LEARNING RIGIDITY IN DYNAMIC SCENES FOR SCENE FLOW ESTIMATION

Size: px
Start display at page:

Download "LEARNING RIGIDITY IN DYNAMIC SCENES FOR SCENE FLOW ESTIMATION"

Transcription

1 LEARNING RIGIDITY IN DYNAMIC SCENES FOR SCENE FLOW ESTIMATION Kihwan Kim, Senior Research Scientist Zhaoyang Lv, Kihwan Kim, Alejandro Troccoli, Deqing Sun, James M. Rehg, Jan Kautz

2 CORRESPENDECES IN COMPUTER VISION Image courtesy Roy Shilkrot 2

3 OPTICAL FLOW Fan et al Brox and Malik 2011 Castro M

4 OPTICAL FLOW AND 3D SCENE FLOW Fan et al Brox and Malik 2011 Castro M Letouzey et al

5 APPLICATION OF 3D MOTION 3D reconstruction of dynamic scene AR and telepresence [DynamicFusion, R. Newcombe, CVPR 2016] [Holoportation, Microsoft 2016] 5

6 APPLICATION OF 3D MOTION 3D Scene Understanding for autonomous driving Robotics Interaction [KITTI Dataset, A. Geiger, PAMI 2014] [SE3-Net,A. Byravan, ICRA, 2017] 6

7 2D OPTICAL FLOW VS 3D SCENE FLOW Why 3D motion estimation is challenging? 7

8 STATIC SCENE - MOVING CAMERA Ω 0 x 0 u 0 u 0 u 0 I 0 u 0 I 1 8

9 STATIC SCENE - MOVING CAMERA cm δu 0 1 Optical flow from camera motion Ω 0 x 0 I 0 u 0 u 0 sf0 δu 0 1 cm δu 0 1 u 0 u 0 I 1 9

10 STATIC SCENE - MOVING CAMERA cm δu 0 1 Optical flow from camera motion x 0 Ω 0 Structure (3D) from (camera) Motion I 0 u 0 u 0 sf0 δu 0 1 cm δu 0 1 u 0 u 0 I 1 10

11 DYNAMIC SCENE - FIXED CAMERA Ω 0 x 0 u 0 I 0 11

12 DYNAMIC SCENE - FIXED CAMERA Ω 0 Ω 1 δx 0 1 sf1 δu 0 1 Scene flow Projected scene flow in I 1 x x 1 0 δx 0 1 u 0 sf0 δu0 1 u 1 I 0 12

13 DYNAMIC SCENE - FIXED CAMERA Ω 0 Ω 1 δx 0 1 Scene flow x x 1 0 δx 0 1 u 0 u 1 I 0 13

14 14 COMMON VIDEOS NOWADAYS Giphy.com #gopro, #drone, Sondra.T. 14

15 DYNAMIC SCENE MOVING CAMERA Ω 0 x 0 u 0 I 0 15

16 DYNAMIC SCENE MOVING CAMERA Ω 0 Ω 1 x x 1 0 δx 0 1 u 0 I 0 u 1 u 0 u 1 I 1 16

17 DYNAMIC SCENE MOVING CAMERA sf1 δu 0 1 of δu 0 1 cm δu 0 1 Projected scene flow in I 1 Optical flow Optical flow from camera motion Ω 0 x x 1 0 δx 0 1 Ω 1 I 0 u 0 sf0 δu 0 1 u 1 cm δu 0 1 u 0 u 0 of δu 0 1 sf1 δu 0 1 u 1 I 1 17

18 DYNAMIC SCENE MOVING CAMERA Projected scene flow (3D motion field) Camera Ego motion Input sequence Optical flow Optical flow Camera Pose (transform) Camera ego-motion flow (projected) scene flow or 3D motion field RIGIDITY 18

19 HOW OTHER WORKS SOLVE THIS? Non-rigid or rigid local motions as outliers Yang et al. ICRA 2011 Menze and Geiger. CVPR

20 HOW OTHER FLOW ALGORITHMS SOLVE THIS? Vogel et al. ICCV 2013 Quiroga et al. ECCV 2014 Jaimez et al. 3DV 2015 Jaimez et al. ICRA 2017 Wulff et al. CVPR

21 OUR PROPOSAL Learn which parts of the scene is (likely) rigid/non-rigid 21

22 PIPELINE D 1 I 1 Rigidity Transform Network (RTN) Rigidity Mask [R t] Refinement Refined [R t] Warping D 0 I 0 Flow network PWC-net Optical flow Ego-motion flow Estimated Projected Scene Flow Subtraction In 3D 22

23 RIGIDITY TRANSFORM NETWORK (RTN) D 0 I 0 Deconv 1-5 Rigidity Attention Mask conv1-6 Pose Regressor R t D 1 I 1 23

24 RIGIDITY TRANSFORM NETWORK (RTN) D 0 I 0 Binary cross entropy loss Deconv 1-5 Rigidity Attention Mask D 1 I 1 c o n v 1 c o n v 2 c o n v 3 c o n v 4 c o n v 5 c o n v 6 Global Average Pooling conv-t conv-r R t Huber loss Translation Rotation 24

25 2D OPTICAL FLOW PWCNET CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume Sun et al. CVPR

26 POSE REFINEMENT AND FLOW R t = arg min u,v Ω B u, v = 1 O u, v = 0 L RV 0 u + δu, v + δv + t V 1 u, v Rigidity mask Occlusion mask Flow correspondences We solve this objective function using off-the-shelf Gauss Newton solver GTSAM. 26

27 SUPERVISION NEEDED Scene-net RGB-D SLAM benchmark SINTEL FlyingThings 3D Monkaa RGB-D dataset Lay-out Number Total Images Scenes Pose (GT) Optical flow (GT) Segmentation (GT) Photo realistic Depth realistic Scene-net M static Yes Yes (from pose) Yes No Yes RGB-D SLAM K static Yes No No Yes Yes SINTEL dynamic Yes Yes Yes No Yes FlyingThings - 25K dynamic Yes Yes Yes No No Monkaa - 10K dynamic Yes Yes Yes No Yes 27

28 SEMI-SYNTHETIC DYNAMIC SCENE DATASET 28

29 REFRESH DATASET 29

30 30

31 31

32 SINTEL EVALUATION Trained from our data, testing on SINTEL data 32

33 SINTEL EVALUATION (POSE) 33

34 REAL WORLD DATA EVALUATION 34

35 35

36 CONCLUSION Proposed a learning-based approach to estimate the rigid regions in dynamic scenes observed by a moving camera Robust per-pixel Rigidity of dynamic scenes Camera pose refined jointly together with 2D optical flow and rigid/occlusion masks Novel semi-synthetic dynamic scene dataset, REFRESH Ours outperforms the state-of-the-art in SINTEL Future works End-to-end framework that learns rigidity as well as correspondences More rich contents in dynamic scene data for encouraging more generalization 36

Multiframe Scene Flow with Piecewise Rigid Motion. Vladislav Golyanik,, Kihwan Kim, Robert Maier, Mathias Nießner, Didier Stricker and Jan Kautz

Multiframe Scene Flow with Piecewise Rigid Motion. Vladislav Golyanik,, Kihwan Kim, Robert Maier, Mathias Nießner, Didier Stricker and Jan Kautz Multiframe Scene Flow with Piecewise Rigid Motion Vladislav Golyanik,, Kihwan Kim, Robert Maier, Mathias Nießner, Didier Stricker and Jan Kautz Scene Flow. 2 Scene Flow. 3 Scene Flow. Scene Flow Estimation:

More information

Learning Rigidity in Dynamic Scenes with a Moving Camera for 3D Motion Field Estimation

Learning Rigidity in Dynamic Scenes with a Moving Camera for 3D Motion Field Estimation Learning Rigidity in Dynamic Scenes with a Moving Camera for 3D Motion Field Estimation Zhaoyang Lv 1, Kihwan Kim 2, Alejandro Troccoli 2, Deqing Sun 2, James M. Rehg 1, Jan Kautz 2 1 Georgia Institute

More information

Jakob Engel, Thomas Schöps, Daniel Cremers Technical University Munich. LSD-SLAM: Large-Scale Direct Monocular SLAM

Jakob Engel, Thomas Schöps, Daniel Cremers Technical University Munich. LSD-SLAM: Large-Scale Direct Monocular SLAM Computer Vision Group Technical University of Munich Jakob Engel LSD-SLAM: Large-Scale Direct Monocular SLAM Jakob Engel, Thomas Schöps, Daniel Cremers Technical University Munich Monocular Video Engel,

More information

Combining Stereo Disparity and Optical Flow for Basic Scene Flow

Combining Stereo Disparity and Optical Flow for Basic Scene Flow Combining Stereo Disparity and Optical Flow for Basic Scene Flow René Schuster, Christian Bailer, Oliver Wasenmüller, Didier Stricker DFKI German Research Center for Artificial Intelligence firstname.lastname@dfki.de

More information

Depth from Stereo. Dominic Cheng February 7, 2018

Depth from Stereo. Dominic Cheng February 7, 2018 Depth from Stereo Dominic Cheng February 7, 2018 Agenda 1. Introduction to stereo 2. Efficient Deep Learning for Stereo Matching (W. Luo, A. Schwing, and R. Urtasun. In CVPR 2016.) 3. Cascade Residual

More information

Semi-Dense Direct SLAM

Semi-Dense Direct SLAM Computer Vision Group Technical University of Munich Jakob Engel Jakob Engel, Daniel Cremers David Caruso, Thomas Schöps, Lukas von Stumberg, Vladyslav Usenko, Jörg Stückler, Jürgen Sturm Technical University

More information

Human Pose Estimation with Deep Learning. Wei Yang

Human Pose Estimation with Deep Learning. Wei Yang Human Pose Estimation with Deep Learning Wei Yang Applications Understand Activities Family Robots American Heist (2014) - The Bank Robbery Scene 2 What do we need to know to recognize a crime scene? 3

More information

Joint Unsupervised Learning of Optical Flow and Depth by Watching Stereo Videos

Joint Unsupervised Learning of Optical Flow and Depth by Watching Stereo Videos Joint Unsupervised Learning of Optical Flow and Depth by Watching Stereo Videos Yang Wang 1 Zhenheng Yang 2 Peng Wang 1 Yi Yang 1 Chenxu Luo 3 Wei Xu 1 1 Baidu Research 2 University of Southern California

More information

MOTION ESTIMATION USING CONVOLUTIONAL NEURAL NETWORKS. Mustafa Ozan Tezcan

MOTION ESTIMATION USING CONVOLUTIONAL NEURAL NETWORKS. Mustafa Ozan Tezcan MOTION ESTIMATION USING CONVOLUTIONAL NEURAL NETWORKS Mustafa Ozan Tezcan Boston University Department of Electrical and Computer Engineering 8 Saint Mary s Street Boston, MA 2215 www.bu.edu/ece Dec. 19,

More information

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington 3D Object Recognition and Scene Understanding from RGB-D Videos Yu Xiang Postdoctoral Researcher University of Washington 1 2 Act in the 3D World Sensing & Understanding Acting Intelligent System 3D World

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

Fast Guided Global Interpolation for Depth and. Yu Li, Dongbo Min, Minh N. Do, Jiangbo Lu

Fast Guided Global Interpolation for Depth and. Yu Li, Dongbo Min, Minh N. Do, Jiangbo Lu Fast Guided Global Interpolation for Depth and Yu Li, Dongbo Min, Minh N. Do, Jiangbo Lu Introduction Depth upsampling and motion interpolation are often required to generate a dense, high-quality, and

More information

Perceiving the 3D World from Images and Videos. Yu Xiang Postdoctoral Researcher University of Washington

Perceiving the 3D World from Images and Videos. Yu Xiang Postdoctoral Researcher University of Washington Perceiving the 3D World from Images and Videos Yu Xiang Postdoctoral Researcher University of Washington 1 2 Act in the 3D World Sensing & Understanding Acting Intelligent System 3D World 3 Understand

More information

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS Zhao Chen Machine Learning Intern, NVIDIA ABOUT ME 5th year PhD student in physics @ Stanford by day, deep learning computer vision scientist

More information

Training models for road scene understanding with automated ground truth Dan Levi

Training models for road scene understanding with automated ground truth Dan Levi Training models for road scene understanding with automated ground truth Dan Levi With: Noa Garnett, Ethan Fetaya, Shai Silberstein, Rafi Cohen, Shaul Oron, Uri Verner, Ariel Ayash, Kobi Horn, Vlad Golder,

More information

Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting

Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting R. Maier 1,2, K. Kim 1, D. Cremers 2, J. Kautz 1, M. Nießner 2,3 Fusion Ours 1

More information

Hybrids Mixed Approaches

Hybrids Mixed Approaches Hybrids Mixed Approaches Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline Why mixing? Parallel Tracking and Mapping Benefits

More information

Dense 3D Reconstruction from Autonomous Quadrocopters

Dense 3D Reconstruction from Autonomous Quadrocopters Dense 3D Reconstruction from Autonomous Quadrocopters Computer Science & Mathematics TU Munich Martin Oswald, Jakob Engel, Christian Kerl, Frank Steinbrücker, Jan Stühmer & Jürgen Sturm Autonomous Quadrocopters

More information

Supplementary Material The Best of Both Worlds: Combining CNNs and Geometric Constraints for Hierarchical Motion Segmentation

Supplementary Material The Best of Both Worlds: Combining CNNs and Geometric Constraints for Hierarchical Motion Segmentation Supplementary Material The Best of Both Worlds: Combining CNNs and Geometric Constraints for Hierarchical Motion Segmentation Pia Bideau Aruni RoyChowdhury Rakesh R Menon Erik Learned-Miller University

More information

Reconstruction, Motion Estimation and SLAM from Events

Reconstruction, Motion Estimation and SLAM from Events Reconstruction, Motion Estimation and SLAM from Events Andrew Davison Robot Vision Group and Dyson Robotics Laboratory Department of Computing Imperial College London www.google.com/+andrewdavison June

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Deep Incremental Scene Understanding. Federico Tombari & Christian Rupprecht Technical University of Munich, Germany

Deep Incremental Scene Understanding. Federico Tombari & Christian Rupprecht Technical University of Munich, Germany Deep Incremental Scene Understanding Federico Tombari & Christian Rupprecht Technical University of Munich, Germany C. Couprie et al. "Toward Real-time Indoor Semantic Segmentation Using Depth Information"

More information

OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps

OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps Georgios Floros, Benito van der Zander and Bastian Leibe RWTH Aachen University, Germany http://www.vision.rwth-aachen.de floros@vision.rwth-aachen.de

More information

A Fusion Approach for Multi-Frame Optical Flow Estimation

A Fusion Approach for Multi-Frame Optical Flow Estimation A Fusion Approach for Multi-Frame Optical Estimation Zhile Ren Orazio Gallo Deqing Sun Ming-Hsuan Yang Erik B. Sudderth Jan Kautz Georgia Tech NVIDIA UC Merced UC Irvine NVIDIA Abstract To date, top-performing

More information

arxiv: v1 [cs.cv] 25 Feb 2019

arxiv: v1 [cs.cv] 25 Feb 2019 DD: Learning Optical with Unlabeled Data Distillation Pengpeng Liu, Irwin King, Michael R. Lyu, Jia Xu The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Tencent AI Lab, Shenzhen, China {ppliu,

More information

EasyChair Preprint. Visual Odometry Based on Convolutional Neural Networks for Large-Scale Scenes

EasyChair Preprint. Visual Odometry Based on Convolutional Neural Networks for Large-Scale Scenes EasyChair Preprint 413 Visual Odometry Based on Convolutional Neural Networks for Large-Scale Scenes Xuyang Meng, Chunxiao Fan and Yue Ming EasyChair preprints are intended for rapid dissemination of research

More information

Multilayer and Multimodal Fusion of Deep Neural Networks for Video Classification

Multilayer and Multimodal Fusion of Deep Neural Networks for Video Classification Multilayer and Multimodal Fusion of Deep Neural Networks for Video Classification Xiaodong Yang, Pavlo Molchanov, Jan Kautz INTELLIGENT VIDEO ANALYTICS Surveillance event detection Human-computer interaction

More information

Dense 3D Modelling and Monocular Reconstruction of Deformable Objects

Dense 3D Modelling and Monocular Reconstruction of Deformable Objects Dense 3D Modelling and Monocular Reconstruction of Deformable Objects Anastasios (Tassos) Roussos Lecturer in Computer Science, University of Exeter Research Associate, Imperial College London Overview

More information

Direct Methods in Visual Odometry

Direct Methods in Visual Odometry Direct Methods in Visual Odometry July 24, 2017 Direct Methods in Visual Odometry July 24, 2017 1 / 47 Motivation for using Visual Odometry Wheel odometry is affected by wheel slip More accurate compared

More information

Colored Point Cloud Registration Revisited Supplementary Material

Colored Point Cloud Registration Revisited Supplementary Material Colored Point Cloud Registration Revisited Supplementary Material Jaesik Park Qian-Yi Zhou Vladlen Koltun Intel Labs A. RGB-D Image Alignment Section introduced a joint photometric and geometric objective

More information

Learning-based Localization

Learning-based Localization Learning-based Localization Eric Brachmann ECCV 2018 Tutorial on Visual Localization - Feature-based vs. Learned Approaches Torsten Sattler, Eric Brachmann Roadmap Machine Learning Basics [10min] Convolutional

More information

Scanning and Printing Objects in 3D Jürgen Sturm

Scanning and Printing Objects in 3D Jürgen Sturm Scanning and Printing Objects in 3D Jürgen Sturm Metaio (formerly Technical University of Munich) My Research Areas Visual navigation for mobile robots RoboCup Kinematic Learning Articulated Objects Quadrocopters

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

Flow Estimation. Min Bai. February 8, University of Toronto. Min Bai (UofT) Flow Estimation February 8, / 47

Flow Estimation. Min Bai. February 8, University of Toronto. Min Bai (UofT) Flow Estimation February 8, / 47 Flow Estimation Min Bai University of Toronto February 8, 2016 Min Bai (UofT) Flow Estimation February 8, 2016 1 / 47 Outline Optical Flow - Continued Min Bai (UofT) Flow Estimation February 8, 2016 2

More information

Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow Estimation

Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow Estimation 1 Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow Estimation Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz arxiv:1809.05571v1 [cs.cv] 14 Sep 2018 Abstract We investigate

More information

Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing

Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing Supplementary Material Introduction In this supplementary material, Section 2 details the 3D annotation for CAD models and real

More information

Part II: Modeling Aspects

Part II: Modeling Aspects Yosemite test sequence Illumination changes Motion discontinuities Variational Optical Flow Estimation Part II: Modeling Aspects Discontinuity Di ti it preserving i smoothness th tterms Robust data terms

More information

arxiv: v2 [cs.cv] 21 Feb 2018

arxiv: v2 [cs.cv] 21 Feb 2018 UnDeepVO: Monocular Visual Odometry through Unsupervised Deep Learning Ruihao Li 1, Sen Wang 2, Zhiqiang Long 3 and Dongbing Gu 1 arxiv:1709.06841v2 [cs.cv] 21 Feb 2018 Abstract We propose a novel monocular

More information

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss AAAI 2018, New Orleans, USA Simon Meister, Junhwa Hur, and Stefan Roth Department of Computer Science, TU Darmstadt 2 Deep

More information

視覚情報処理論. (Visual Information Processing ) 開講所属 : 学際情報学府水 (Wed)5 [16:50-18:35]

視覚情報処理論. (Visual Information Processing ) 開講所属 : 学際情報学府水 (Wed)5 [16:50-18:35] 視覚情報処理論 (Visual Information Processing ) 開講所属 : 学際情報学府水 (Wed)5 [16:50-18:35] Computer Vision Design algorithms to implement the function of human vision 3D reconstruction from 2D image (retinal image)

More information

Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures

Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures Robert Maier, Jörg Stückler, Daniel Cremers International Conference on 3D Vision (3DV) October 2015, Lyon, France Motivation

More information

Visual-Inertial Localization and Mapping for Robot Navigation

Visual-Inertial Localization and Mapping for Robot Navigation Visual-Inertial Localization and Mapping for Robot Navigation Dr. Guillermo Gallego Robotics & Perception Group University of Zurich Davide Scaramuzza University of Zurich - http://rpg.ifi.uzh.ch Mocular,

More information

Multi-view 3D Models from Single Images with a Convolutional Network

Multi-view 3D Models from Single Images with a Convolutional Network Multi-view 3D Models from Single Images with a Convolutional Network Maxim Tatarchenko University of Freiburg Skoltech - 2nd Christmas Colloquium on Computer Vision Humans have prior knowledge about 3D

More information

arxiv: v2 [cs.cv] 7 Oct 2018

arxiv: v2 [cs.cv] 7 Oct 2018 Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation Anurag Ranjan 1 Varun Jampani 2 arxiv:1805.09806v2 [cs.cv] 7 Oct 2018 Kihwan Kim 2 Deqing

More information

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN Background Related Work Architecture Experiment Mask R-CNN Background Related Work Architecture Experiment Background From left

More information

Occlusions, Motion and Depth Boundaries with a Generic Network for Disparity, Optical Flow or Scene Flow Estimation

Occlusions, Motion and Depth Boundaries with a Generic Network for Disparity, Optical Flow or Scene Flow Estimation Occlusions, Motion and Depth Boundaries with a Generic Network for Disparity, Optical Flow or Scene Flow Estimation Eddy Ilg *, Tonmoy Saikia *, Margret Keuper, and Thomas Brox University of Freiburg,

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Multi-stable Perception Necker Cube Spinning dancer illusion, Nobuyuki Kayahara Multiple view geometry Stereo vision Epipolar geometry Lowe Hartley and Zisserman Depth map extraction Essential matrix

More information

(Deep) Learning for Robot Perception and Navigation. Wolfram Burgard

(Deep) Learning for Robot Perception and Navigation. Wolfram Burgard (Deep) Learning for Robot Perception and Navigation Wolfram Burgard Deep Learning for Robot Perception (and Navigation) Lifeng Bo, Claas Bollen, Thomas Brox, Andreas Eitel, Dieter Fox, Gabriel L. Oliveira,

More information

Learning with Side Information through Modality Hallucination

Learning with Side Information through Modality Hallucination Master Seminar Report for Recent Trends in 3D Computer Vision Learning with Side Information through Modality Hallucination Judy Hoffman, Saurabh Gupta, Trevor Darrell. CVPR 2016 Nan Yang Supervisor: Benjamin

More information

Scanning and Printing Objects in 3D

Scanning and Printing Objects in 3D Scanning and Printing Objects in 3D Dr. Jürgen Sturm metaio GmbH (formerly Technical University of Munich) My Research Areas Visual navigation for mobile robots RoboCup Kinematic Learning Articulated Objects

More information

Vol agile avec des micro-robots volants contrôlés par vision

Vol agile avec des micro-robots volants contrôlés par vision Vol agile avec des micro-robots volants contrôlés par vision From Active Perception to Event-based Vision Henri Rebecq from Prof. Davide Scaramuzza s lab GT UAV 17 Novembre 2016, Paris Davide Scaramuzza

More information

arxiv: v1 [cs.cv] 16 Nov 2015

arxiv: v1 [cs.cv] 16 Nov 2015 Coarse-to-fine Face Alignment with Multi-Scale Local Patch Regression Zhiao Huang hza@megvii.com Erjin Zhou zej@megvii.com Zhimin Cao czm@megvii.com arxiv:1511.04901v1 [cs.cv] 16 Nov 2015 Abstract Facial

More information

ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials)

ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials) ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials) Yinda Zhang 1,2, Sameh Khamis 1, Christoph Rhemann 1, Julien Valentin 1, Adarsh Kowdle 1, Vladimir

More information

Step-by-Step Model Buidling

Step-by-Step Model Buidling Step-by-Step Model Buidling Review Feature selection Feature selection Feature correspondence Camera Calibration Euclidean Reconstruction Landing Augmented Reality Vision Based Control Sparse Structure

More information

Team G-RMI: Google Research & Machine Intelligence

Team G-RMI: Google Research & Machine Intelligence Team G-RMI: Google Research & Machine Intelligence Alireza Fathi (alirezafathi@google.com) Nori Kanazawa, Kai Yang, George Papandreou, Tyler Zhu, Jonathan Huang, Vivek Rathod, Chen Sun, Kevin Murphy, et

More information

DeMoN: Depth and Motion Network for Learning Monocular Stereo Supplementary Material

DeMoN: Depth and Motion Network for Learning Monocular Stereo Supplementary Material Learning rate : Depth and Motion Network for Learning Monocular Stereo Supplementary Material A. Network Architecture Details Our network is a chain of encoder-decoder networks. Figures 15 and 16 explain

More information

CVPR 2014 Visual SLAM Tutorial Kintinuous

CVPR 2014 Visual SLAM Tutorial Kintinuous CVPR 2014 Visual SLAM Tutorial Kintinuous kaess@cmu.edu The Robotics Institute Carnegie Mellon University Recap: KinectFusion [Newcombe et al., ISMAR 2011] RGB-D camera GPU 3D/color model RGB TSDF (volumetric

More information

Fast Odometry and Scene Flow from RGB-D Cameras based on Geometric Clustering

Fast Odometry and Scene Flow from RGB-D Cameras based on Geometric Clustering Fast Odometry and Scene Flow from RGB-D Cameras based on Geometric Clustering Mariano Jaimez 1,2, Christian Kerl 2, Javier Gonzalez-Jimenez 1 and Daniel Cremers 2 Abstract In this paper we propose an efficient

More information

Single-shot Extrinsic Calibration of a Generically Configured RGB-D Camera Rig from Scene Constraints

Single-shot Extrinsic Calibration of a Generically Configured RGB-D Camera Rig from Scene Constraints Single-shot Extrinsic Calibration of a Generically Configured RGB-D Camera Rig from Scene Constraints Jiaolong Yang*, Yuchao Dai^, Hongdong Li^, Henry Gardner^ and Yunde Jia* *Beijing Institute of Technology

More information

Geometric Reconstruction Dense reconstruction of scene geometry

Geometric Reconstruction Dense reconstruction of scene geometry Lecture 5. Dense Reconstruction and Tracking with Real-Time Applications Part 2: Geometric Reconstruction Dr Richard Newcombe and Dr Steven Lovegrove Slide content developed from: [Newcombe, Dense Visual

More information

The Hilbert Problems of Computer Vision. Jitendra Malik UC Berkeley & Google, Inc.

The Hilbert Problems of Computer Vision. Jitendra Malik UC Berkeley & Google, Inc. The Hilbert Problems of Computer Vision Jitendra Malik UC Berkeley & Google, Inc. This talk The computational power of the human brain Research is the art of the soluble Hilbert problems, circa 2004 Hilbert

More information

An Automatic Method for Adjustment of a Camera Calibration Room

An Automatic Method for Adjustment of a Camera Calibration Room An Automatic Method for Adjustment of a Camera Calibration Room Presented at the FIG Working Week 2017, May 29 - June 2, 2017 in Helsinki, Finland Theory, algorithms, implementation, and two advanced applications.

More information

Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing Supplementary Material

Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing Supplementary Material Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing Supplementary Material Chi Li, M. Zeeshan Zia 2, Quoc-Huy Tran 2, Xiang Yu 2, Gregory D. Hager, and Manmohan Chandraker 2 Johns

More information

Optical flow. Cordelia Schmid

Optical flow. Cordelia Schmid Optical flow Cordelia Schmid Motion field The motion field is the projection of the 3D scene motion into the image Optical flow Definition: optical flow is the apparent motion of brightness patterns in

More information

CNN for Low Level Image Processing. Huanjing Yue

CNN for Low Level Image Processing. Huanjing Yue CNN for Low Level Image Processing Huanjing Yue 2017.11 1 Deep Learning for Image Restoration General formulation: min Θ L( x, x) s. t. x = F(y; Θ) Loss function Parameters to be learned Key issues The

More information

Joint Optical Flow and Temporally Consistent Semantic Segmentation

Joint Optical Flow and Temporally Consistent Semantic Segmentation Joint Optical Flow and Temporally Consistent Semantic Segmentation Junhwa Hur and Stefan Roth Department of Computer Science, TU Darmstadt Abstract. The importance and demands of visual scene understanding

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

From 3D descriptors to monocular 6D pose: what have we learned?

From 3D descriptors to monocular 6D pose: what have we learned? ECCV Workshop on Recovering 6D Object Pose From 3D descriptors to monocular 6D pose: what have we learned? Federico Tombari CAMP - TUM Dynamic occlusion Low latency High accuracy, low jitter No expensive

More information

AUTOMATIC 3D HUMAN ACTION RECOGNITION Ajmal Mian Associate Professor Computer Science & Software Engineering

AUTOMATIC 3D HUMAN ACTION RECOGNITION Ajmal Mian Associate Professor Computer Science & Software Engineering AUTOMATIC 3D HUMAN ACTION RECOGNITION Ajmal Mian Associate Professor Computer Science & Software Engineering www.csse.uwa.edu.au/~ajmal/ Overview Aim of automatic human action recognition Applications

More information

Collaborative Mapping with Streetlevel Images in the Wild. Yubin Kuang Co-founder and Computer Vision Lead

Collaborative Mapping with Streetlevel Images in the Wild. Yubin Kuang Co-founder and Computer Vision Lead Collaborative Mapping with Streetlevel Images in the Wild Yubin Kuang Co-founder and Computer Vision Lead Mapillary Mapillary is a street-level imagery platform, powered by collaboration and computer vision.

More information

Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization

Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization Marcus A. Brubaker (Toyota Technological Institute at Chicago) Andreas Geiger (Karlsruhe Institute of Technology & MPI Tübingen) Raquel

More information

Object detection with CNNs

Object detection with CNNs Object detection with CNNs 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before CNNs After CNNs 0% 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 year Region proposals

More information

Tracking. Hao Guan( 管皓 ) School of Computer Science Fudan University

Tracking. Hao Guan( 管皓 ) School of Computer Science Fudan University Tracking Hao Guan( 管皓 ) School of Computer Science Fudan University 2014-09-29 Multimedia Video Audio Use your eyes Video Tracking Use your ears Audio Tracking Tracking Video Tracking Definition Given

More information

arxiv: v1 [cs.cv] 11 Apr 2016

arxiv: v1 [cs.cv] 11 Apr 2016 Beyond Brightness Constancy: Learning Noise Models for Optical Flow arxiv:1604.02815v1 [cs.cv] 11 Apr 2016 Dan Rosenbaum School of Computer Science and Engineering Hebrew University of Jerusalem www.cs.huji.ac.il/

More information

Motion Cooperation: Smooth Piece-Wise Rigid Scene Flow from RGB-D Images

Motion Cooperation: Smooth Piece-Wise Rigid Scene Flow from RGB-D Images Motion Cooperation: Smooth Piece-Wise Rigid Scene Flow from RGB-D Images Mariano Jaimez1,2 Mohamed Souiai1 Jo rg Stu ckler1 Javier Gonzalez-Jimenez2 Daniel Cremers1 1 Technische Universita t Mu nchen,

More information

arxiv: v1 [cs.cv] 30 Nov 2017

arxiv: v1 [cs.cv] 30 Nov 2017 Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation Huaizu Jiang 1 Deqing Sun 2 Varun Jampani 2 Ming-Hsuan Yang 3,2 Erik Learned-Miller 1 Jan Kautz 2 1 UMass Amherst

More information

Exploiting Semantic Information and Deep Matching for Optical Flow

Exploiting Semantic Information and Deep Matching for Optical Flow Exploiting Semantic Information and Deep Matching for Optical Flow Min Bai, Wenjie Luo, Kaustav Kundu, Raquel Urtasun Department of Computer Science, University of Toronto {mbai, wenjie, kkundu, urtasun}@cs.toronto.edu

More information

3D Scene Reconstruction with a Mobile Camera

3D Scene Reconstruction with a Mobile Camera 3D Scene Reconstruction with a Mobile Camera 1 Introduction Robert Carrera and Rohan Khanna Stanford University: CS 231A Autonomous supernumerary arms, or "third arms", while still unconventional, hold

More information

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia Deep learning for dense per-pixel prediction Chunhua Shen The University of Adelaide, Australia Image understanding Classification error Convolution Neural Networks 0.3 0.2 0.1 Image Classification [Krizhevsky

More information

Human Detection and Tracking for Video Surveillance: A Cognitive Science Approach

Human Detection and Tracking for Video Surveillance: A Cognitive Science Approach Human Detection and Tracking for Video Surveillance: A Cognitive Science Approach Vandit Gajjar gajjar.vandit.381@ldce.ac.in Ayesha Gurnani gurnani.ayesha.52@ldce.ac.in Yash Khandhediya khandhediya.yash.364@ldce.ac.in

More information

Peripheral drift illusion

Peripheral drift illusion Peripheral drift illusion Does it work on other animals? Computer Vision Motion and Optical Flow Many slides adapted from J. Hays, S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman and others Video A video

More information

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume : CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz NVIDIA Abstract We present a compact but effective CNN model for optical flow, called.

More information

SURVEY OF LOCAL AND GLOBAL OPTICAL FLOW WITH COARSE TO FINE METHOD

SURVEY OF LOCAL AND GLOBAL OPTICAL FLOW WITH COARSE TO FINE METHOD SURVEY OF LOCAL AND GLOBAL OPTICAL FLOW WITH COARSE TO FINE METHOD M.E-II, Department of Computer Engineering, PICT, Pune ABSTRACT: Optical flow as an image processing technique finds its applications

More information

Deep Models for 3D Reconstruction

Deep Models for 3D Reconstruction Deep Models for 3D Reconstruction Andreas Geiger Autonomous Vision Group, MPI for Intelligent Systems, Tübingen Computer Vision and Geometry Group, ETH Zürich October 12, 2017 Max Planck Institute for

More information

3D reconstruction how accurate can it be?

3D reconstruction how accurate can it be? Performance Metrics for Correspondence Problems 3D reconstruction how accurate can it be? Pierre Moulon, Foxel CVPR 2015 Workshop Boston, USA (June 11, 2015) We can capture large environments. But for

More information

FLaME: Fast Lightweight Mesh Estimation using Variational Smoothing on Delaunay Graphs

FLaME: Fast Lightweight Mesh Estimation using Variational Smoothing on Delaunay Graphs FLaME: Fast Lightweight Mesh Estimation using Variational Smoothing on Delaunay Graphs W. Nicholas Greene Robust Robotics Group, MIT CSAIL LPM Workshop IROS 2017 September 28, 2017 with Nicholas Roy 1

More information

PL-SVO: Semi-Direct Monocular Visual Odometry by Combining Points and Line Segments

PL-SVO: Semi-Direct Monocular Visual Odometry by Combining Points and Line Segments 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Daejeon Convention Center October 9-14, 2016, Daejeon, Korea PL-SVO: Semi-Direct Monocular Visual Odometry by Combining Points

More information

Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs

Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs Raymond Ptucha, Rochester Institute of Technology, USA Tutorial-9 May 19, 218 www.nvidia.com/dli R. Ptucha 18 1 Fair Use Agreement

More information

Dynamic Shape Tracking via Region Matching

Dynamic Shape Tracking via Region Matching Dynamic Shape Tracking via Region Matching Ganesh Sundaramoorthi Asst. Professor of EE and AMCS KAUST (Joint work with Yanchao Yang) The Problem: Shape Tracking Given: exact object segmentation in frame1

More information

Synscapes A photorealistic syntehtic dataset for street scene parsing Jonas Unger Department of Science and Technology Linköpings Universitet.

Synscapes A photorealistic syntehtic dataset for street scene parsing Jonas Unger Department of Science and Technology Linköpings Universitet. Synscapes A photorealistic syntehtic dataset for street scene parsing Jonas Unger Department of Science and Technology Linköpings Universitet 7D Labs VINNOVA https://7dlabs.com Photo-realistic image synthesis

More information

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Presented by: Rex Ying and Charles Qi Input: A Single RGB Image Estimate

More information

Augmented Reality, Advanced SLAM, Applications

Augmented Reality, Advanced SLAM, Applications Augmented Reality, Advanced SLAM, Applications Prof. Didier Stricker & Dr. Alain Pagani alain.pagani@dfki.de Lecture 3D Computer Vision AR, SLAM, Applications 1 Introduction Previous lectures: Basics (camera,

More information

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Object Detection CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Problem Description Arguably the most important part of perception Long term goals for object recognition: Generalization

More information

Regionlet Object Detector with Hand-crafted and CNN Feature

Regionlet Object Detector with Hand-crafted and CNN Feature Regionlet Object Detector with Hand-crafted and CNN Feature Xiaoyu Wang Research Xiaoyu Wang Research Ming Yang Horizon Robotics Shenghuo Zhu Alibaba Group Yuanqing Lin Baidu Overview of this section Regionlet

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

Tri-modal Human Body Segmentation

Tri-modal Human Body Segmentation Tri-modal Human Body Segmentation Master of Science Thesis Cristina Palmero Cantariño Advisor: Sergio Escalera Guerrero February 6, 2014 Outline 1 Introduction 2 Tri-modal dataset 3 Proposed baseline 4

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Q K 1 u v 1 What is pose estimation?

More information

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Allan Zelener Dissertation Proposal December 12 th 2016 Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Overview 1. Introduction to 3D Object Identification

More information

Self Driving. DNN * * Reinforcement * Unsupervised *

Self Driving. DNN * * Reinforcement * Unsupervised * CNN 응용 Methods Traditional Deep-Learning based Non-machine Learning Machine-Learning based method Supervised SVM MLP CNN RNN (LSTM) Localizati on GPS, SLAM Self Driving Perception Pedestrian detection

More information

Towards a Simulation Driven Stereo Vision System

Towards a Simulation Driven Stereo Vision System Towards a Simulation Driven Stereo Vision System Martin Peris Cyberdyne Inc., Japan Email: martin peris@cyberdyne.jp Sara Martull University of Tsukuba, Japan Email: info@martull.com Atsuto Maki Toshiba

More information