND ANALYSIS OF SHAPE by H. Krim, A. Yezzi, Jr., eds. There are numerous definitions of a notion of shape of an object. These definitions

More information

Pessimistic Bilevel Linear Optimization

Pessimistic Bilevel Linear Optimization Journal of Nepal Mathematical Society (JNMS), Vol., Issue (208); S. Dempe, G. Luo, S. Franke S. Dempe, G. Luo 2, S. Franke 3 TU Bergakademie Freiberg, Germany, Institute of Numerical Mathematics and Optimization

More information

A generic column generation principle: derivation and convergence analysis

A generic column generation principle: derivation and convergence analysis A generic column generation principle: derivation and convergence analysis Torbjörn Larsson, Athanasios Migdalas and Michael Patriksson Linköping University Post Print N.B.: When citing this work, cite

More information

Preface. and Its Applications 81, ISBN , doi: / , Springer Science+Business Media New York, 2013.

Preface. and Its Applications 81, ISBN , doi: / , Springer Science+Business Media New York, 2013. Preface This book is for all those interested in using the GAMS technology for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Mainly, it is a continuation

More information

Principles of Network Economics

Principles of Network Economics Hagen Bobzin Principles of Network Economics SPIN Springer s internal project number, if known unknown Monograph August 12, 2005 Springer Berlin Heidelberg New York Hong Kong London Milan Paris Tokyo Contents

More information

Recent Developments in Model-based Derivative-free Optimization

Recent Developments in Model-based Derivative-free Optimization Recent Developments in Model-based Derivative-free Optimization Seppo Pulkkinen April 23, 2010 Introduction Problem definition The problem we are considering is a nonlinear optimization problem with constraints:

More information

Algebraic Geometry of Segmentation and Tracking

Algebraic Geometry of Segmentation and Tracking Ma191b Winter 2017 Geometry of Neuroscience Geometry of lines in 3-space and Segmentation and Tracking This lecture is based on the papers: Reference: Marco Pellegrini, Ray shooting and lines in space.

More information

Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions 1. Module - 2 Lecture Notes 5. Kuhn-Tucker Conditions

Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions 1. Module - 2 Lecture Notes 5. Kuhn-Tucker Conditions Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions Module - Lecture Notes 5 Kuhn-Tucker Conditions Introduction In the previous lecture the optimization of functions of multiple variables

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

Optimization. Industrial AI Lab.

Optimization. Industrial AI Lab. Optimization Industrial AI Lab. Optimization An important tool in 1) Engineering problem solving and 2) Decision science People optimize Nature optimizes 2 Optimization People optimize (source: http://nautil.us/blog/to-save-drowning-people-ask-yourself-what-would-light-do)

More information

California Institute of Technology Crash-Course on Convex Optimization Fall Ec 133 Guilherme Freitas

California Institute of Technology Crash-Course on Convex Optimization Fall Ec 133 Guilherme Freitas California Institute of Technology HSS Division Crash-Course on Convex Optimization Fall 2011-12 Ec 133 Guilherme Freitas In this text, we will study the following basic problem: maximize x C f(x) subject

More information

not made or distributed for profit or commercial advantage and that copies

not made or distributed for profit or commercial advantage and that copies Copyright 2014, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are

More information

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function.

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function. 1 The Lagrange multipliers is a mathematical method for performing constrained optimization of differentiable functions. Recall unconstrained optimization of differentiable functions, in which we want

More information

DETERMINISTIC OPERATIONS RESEARCH

DETERMINISTIC OPERATIONS RESEARCH DETERMINISTIC OPERATIONS RESEARCH Models and Methods in Optimization Linear DAVID J. RADER, JR. Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN WILEY A JOHN WILEY & SONS,

More information

Introduction to Design Optimization

Introduction to Design Optimization Introduction to Design Optimization First Edition Krishnan Suresh i Dedicated to my family. They mean the world to me. ii Origins of this Text Preface Like many other textbooks, this text has evolved from

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Conjugate Direction Methods Barnabás Póczos & Ryan Tibshirani Conjugate Direction Methods 2 Books to Read David G. Luenberger, Yinyu Ye: Linear and Nonlinear Programming Nesterov:

More information

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1 Solving equations and inequalities graphically and algebraically 1. Plot points on the Cartesian coordinate plane. P.1 2. Represent data graphically using scatter plots, bar graphs, & line graphs. P.1

More information

Convex Optimization Algorithms

Convex Optimization Algorithms Convex Optimization Algorithms Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book information and orders http://www.athenasc.com Athena Scientific, Belmont, Massachusetts Athena

More information

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 X. Zhao 3, P. B. Luh 4, and J. Wang 5 Communicated by W.B. Gong and D. D. Yao 1 This paper is dedicated to Professor Yu-Chi Ho for his 65th birthday.

More information

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization Teacher: Gianni A. Di Caro GLOBAL FUNCTION OPTIMIZATION Find the global maximum of the function f x (and

More information

Unit 3 Functions of Several Variables

Unit 3 Functions of Several Variables Unit 3 Functions of Several Variables In this unit, we consider several simple examples of multi-variable functions, quadratic surfaces and projections, level curves and surfaces, partial derivatives of

More information

Continuous Selections of Multivalued Mappings

Continuous Selections of Multivalued Mappings Continuous Selections of Multivalued Mappings by Dusan Repovs Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia and Pavel Vladimirovic Semenov Department of Mathematics, Moscow City

More information

Linear methods for supervised learning

Linear methods for supervised learning Linear methods for supervised learning LDA Logistic regression Naïve Bayes PLA Maximum margin hyperplanes Soft-margin hyperplanes Least squares resgression Ridge regression Nonlinear feature maps Sometimes

More information

Lecture 7: Support Vector Machine

Lecture 7: Support Vector Machine Lecture 7: Support Vector Machine Hien Van Nguyen University of Houston 9/28/2017 Separating hyperplane Red and green dots can be separated by a separating hyperplane Two classes are separable, i.e., each

More information

CME307/MS&E311 Optimization Theory Summary

CME307/MS&E311 Optimization Theory Summary CME307/MS&E311 Optimization Theory Summary Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

The Fundamentals of Economic Dynamics and Policy Analyses: Learning through Numerical Examples. Part II. Dynamic General Equilibrium

The Fundamentals of Economic Dynamics and Policy Analyses: Learning through Numerical Examples. Part II. Dynamic General Equilibrium The Fundamentals of Economic Dynamics and Policy Analyses: Learning through Numerical Examples. Part II. Dynamic General Equilibrium Hiroshi Futamura The objective of this paper is to provide an introductory

More information

Convexity: an introduction

Convexity: an introduction Convexity: an introduction Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo 1 / 74 1. Introduction 1. Introduction what is convexity where does it arise main concepts and

More information

Stochastic Simulation: Algorithms and Analysis

Stochastic Simulation: Algorithms and Analysis Soren Asmussen Peter W. Glynn Stochastic Simulation: Algorithms and Analysis et Springer Contents Preface Notation v xii I What This Book Is About 1 1 An Illustrative Example: The Single-Server Queue 1

More information

1.7 The Heine-Borel Covering Theorem; open sets, compact sets

1.7 The Heine-Borel Covering Theorem; open sets, compact sets 1.7 The Heine-Borel Covering Theorem; open sets, compact sets This section gives another application of the interval halving method, this time to a particularly famous theorem of analysis, the Heine Borel

More information

Lecture 4 Duality and Decomposition Techniques

Lecture 4 Duality and Decomposition Techniques Lecture 4 Duality and Decomposition Techniques Jie Lu (jielu@kth.se) Richard Combes Alexandre Proutiere Automatic Control, KTH September 19, 2013 Consider the primal problem Lagrange Duality Lagrangian

More information

Optimal Design of a Parallel Beam System with Elastic Supports to Minimize Flexural Response to Harmonic Loading

Optimal Design of a Parallel Beam System with Elastic Supports to Minimize Flexural Response to Harmonic Loading 11 th World Congress on Structural and Multidisciplinary Optimisation 07 th -12 th, June 2015, Sydney Australia Optimal Design of a Parallel Beam System with Elastic Supports to Minimize Flexural Response

More information

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time.

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time. Module 15 : Vector fields, Gradient, Divergence and Curl Lecture 45 : Curves in space [Section 45.1] Objectives In this section you will learn the following : Concept of curve in space. Parametrization

More information

Lagrangian Relaxation: An overview

Lagrangian Relaxation: An overview Discrete Math for Bioinformatics WS 11/12:, by A. Bockmayr/K. Reinert, 22. Januar 2013, 13:27 4001 Lagrangian Relaxation: An overview Sources for this lecture: D. Bertsimas and J. Tsitsiklis: Introduction

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

Primal and Dual Methods for Optimisation over the Non-dominated Set of a Multi-objective Programme and Computing the Nadir Point

Primal and Dual Methods for Optimisation over the Non-dominated Set of a Multi-objective Programme and Computing the Nadir Point Primal and Dual Methods for Optimisation over the Non-dominated Set of a Multi-objective Programme and Computing the Nadir Point Ethan Liu Supervisor: Professor Matthias Ehrgott Lancaster University Outline

More information

EXTENSIONS OF FIRST ORDER LOGIC

EXTENSIONS OF FIRST ORDER LOGIC EXTENSIONS OF FIRST ORDER LOGIC Maria Manzano University of Barcelona CAMBRIDGE UNIVERSITY PRESS Table of contents PREFACE xv CHAPTER I: STANDARD SECOND ORDER LOGIC. 1 1.- Introduction. 1 1.1. General

More information

APPROXIMATING PDE s IN L 1

APPROXIMATING PDE s IN L 1 APPROXIMATING PDE s IN L 1 Veselin Dobrev Jean-Luc Guermond Bojan Popov Department of Mathematics Texas A&M University NONLINEAR APPROXIMATION TECHNIQUES USING L 1 Texas A&M May 16-18, 2008 Outline 1 Outline

More information

Stability of closedness of convex cones under linear mappings

Stability of closedness of convex cones under linear mappings Stability of closedness of convex cones under linear mappings Jonathan M. Borwein and Warren B. Moors 1 Abstract. In this paper we reconsider the question of when the continuous linear image of a closed

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

WWW links for Mathematics 138A notes

WWW links for Mathematics 138A notes WWW links for Mathematics 138A notes General statements about the use of Internet resources appear in the document listed below. We shall give separate lists of links for each of the relevant files in

More information