UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

Size: px
Start display at page:

Download "UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss"

Transcription

1 UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss AAAI 2018, New Orleans, USA Simon Meister, Junhwa Hur, and Stefan Roth Department of Computer Science, TU Darmstadt

2 2 Deep Networks for Optical Flow Deep CNNs for flow e.g. FlowNet: Encoder-Decoder network Given two images, outputs dense flow Real-time inference with high accuracy Supervision from synthetic datasets Fischer et al. (2015), "FlowNet: Learning Optical Flow with Convolutional Networks"

3 3 Domain Mismatch Training domains Domains of interest

4 4 Training with Realistic Data Unsupervised deep learning for optical flow Train on the target domain No ground truth flow Unlabeled frame pairs (e.g. from video) Design proxy loss

5 5 Unsupervised Loss (Baseline) Use classical optical flow constraints [Yu et al.] Backward-warp II 2 (using ww ff ) with Bilinear sampling [Jaderberg et al.] of II 2 at ww ff (xx) Data loss EE DD : brightness difference of II 1 and backward-warped II 2 First order smoothness loss EE SS : difference of neighboring flows II 1 Backward warp ww ff II 2 (xx + ww ff ) Smoothness loss EE SS Data loss EE DD II 2 Brightness constancy: II 1 (xx) II 2 xx + ww ff (xx) Jaderberg et al. (2015), "Spatial Transformer Networks" Yu et al. (2016), "Unsupervised learning of optical flow via brightness constancy and motion smoothness"

6 6 Unsupervised Loss (Baseline) Issues with this most basic loss Lighting changes brightness constancy violated Occlusions can t compare II 1 (xx) and II 2 xx + ww ff First-order smoothness may be limiting II 1 Backward warp ww ff II 2 (xx + ww ff ) Smoothness loss EE SS Data loss EE DD II 2 Brightness constancy: II 1 (xx) II 2 xx + ww ff (xx)

7 7 UnFlow Apply advanced ideas from classical optical flow to deep learning Robustness to lighting changes (census transform) Occlusion handling (bidirectional flow) Second-order smoothness II 1 Backward warp II 2 (xx + ww ff ) ww ff oo ff Forward-backward consistency ww bb oo bb II 2 Smoothness loss EE SS Consistency loss EE CC Data loss EE DD II 1 (xx + ww bb )

8 8 UnFlow Compute bidirectional flow (ww ff, ww bb ) with CNN FlowNetC (or any other optical flow network) First image II 1 Forward flow ww ff (II 1, II 2 ) Second image II 2 Shared weights Backward flow ww bb (II 2, II 1 )

9 9 UnFlow Given bidirectional flow Forward-backward check [Sundaram et al.]: compare ww ff (xx) and ww bb Should be inverse to each other for non-occluded xx Threshold Occlusion flag oo ff (swap f/b for oo bb ) Below? Consistency loss EE CC for difference xx + ww ff xx II 1 ww ff oo ff Forward-backward consistency ww bb oo bb II 2 Consistency loss EE CC Sundaram et al. (2010), Dense point trajectories by GPU-accelerated large displacement optical flow"

10 10 UnFlow Bidirectional image-based loss Compare II 1 and backward-warped II 2 (using ww ff ) Bilinear sampling [Jaderberg et al.] at ww ff (xx) Compare II 2 and backward-warped II 1 (using ww bb ) II 1 Backward warp ww ff II 2 (xx + ww ff ) II 2 ww bb II 1 (xx + ww bb ) Jaderberg et al. (2015), "Spatial Transformer Networks"

11 11 UnFlow Data loss EE DD Census transform [Stein] of II 1 and II 2 xx + ww ff Invariant to many changes due to lighting Only at non-occluded pixels (oo ff = 0) Same for II 2 and II 1 (xx + ww bb ) x II 1 Backward warp II 2 (xx + ww ff ) ww ff oo ff Forward-backward consistency ww bb oo bb II 2 Consistency loss EE CC Data loss EE DD II 1 (xx + ww bb ) Stein (2004), "Efficient computation of optical flow using the census transform"

12 12 UnFlow Smoothness loss EE SS Second-order regularizer [Trobin et al.] Penalizes large second derivatives of the flow ww ff (or ww bb ) Encourages collinear neighbors The only loss at occluded pixels (oo ff = 1) II 1 Backward warp II 2 (xx + ww ff ) ww ff oo ff Forward-backward consistency ww bb oo bb II 2 Smoothness loss EE SS Consistency loss EE CC Data loss EE DD II 1 (xx + ww bb ) Trobin et al. (2008), An unbiased second-order prior for high-accuracy motion estimation"

13 13 Iterative refinement Network stacking [Ilg et al.] FlowNetC FlowNetS Input first flow estimates and warped images First network Second network (not shared) ww ff II 2 (xx + ww ff ) ww ff,2 II 1 II 2 ww bb II 1 (xx + ww bb ) UnFlow-C UnFlow-CS ww bb,2 Ilg et al. (2017), "FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks"

14 14 Training Schedule Curriculum (100% unsupervised) 1. SYNTHIA pre-training Large synthetic dataset with simple lighting 2. KITTI raw Large real-world driving dataset Excluding small number of frames with ground truth flow No need for specifically generated synthetic optical flow datasets FlyingChairs, FlyingThings3D,

15 Results 15

16 16 Metrics Average Endpoint Error (AEE) Average euclidean distance of prediction to ground truth flow vectors KITTI Outliers Ratio of pixels where flow estimate is wrong by both 3 pixels and 5% (at least)

17 17 Loss Ablation KITTI 2012 Comparing Baseline [Yu et al.] vs. UnFlow-C Brightness constancy census loss Reduces AEE by 35% Data loss Smoothness Occlusion AEE (All) Outliers (All) Brightness 1st-order % Census 1st-order % Yu et al. (2016), "Unsupervised learning of optical flow via brightness constancy and motion smoothness"

18 18 Loss Ablation KITTI 2012 Comparing Baseline [Yu et al.] vs. UnFlow-C 1st 2nd order smoothness Reduces AEE by 5% and outliers by 17% Data loss Smoothness Occlusion AEE (All) Outliers (All) Brightness 1st-order % Census 1st-order % Census 2nd-order % Yu et al. (2016), "Unsupervised learning of optical flow via brightness constancy and motion smoothness"

19 19 Loss Ablation KITTI 2012 Comparing Baseline [Yu et al.] vs. UnFlow-C Forward-backward mechanisms (occlusion masking & consistency) Reduces AEE by 14% Data loss Smoothness Occlusion AEE (All) Outliers (All) Brightness 1st-order % Census 1st-order % Census 2nd-order % Census 2nd-order Forward-backward check % Yu et al. (2016), "Unsupervised learning of optical flow via brightness constancy and motion smoothness"

20 20 Loss Ablation KITTI 2012 Comparing Baseline [Yu et al.] vs. UnFlow-C UnFlow reduces AEE and outliers by 48% Similar observations on KITTI 2015 Data loss Smoothness Occlusion AEE (All) Outliers (All) Brightness 1st-order % Census 1st-order % Census 2nd-order % Census 2nd-order Forward-backward check % Yu et al. (2016), "Unsupervised learning of optical flow via brightness constancy and motion smoothness"

21 21 Baseline vs. UnFlow (KITTI 2015) Input images Ground truth flow Baseline Predicted flow UnFlow Predicted flow Flow error (red = high, blue = low) Flow error (red = high, blue = low)

22 22 Benchmarks (KITTI) non-finetuned Comparing supervised networks vs. UnFlow Similar networks trained on synthetic domains UnFlow reduces AEE by up to 49% (FlowNetS, 2012) Method AEE (All) 2012 train FlowNetS+ft [Dosovitskiy et al.] 7.5 AEE (All) 2015 train FlowNet2-C [Ilg et al.] UnFlow-C [ours] Dosovitsky et al. (2015), "FlowNet: Learning optical flow with convolutional networks" Ilg et al. (2017), "FlowNet 2.0: Evolution of optical flow estimation with deep networks"

23 23 Benchmarks (KITTI) non-finetuned Comparing supervised networks vs. UnFlow UnFlow even performs slightly better on off-domain data Method AEE (All) 2012 train AEE (All) 2015 train AEE (All) Middlebury FlowNetS+ft [Dosovitskiy et al.] FlowNet2-C [Ilg et al.] UnFlow-C [ours] Dosovitsky et al. (2015), "FlowNet: Learning optical flow with convolutional networks"

24 24 Conclusion UnFlow Comprehensive unsupervised proxy loss 48% improvement over brightness constancy baseline Outperforms synthetic off-domain supervision Code open-sourced at

25 Supplementary slides 25

26 26 Supervised Fine-tuning Input images 1. Unsupervised training 2. (optional) Supervised fine-tuning KITTI 2012 & 2015 train Method AEE (All) 2012 test Outliers 2015 test FlowNet2-ft-kitti [Ilg et al.] % Ground truth flow UnFlow-CSS-ft % Competetive fine-tuning performance without pre-training with special synthetic datasets Ilg et al. (2017), "FlowNet 2.0: Evolution of optical flow estimation with deep networks"

27 27 Benchmarks (KITTI) non-finetuned Comparing previous unsupervised networks vs. UnFlow Similar networks & training schedules UnFlow reduces AEE by up to 66% Method AEE (All) 2012 train UnsupFlownet [Yu et al.] 11.3 DSTFlow [Ren et al.] UnFlow-C [ours] 3.78 Yu et al. (2016), "Unsupervised learning of optical flow via brightness constancy and motion smoothness" Ren et al. (2017), "Unsupervised deep learning for optical flow estimation"

28 28 Loss Ablation KITTI 2012 Comparing Baseline [Yu et al.] vs. UnFlow Training on SYNTHIA instead of FlyingChairs slightly improves AEE Our baseline re-implementation is more accurate than the results reported by Yu et al. (AEE of 11.3 vs. our 8.26) Data loss Smoothness Occlusion AEE (All) Outliers (All) Brightness 1st-order 8.26 Brightness 1st-order % Census 1st-order % Census 2nd-order % Census 2nd-order Forward-backward check % Yu et al. (2016), "Unsupervised learning of optical flow via brightness constancy and motion smoothness"

29 29 FlowNetS / UnsupFlownet / UnFlow-CSS FlowNetS - KITTI 2012 flow error (white = high,black = low) Occluded sections are red FlowNetS - predicted flow UnsupFlownet - KITTI 2012 flow error UnsupFlowNet - predicted flow UnFlow-CSS - KITTI 2012 flow error UnFlow-CSS - predicted flow

30 30 Baseline vs. UnFlow (KITTI 2015) Input images Ground truth flow Baseline Predicted flow UnFlow Predicted flow Flow error (red = high, blue = low) Flow error (red = high, blue = low)

31 UnFlow-CSS-ft (KITTI 2015 test) 31

32 UnFlow-CSS-ft (KITTI 2015 test) 32

33 33 Baseline vs. UnFlow (KITTI 2015) Flow error (red = high, blue = low) Baseline Flow error (red = high, blue = low) UnFlow

34 34 Baseline vs. UnFlow (KITTI 2015) Flow error (red = high, blue = low) Baseline Flow error (red = high, blue = low) UnFlow

arxiv: v1 [cs.cv] 7 May 2018

arxiv: v1 [cs.cv] 7 May 2018 LEARNING OPTICAL FLOW VIA DILATED NETWORKS AND OCCLUSION REASONING Yi Zhu and Shawn Newsam University of California, Merced 5200 N Lake Rd, Merced, CA, US {yzhu25, snewsam}@ucmerced.edu arxiv:1805.02733v1

More information

Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains

Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains Jiahao Pang 1 Wenxiu Sun 1 Chengxi Yang 1 Jimmy Ren 1 Ruichao Xiao 1 Jin Zeng 1 Liang Lin 1,2 1 SenseTime Research

More information

Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow Estimation

Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow Estimation 1 Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow Estimation Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz arxiv:1809.05571v1 [cs.cv] 14 Sep 2018 Abstract We investigate

More information

Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks

Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks Wei-Sheng Lai 1 Jia-Bin Huang 2 Ming-Hsuan Yang 1,3 1 University of California, Merced 2 Virginia Tech 3 Nvidia Research 1

More information

Supplementary Material for "FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks"

Supplementary Material for FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks Supplementary Material for "FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks" Architecture Datasets S short S long S fine FlowNetS FlowNetC Chairs 15.58 - - Chairs - 14.60 14.28 Things3D

More information

arxiv: v2 [cs.cv] 4 Apr 2018

arxiv: v2 [cs.cv] 4 Apr 2018 Occlusion Aware Unsupervised Learning of Optical Flow Yang Wang 1 Yi Yang 1 Zhenheng Yang 2 Liang Zhao 1 Peng Wang 1 Wei Xu 1,3 1 Baidu Research 2 University of Southern California 3 National Engineering

More information

MOTION ESTIMATION USING CONVOLUTIONAL NEURAL NETWORKS. Mustafa Ozan Tezcan

MOTION ESTIMATION USING CONVOLUTIONAL NEURAL NETWORKS. Mustafa Ozan Tezcan MOTION ESTIMATION USING CONVOLUTIONAL NEURAL NETWORKS Mustafa Ozan Tezcan Boston University Department of Electrical and Computer Engineering 8 Saint Mary s Street Boston, MA 2215 www.bu.edu/ece Dec. 19,

More information

Optical flow. Cordelia Schmid

Optical flow. Cordelia Schmid Optical flow Cordelia Schmid Motion field The motion field is the projection of the 3D scene motion into the image Optical flow Definition: optical flow is the apparent motion of brightness patterns in

More information

Optical flow. Cordelia Schmid

Optical flow. Cordelia Schmid Optical flow Cordelia Schmid Motion field The motion field is the projection of the 3D scene motion into the image Optical flow Definition: optical flow is the apparent motion of brightness patterns in

More information

arxiv: v1 [cs.cv] 25 Feb 2019

arxiv: v1 [cs.cv] 25 Feb 2019 DD: Learning Optical with Unlabeled Data Distillation Pengpeng Liu, Irwin King, Michael R. Lyu, Jia Xu The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Tencent AI Lab, Shenzhen, China {ppliu,

More information

arxiv: v1 [cs.cv] 22 Jan 2016

arxiv: v1 [cs.cv] 22 Jan 2016 UNSUPERVISED CONVOLUTIONAL NEURAL NETWORKS FOR MOTION ESTIMATION Aria Ahmadi, Ioannis Patras School of Electronic Engineering and Computer Science Queen Mary University of London Mile End road, E1 4NS,

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 19: Optical flow http://en.wikipedia.org/wiki/barberpole_illusion Readings Szeliski, Chapter 8.4-8.5 Announcements Project 2b due Tuesday, Nov 2 Please sign

More information

Joint Unsupervised Learning of Optical Flow and Depth by Watching Stereo Videos

Joint Unsupervised Learning of Optical Flow and Depth by Watching Stereo Videos Joint Unsupervised Learning of Optical Flow and Depth by Watching Stereo Videos Yang Wang 1 Zhenheng Yang 2 Peng Wang 1 Yi Yang 1 Chenxu Luo 3 Wei Xu 1 1 Baidu Research 2 University of Southern California

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 11 140311 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Motion Analysis Motivation Differential Motion Optical

More information

Depth from Stereo. Dominic Cheng February 7, 2018

Depth from Stereo. Dominic Cheng February 7, 2018 Depth from Stereo Dominic Cheng February 7, 2018 Agenda 1. Introduction to stereo 2. Efficient Deep Learning for Stereo Matching (W. Luo, A. Schwing, and R. Urtasun. In CVPR 2016.) 3. Cascade Residual

More information

Supplemental Material for End-to-End Learning of Video Super-Resolution with Motion Compensation

Supplemental Material for End-to-End Learning of Video Super-Resolution with Motion Compensation Supplemental Material for End-to-End Learning of Video Super-Resolution with Motion Compensation Osama Makansi, Eddy Ilg, and Thomas Brox Department of Computer Science, University of Freiburg 1 Computation

More information

arxiv: v1 [cs.cv] 9 May 2018

arxiv: v1 [cs.cv] 9 May 2018 Layered Optical Flow Estimation Using a Deep Neural Network with a Soft Mask Xi Zhang, Di Ma, Xu Ouyang, Shanshan Jiang, Lin Gan, Gady Agam, Computer Science Department, Illinois Institute of Technology

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

arxiv: v1 [cs.cv] 6 Dec 2016

arxiv: v1 [cs.cv] 6 Dec 2016 FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, Thomas Brox University of Freiburg, Germany arxiv:1612.01925v1

More information

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume : CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz NVIDIA Abstract We present a compact but effective CNN model for optical flow, called.

More information

Occlusions, Motion and Depth Boundaries with a Generic Network for Disparity, Optical Flow or Scene Flow Estimation

Occlusions, Motion and Depth Boundaries with a Generic Network for Disparity, Optical Flow or Scene Flow Estimation Occlusions, Motion and Depth Boundaries with a Generic Network for Disparity, Optical Flow or Scene Flow Estimation Eddy Ilg *, Tonmoy Saikia *, Margret Keuper, and Thomas Brox University of Freiburg,

More information

Deep Learning For Image Registration

Deep Learning For Image Registration Deep Learning For Image Registration Yiping Lu School Of Mathmatical Science Peking university. luyiping9712@pku.edu.cn Abstract Image registration is an important task in computer vision and image processing

More information

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN Background Related Work Architecture Experiment Mask R-CNN Background Related Work Architecture Experiment Background From left

More information

Evaluating optical flow vectors through collision points of object trajectories in varying computergenerated snow intensities for autonomous vehicles

Evaluating optical flow vectors through collision points of object trajectories in varying computergenerated snow intensities for autonomous vehicles Eingebettete Systeme Evaluating optical flow vectors through collision points of object trajectories in varying computergenerated snow intensities for autonomous vehicles 25/6/2018, Vikas Agrawal, Marcel

More information

Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29,

Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29, Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29, 1209-1217. CS 4495 Computer Vision A. Bobick Sparse to Dense Correspodence Building Rome in

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation BY; ROSS GIRSHICK, JEFF DONAHUE, TREVOR DARRELL AND JITENDRA MALIK PRESENTER; MUHAMMAD OSAMA Object detection vs. classification

More information

ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials)

ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials) ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials) Yinda Zhang 1,2, Sameh Khamis 1, Christoph Rhemann 1, Julien Valentin 1, Adarsh Kowdle 1, Vladimir

More information

Peripheral drift illusion

Peripheral drift illusion Peripheral drift illusion Does it work on other animals? Computer Vision Motion and Optical Flow Many slides adapted from J. Hays, S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman and others Video A video

More information

arxiv: v1 [cs.cv] 21 Sep 2018

arxiv: v1 [cs.cv] 21 Sep 2018 Temporal Interpolation as an Unsupervised Pretraining Task for Optical Flow Estimation Jonas Wulff 1,2 Michael J. Black 1 arxiv:1809.08317v1 [cs.cv] 21 Sep 2018 1 Max-Planck Institute for Intelligent Systems,

More information

S7348: Deep Learning in Ford's Autonomous Vehicles. Bryan Goodman Argo AI 9 May 2017

S7348: Deep Learning in Ford's Autonomous Vehicles. Bryan Goodman Argo AI 9 May 2017 S7348: Deep Learning in Ford's Autonomous Vehicles Bryan Goodman Argo AI 9 May 2017 1 Ford s 12 Year History in Autonomous Driving Today: examples from Stereo image processing Object detection Using RNN

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Flow-Based Video Recognition

Flow-Based Video Recognition Flow-Based Video Recognition Jifeng Dai Visual Computing Group, Microsoft Research Asia Joint work with Xizhou Zhu*, Yuwen Xiong*, Yujie Wang*, Lu Yuan and Yichen Wei (* interns) Talk pipeline Introduction

More information

Dense Image-based Motion Estimation Algorithms & Optical Flow

Dense Image-based Motion Estimation Algorithms & Optical Flow Dense mage-based Motion Estimation Algorithms & Optical Flow Video A video is a sequence of frames captured at different times The video data is a function of v time (t) v space (x,y) ntroduction to motion

More information

FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks Net 2.0: Evolution of Optical Estimation with Deep Networks Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, Thomas Brox University of Freiburg, Germany {ilg,mayern,saikiat,keuper,dosovits,brox}@cs.uni-freiburg.de

More information

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation Object detection using Region Proposals (RCNN) Ernest Cheung COMP790-125 Presentation 1 2 Problem to solve Object detection Input: Image Output: Bounding box of the object 3 Object detection using CNN

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

Camera-based Vehicle Velocity Estimation using Spatiotemporal Depth and Motion Features

Camera-based Vehicle Velocity Estimation using Spatiotemporal Depth and Motion Features Camera-based Vehicle Velocity Estimation using Spatiotemporal Depth and Motion Features Moritz Kampelmuehler* kampelmuehler@student.tugraz.at Michael Mueller* michael.g.mueller@student.tugraz.at Christoph

More information

arxiv: v2 [cs.cv] 7 Oct 2018

arxiv: v2 [cs.cv] 7 Oct 2018 Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation Anurag Ranjan 1 Varun Jampani 2 arxiv:1805.09806v2 [cs.cv] 7 Oct 2018 Kihwan Kim 2 Deqing

More information

Visual Object Tracking. Jianan Wu Megvii (Face++) Researcher Dec 2017

Visual Object Tracking. Jianan Wu Megvii (Face++) Researcher Dec 2017 Visual Object Tracking Jianan Wu Megvii (Face++) Researcher wjn@megvii.com Dec 2017 Applications From image to video: Augmented Reality Motion Capture Surveillance Sports Analysis Wait. What is visual

More information

Training models for road scene understanding with automated ground truth Dan Levi

Training models for road scene understanding with automated ground truth Dan Levi Training models for road scene understanding with automated ground truth Dan Levi With: Noa Garnett, Ethan Fetaya, Shai Silberstein, Rafi Cohen, Shaul Oron, Uri Verner, Ariel Ayash, Kobi Horn, Vlad Golder,

More information

Introduction to Deep Learning

Introduction to Deep Learning ENEE698A : Machine Learning Seminar Introduction to Deep Learning Raviteja Vemulapalli Image credit: [LeCun 1998] Resources Unsupervised feature learning and deep learning (UFLDL) tutorial (http://ufldl.stanford.edu/wiki/index.php/ufldl_tutorial)

More information

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601 Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network Nathan Sun CIS601 Introduction Face ID is complicated by alterations to an individual s appearance Beard,

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

A Deep Learning Framework for Authorship Classification of Paintings

A Deep Learning Framework for Authorship Classification of Paintings A Deep Learning Framework for Authorship Classification of Paintings Kai-Lung Hua ( 花凱龍 ) Dept. of Computer Science and Information Engineering National Taiwan University of Science and Technology Taipei,

More information

Two-Stream Convolutional Networks for Action Recognition in Videos

Two-Stream Convolutional Networks for Action Recognition in Videos Two-Stream Convolutional Networks for Action Recognition in Videos Karen Simonyan Andrew Zisserman Cemil Zalluhoğlu Introduction Aim Extend deep Convolution Networks to action recognition in video. Motivation

More information

EVALUATION OF DEEP LEARNING BASED STEREO MATCHING METHODS: FROM GROUND TO AERIAL IMAGES

EVALUATION OF DEEP LEARNING BASED STEREO MATCHING METHODS: FROM GROUND TO AERIAL IMAGES EVALUATION OF DEEP LEARNING BASED STEREO MATCHING METHODS: FROM GROUND TO AERIAL IMAGES J. Liu 1, S. Ji 1,*, C. Zhang 1, Z. Qin 1 1 School of Remote Sensing and Information Engineering, Wuhan University,

More information

Learning visual odometry with a convolutional network

Learning visual odometry with a convolutional network Learning visual odometry with a convolutional network Kishore Konda 1, Roland Memisevic 2 1 Goethe University Frankfurt 2 University of Montreal konda.kishorereddy@gmail.com, roland.memisevic@gmail.com

More information

Photo-realistic Renderings for Machines Seong-heum Kim

Photo-realistic Renderings for Machines Seong-heum Kim Photo-realistic Renderings for Machines 20105034 Seong-heum Kim CS580 Student Presentations 2016.04.28 Photo-realistic Renderings for Machines Scene radiances Model descriptions (Light, Shape, Material,

More information

Motion and Optical Flow. Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi

Motion and Optical Flow. Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi Motion and Optical Flow Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Lecture 7: Semantic Segmentation

Lecture 7: Semantic Segmentation Semantic Segmentation CSED703R: Deep Learning for Visual Recognition (207F) Segmenting images based on its semantic notion Lecture 7: Semantic Segmentation Bohyung Han Computer Vision Lab. bhhanpostech.ac.kr

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

Filter Flow: Supplemental Material

Filter Flow: Supplemental Material Filter Flow: Supplemental Material Steven M. Seitz University of Washington Simon Baker Microsoft Research We include larger images and a number of additional results obtained using Filter Flow [5]. 1

More information

Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs Supplementary Material

Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs Supplementary Material Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs Supplementary Material Peak memory usage, GB 10 1 0.1 0.01 OGN Quadratic Dense Cubic Iteration time, s 10

More information

Scene Text Recognition for Augmented Reality. Sagar G V Adviser: Prof. Bharadwaj Amrutur Indian Institute Of Science

Scene Text Recognition for Augmented Reality. Sagar G V Adviser: Prof. Bharadwaj Amrutur Indian Institute Of Science Scene Text Recognition for Augmented Reality Sagar G V Adviser: Prof. Bharadwaj Amrutur Indian Institute Of Science Outline Research area and motivation Finding text in natural scenes Prior art Improving

More information

Comparison of stereo inspired optical flow estimation techniques

Comparison of stereo inspired optical flow estimation techniques Comparison of stereo inspired optical flow estimation techniques ABSTRACT The similarity of the correspondence problems in optical flow estimation and disparity estimation techniques enables methods to

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong April 21st, 2016 Today Administrivia Free parameters in an approach, model, or algorithm? Egocentric videos by Aisha

More information

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia Deep learning for dense per-pixel prediction Chunhua Shen The University of Adelaide, Australia Image understanding Classification error Convolution Neural Networks 0.3 0.2 0.1 Image Classification [Krizhevsky

More information

arxiv: v1 [cs.cv] 30 Nov 2017

arxiv: v1 [cs.cv] 30 Nov 2017 Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation Huaizu Jiang 1 Deqing Sun 2 Varun Jampani 2 Ming-Hsuan Yang 3,2 Erik Learned-Miller 1 Jan Kautz 2 1 UMass Amherst

More information

Conditional Prior Networks for Optical Flow

Conditional Prior Networks for Optical Flow Conditional Prior Networks for Optical Flow Yanchao Yang Stefano Soatto UCLA Vision Lab University of California, Los Angeles, CA 90095 {yanchao.yang, soatto}@cs.ucla.edu Abstract. Classical computation

More information

Learning to generate 3D shapes

Learning to generate 3D shapes Learning to generate 3D shapes Subhransu Maji College of Information and Computer Sciences University of Massachusetts, Amherst http://people.cs.umass.edu/smaji August 10, 2018 @ Caltech Creating 3D shapes

More information

Deep Optical Flow Estimation Via Multi-Scale Correspondence Structure Learning

Deep Optical Flow Estimation Via Multi-Scale Correspondence Structure Learning Deep Optical Flow Estimation Via Multi-Scale Correspondence Structure Learning Shanshan Zhao 1, Xi Li 1,2,, Omar El Farouk Bourahla 1 1 Zhejiang University, Hangzhou, China 2 Alibaba-Zhejiang University

More information

Unsupervised Learning of Stereo Matching

Unsupervised Learning of Stereo Matching Unsupervised Learning of Stereo Matching Chao Zhou 1 Hong Zhang 1 Xiaoyong Shen 2 Jiaya Jia 1,2 1 The Chinese University of Hong Kong 2 Youtu Lab, Tencent {zhouc, zhangh}@cse.cuhk.edu.hk dylanshen@tencent.com

More information

Spatio-Temporal Transformer Network for Video Restoration

Spatio-Temporal Transformer Network for Video Restoration Spatio-Temporal Transformer Network for Video Restoration Tae Hyun Kim 1,2, Mehdi S. M. Sajjadi 1,3, Michael Hirsch 1,4, Bernhard Schölkopf 1 1 Max Planck Institute for Intelligent Systems, Tübingen, Germany

More information

Unsupervised Learning of Spatiotemporally Coherent Metrics

Unsupervised Learning of Spatiotemporally Coherent Metrics Unsupervised Learning of Spatiotemporally Coherent Metrics Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun arxiv 2015. Presented by Jackie Chu Contributions Insight between slow feature

More information

MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection

MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection ILSVRC 2016 Object Detection from Video Byungjae Lee¹, Songguo Jin¹, Enkhbayar Erdenee¹, Mi Young Nam², Young Gui Jung², Phill Kyu

More information

Real-Time Simultaneous 3D Reconstruction and Optical Flow Estimation

Real-Time Simultaneous 3D Reconstruction and Optical Flow Estimation Real-Time Simultaneous 3D Reconstruction and Optical Flow Estimation Menandro Roxas Takeshi Oishi Institute of Industrial Science, The University of Tokyo roxas, oishi @cvl.iis.u-tokyo.ac.jp Abstract We

More information

Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at over 250 Hz Supplemental Material

Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at over 250 Hz Supplemental Material Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at over 250 Hz Supplemental Material Ayush Tewari 1,2 Michael Zollhöfer 1,2,3 Pablo Garrido 1,2 Florian Bernard 1,2 Hyeongwoo

More information

arxiv: v1 [cs.cv] 14 Dec 2016

arxiv: v1 [cs.cv] 14 Dec 2016 Detect, Replace, Refine: Deep Structured Prediction For Pixel Wise Labeling arxiv:1612.04770v1 [cs.cv] 14 Dec 2016 Spyros Gidaris University Paris-Est, LIGM Ecole des Ponts ParisTech spyros.gidaris@imagine.enpc.fr

More information

CS231N Section. Video Understanding 6/1/2018

CS231N Section. Video Understanding 6/1/2018 CS231N Section Video Understanding 6/1/2018 Outline Background / Motivation / History Video Datasets Models Pre-deep learning CNN + RNN 3D convolution Two-stream What we ve seen in class so far... Image

More information

CRF Based Point Cloud Segmentation Jonathan Nation

CRF Based Point Cloud Segmentation Jonathan Nation CRF Based Point Cloud Segmentation Jonathan Nation jsnation@stanford.edu 1. INTRODUCTION The goal of the project is to use the recently proposed fully connected conditional random field (CRF) model to

More information

Motion Estimation using Block Overlap Minimization

Motion Estimation using Block Overlap Minimization Motion Estimation using Block Overlap Minimization Michael Santoro, Ghassan AlRegib, Yucel Altunbasak School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta, GA 30332 USA

More information

Lecture 20: Tracking. Tuesday, Nov 27

Lecture 20: Tracking. Tuesday, Nov 27 Lecture 20: Tracking Tuesday, Nov 27 Paper reviews Thorough summary in your own words Main contribution Strengths? Weaknesses? How convincing are the experiments? Suggestions to improve them? Extensions?

More information

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence CS4495/6495 Introduction to Computer Vision 3B-L3 Stereo correspondence For now assume parallel image planes Assume parallel (co-planar) image planes Assume same focal lengths Assume epipolar lines are

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

LEARNING RIGIDITY IN DYNAMIC SCENES FOR SCENE FLOW ESTIMATION

LEARNING RIGIDITY IN DYNAMIC SCENES FOR SCENE FLOW ESTIMATION LEARNING RIGIDITY IN DYNAMIC SCENES FOR SCENE FLOW ESTIMATION Kihwan Kim, Senior Research Scientist Zhaoyang Lv, Kihwan Kim, Alejandro Troccoli, Deqing Sun, James M. Rehg, Jan Kautz CORRESPENDECES IN COMPUTER

More information

A Fusion Approach for Multi-Frame Optical Flow Estimation

A Fusion Approach for Multi-Frame Optical Flow Estimation A Fusion Approach for Multi-Frame Optical Estimation Zhile Ren Orazio Gallo Deqing Sun Ming-Hsuan Yang Erik B. Sudderth Jan Kautz Georgia Tech NVIDIA UC Merced UC Irvine NVIDIA Abstract To date, top-performing

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

SEMANTIC SEGMENTATION AVIRAM BAR HAIM & IRIS TAL

SEMANTIC SEGMENTATION AVIRAM BAR HAIM & IRIS TAL SEMANTIC SEGMENTATION AVIRAM BAR HAIM & IRIS TAL IMAGE DESCRIPTIONS IN THE WILD (IDW-CNN) LARGE KERNEL MATTERS (GCN) DEEP LEARNING SEMINAR, TAU NOVEMBER 2017 TOPICS IDW-CNN: Improving Semantic Segmentation

More information

Segmentation Based Stereo. Michael Bleyer LVA Stereo Vision

Segmentation Based Stereo. Michael Bleyer LVA Stereo Vision Segmentation Based Stereo Michael Bleyer LVA Stereo Vision What happened last time? Once again, we have looked at our energy function: E ( D) = m( p, dp) + p I < p, q > We have investigated the matching

More information

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material Yi Li 1, Gu Wang 1, Xiangyang Ji 1, Yu Xiang 2, and Dieter Fox 2 1 Tsinghua University, BNRist 2 University of Washington

More information

ACCURATE estimation of optical flow is a useful but challenging. Pyramidal Gradient Matching for Optical Flow Estimation

ACCURATE estimation of optical flow is a useful but challenging. Pyramidal Gradient Matching for Optical Flow Estimation 1 Pyramidal Gradient Matching for Optical Flow Estimation Yuanwei Li arxiv:1704.03217v1 [cs.cv] 11 Apr 2017 Abstract Initializing optical flow field by either sparse descriptor matching or dense patch

More information

A Deep Learning Approach to Vehicle Speed Estimation

A Deep Learning Approach to Vehicle Speed Estimation A Deep Learning Approach to Vehicle Speed Estimation Benjamin Penchas bpenchas@stanford.edu Tobin Bell tbell@stanford.edu Marco Monteiro marcorm@stanford.edu ABSTRACT Given car dashboard video footage,

More information

AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation

AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation Introduction Supplementary material In the supplementary material, we present additional qualitative results of the proposed AdaDepth

More information

Robust Optical Flow Computation Under Varying Illumination Using Rank Transform

Robust Optical Flow Computation Under Varying Illumination Using Rank Transform Sensors & Transducers Vol. 69 Issue 4 April 04 pp. 84-90 Sensors & Transducers 04 by IFSA Publishing S. L. http://www.sensorsportal.com Robust Optical Flow Computation Under Varying Illumination Using

More information

Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. By Joa õ Carreira and Andrew Zisserman Presenter: Zhisheng Huang 03/02/2018

Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. By Joa õ Carreira and Andrew Zisserman Presenter: Zhisheng Huang 03/02/2018 Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset By Joa õ Carreira and Andrew Zisserman Presenter: Zhisheng Huang 03/02/2018 Outline: Introduction Action classification architectures

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Multi-stable Perception Necker Cube Spinning dancer illusion, Nobuyuki Kayahara Multiple view geometry Stereo vision Epipolar geometry Lowe Hartley and Zisserman Depth map extraction Essential matrix

More information

Optical Flow CS 637. Fuxin Li. With materials from Kristen Grauman, Richard Szeliski, S. Narasimhan, Deqing Sun

Optical Flow CS 637. Fuxin Li. With materials from Kristen Grauman, Richard Szeliski, S. Narasimhan, Deqing Sun Optical Flow CS 637 Fuxin Li With materials from Kristen Grauman, Richard Szeliski, S. Narasimhan, Deqing Sun Motion and perceptual organization Sometimes, motion is the only cue Motion and perceptual

More information

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research)

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) Joint Inference in Image Databases via Dense Correspondence Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) My work Throughout the year (and my PhD thesis): Temporal Video Analysis

More information

Cascade Residual Learning: A Two-stage Convolutional Neural Network for Stereo Matching

Cascade Residual Learning: A Two-stage Convolutional Neural Network for Stereo Matching Cascade Residual Learning: A Two-stage Convolutional Neural Network for Stereo Matching Jiahao Pang Wenxiu Sun Jimmy SJ. Ren Chengxi Yang Qiong Yan SenseTime Group Limited {pangjiahao, sunwenxiu, rensijie,

More information

What have we leaned so far?

What have we leaned so far? What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging What have we learned so far? Image Filtering Image Warping Camera Projection Model Project 2: Panoramic

More information

Human Pose Estimation with Deep Learning. Wei Yang

Human Pose Estimation with Deep Learning. Wei Yang Human Pose Estimation with Deep Learning Wei Yang Applications Understand Activities Family Robots American Heist (2014) - The Bank Robbery Scene 2 What do we need to know to recognize a crime scene? 3

More information

Regionlet Object Detector with Hand-crafted and CNN Feature

Regionlet Object Detector with Hand-crafted and CNN Feature Regionlet Object Detector with Hand-crafted and CNN Feature Xiaoyu Wang Research Xiaoyu Wang Research Ming Yang Horizon Robotics Shenghuo Zhu Alibaba Group Yuanqing Lin Baidu Overview of this section Regionlet

More information

arxiv: v3 [cs.cv] 22 Mar 2018

arxiv: v3 [cs.cv] 22 Mar 2018 IJCV VISI manuscript No. (will be inserted by the editor) What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation? Nikolaus Mayer Eddy Ilg Philipp Fischer Caner Hazirbas

More information

Convolutional Neural Network Implementation of Superresolution Video

Convolutional Neural Network Implementation of Superresolution Video Convolutional Neural Network Implementation of Superresolution Video David Zeng Stanford University Stanford, CA dyzeng@stanford.edu Abstract This project implements Enhancing and Experiencing Spacetime

More information

arxiv: v1 [cs.cv] 20 Sep 2017

arxiv: v1 [cs.cv] 20 Sep 2017 SegFlow: Joint Learning for Video Object Segmentation and Optical Flow Jingchun Cheng 1,2 Yi-Hsuan Tsai 2 Shengjin Wang 1 Ming-Hsuan Yang 2 1 Tsinghua University 2 University of California, Merced 1 chengjingchun@gmail.com,

More information

CUDA GPGPU. Ivo Ihrke Tobias Ritschel Mario Fritz

CUDA GPGPU. Ivo Ihrke Tobias Ritschel Mario Fritz CUDA GPGPU Ivo Ihrke Tobias Ritschel Mario Fritz Today 3 Topics Intro to CUDA (NVIDIA slides) How is the GPU hardware organized? What is the programming model? Simple Kernels Hello World Gaussian Filtering

More information

arxiv: v1 [cs.cv] 13 Dec 2018

arxiv: v1 [cs.cv] 13 Dec 2018 Frame u Frame t Frame s SIGNet: Semantic Instance Aided Unsupervised 3D Geometry Perception Yue Meng 1 Yongxi Lu 1 Aman Raj 1 Samuel Sunarjo 1 Rui Guo 2 Tara Javidi 1 Gaurav Bansal 2 Dinesh Bharadia 1

More information

Lucas-Kanade Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides.

Lucas-Kanade Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. Lucas-Kanade Motion Estimation Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. 1 Why estimate motion? We live in a 4-D world Wide applications Object

More information

Part II: Modeling Aspects

Part II: Modeling Aspects Yosemite test sequence Illumination changes Motion discontinuities Variational Optical Flow Estimation Part II: Modeling Aspects Discontinuity Di ti it preserving i smoothness th tterms Robust data terms

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information