Training models for road scene understanding with automated ground truth Dan Levi

Size: px
Start display at page:

Download "Training models for road scene understanding with automated ground truth Dan Levi"

Transcription

1 Training models for road scene understanding with automated ground truth Dan Levi With: Noa Garnett, Ethan Fetaya, Shai Silberstein, Rafi Cohen, Shaul Oron, Uri Verner, Ariel Ayash, Kobi Horn, Vlad Golder, Tomer Peer

2 GM Advanced Technical Center in Israel (ATCI)

3 Agenda Road scene understanding Acquiring training data with automated ground truth (AGT) Test cases: General obstacle detection Road segmentation General obstacle classification Curb detection Freespace Challenges and limitations Summary and future work

4 On-board road scene understanding Static: Road edge Road markings, complex lane understanding Signs Obstacles: clutter, construction zone cones Dynamic: Classified objects (cars, pedestrians, bicycles, animals ) General obstacles: animals, carts

5 Obstacle detection: general and category based

6 General obstacles, freespace, road segmentation - Road segmentation (vision) Mono-camera using semantic segmentation - General obstacle detection - Freespace (all non-flat road delimiters) 3D sensors (Stereo, Lidar)

7 Training Data Revisiting Unreasonable Effectiveness of Data in Deep Learning Era [Sun et al. 2017]

8 Manual Annotation The Cityscapes Dataset for Semantic Urban Scene Understanding [Cordts et al. 2016] Time: ~60 min per image ~1000 annotators

9 Computer graphics simulated data Photo-realism Scenario generation

10 Simulated data for optical flow FlowNet: Learning Optical Flow with Convolutional Networks [Dosovitskiy et. al. 2015]

11 Automated ground truth(agt) / Cross-sensor learning Velodyne LIDAR

12 Depth from a single image Semi-Supervised Deep Learning for Monocular Depth Map Prediction [Kuznietsov et al. 2017]

13 Map supervised road detection Map-supervised road detection [Laddha et al. 2016]

14 AGT for road scene understanding general setup Supervising sensors Target sensors Perquisite: Full alignment and synchronization between sensors

15 AGT for road scene understanding: scheme Supervising sensors: Target sensors: Task: object detection Data AGT: 1. Compute Task on Supervising sensors: - Offline - Temporal AGT: 2. Project output to target sensor domain Ground truth

16 Automated ground truth / Cross-sensor learning 1. Solve an easier problem - Run time - Completeness 2. Promise - Scalability - Continuous (un-bounded) improvement 1. Challenging setup 2. Annotation quality / accuracy 3. Inherent limitations of supervisor : - Learning beyond supervisor capabilities - Learning from the same sensor (bootstrapping)

17 Supervising sensors: Velodyne HDL64 AGT for General obstacle detection Target sensors: Front camera Task: General obs. Det. Data AGT Ground truth

18 StixelNet: Monocular obstacle detection Levi, Dan, Noa Garnett, Ethan Fetaya. StixelNet : A Deep Convolutional Network for Obstacle Detection and Road Segmentation. In BMVC 2015.

19 StixelNet column based approach INPUT OUTPUT

20 AGT for obstacle detection version I KITTI Dataset [Geiger et al. 2013]

21 AGT for obstacle detection version I Velodyne LIDAR Raw images: 56 sequences (50 Train, 6 Test). 6,000 train images (every 5 th frame) and 800 test. Ground truth result: After GT: 331K training columns and 57K testing

22 AGT for general obstacles in image plane 1. Project Lidar points to image plane 2. Interpolate depth to all pixels 3. Find columns with depth profile typical to transition: road roughly vertical obstacle Figure taken from [Fernandes et al. 2015]

23 General obstacles AGT examples Limitations: - Cannot handle: close obstacles, clear columns - Low coverage (~30%)

24 StixelNet (v1) 5 Layer CNN Layer 1: convolution al Layer 2: convolution al Layer 3: fully connected Layer 4: fully connected Layer 5: fully connected 5 1 INPUT Max poolin g (8X4) Max poolin g (4X3) Dense Dense Dense OUTPUT y

25

26 Experimental Results (Max Probability)

27 Comparison with stereo Stereo [Badino et al. 2009] StixelNet

28 Supervising sensors: AGT for Obstacle classification Target sensors: Front camera Task: Obstacle classification Data AGT Ground truth

29 AGT for obstacle classification Image based detection Lidar based verification Source:

30 Obstacle classification trained net result: pedestrians

31 AGT for General obstacle detection (ver 2) Supervising sensors: Velodyne HDL64 Target sensors: Front camera Task: General obs. Det. Data AGT Ground truth

32 Unified network: StixelNet + Object detection + Object pose estimation Noa Garnett, Shai Silberstein, Shaul Oron, Ethan Fetaya, Uri Verner, Ariel Ayash, Vlad Goldner, Rafi Cohen, Kobi Horn, Dan Levi. Real-time category-based and general obstacle detection for autonomous driving. CVRSUAD Workshop, ICCV2017.

33 Object-centric obstacle detection AGT Estimate and subtract road plane 3D Clustering (objects above 20cm) Detect clear columns: No object above 5cm + far enough returns near obstacles: 1. Below lidar coverage 2. During training Project to image, smooth Bottom contour via dynamic programming

34 General obstacles: old vs. new AGT

35 New general obstacle dataset with fisheye lens camera #images Kitti--train 6K 5M Internaltrain 16K #instances (columns) 20M Kitti-test K Internal-test K

36 StixelNet2: New network architecture

37 Improved results on KITTI

38 Experimental results with new AGT Old New 0 Kitti - max Pr. Internal - max Pr. kitti - avg. Pr Internal - avg. Pr

39 Experimental results with new AGT Edge cases excluded ( near, clear ) Chart Old New Title Kitti - max Pr. Internal - max Pr. kitti - avg. Pr Internal - avg. Pr

40 Cross dataset generalization kitti-test max kitti-test avg internal-test max internal-test avg Train on KITTI Train on internal Train on both

41 Supervising sensors: AGT for car pose estimation Target sensors: Task: pose estimation IMU Data AGT Ground truth

42 AGT for pose estimation Multi sensor, temporal object detection 8 orientation bins pose representation Source: Dynamic Static

43 Pose estimation trained with mixed AGT and Manual

44 AGT for Curb detection

45 Curb detection trained net result examples

46 Supervising sensors: AGT for freespace Target sensors: Task: freespace Data AGT Ground truth

47 AGT for freespace with 3D beams Estimate and subtract road plane Analyze single Lidar Beam Velodyne Project limit to ground plane Velodyn e scan direction Project freespace limit to image plane, find near and clear

48 Obstacles vs. Freespace AGT

49 Freespace + object detection + car 3D pose

50 Freespace + object detection + car 3D pose

51 Freespace + object detection + car 3D pose

52 Freespace + object detection + car 3D pose

53 Freespace + object detection + car 3D pose

54 Finetuning from AGT: road segmentation 1. Fine-tune on KITTI Road segmentation (manually labelled) 2. Graph-cut segmentation 3. State-of-the-art accuracy among non-anonymous (94.88% MaxF)

55 AGT challenges: How accurate is the AGT?

56 AGT challenges: calibration, synchronization

57 AGT Perception mistakes Non-flat road Assumptions / coverage

58 Thank you!

Training models for road scene understanding with automated ground truth Dan Levi

Training models for road scene understanding with automated ground truth Dan Levi Training models for road scene understanding with automated ground truth Dan Levi With: Noa Garnett, Ethan Fetaya, Shai Silberstein, Rafi Cohen, Shaul Oron, Uri Verner, Ariel Ayash, Kobi Horn, Vlad Golder

More information

Real-time category-based and general obstacle detection for autonomous driving

Real-time category-based and general obstacle detection for autonomous driving Real-time category-based and general obstacle detection for autonomous driving Noa Garnett Shai Silberstein Shaul Oron Ethan Fetaya Uri Verner Ariel Ayash Vlad Goldner Rafi Cohen Kobi Horn Dan Levi Advanced

More information

Measuring the World: Designing Robust Vehicle Localization for Autonomous Driving. Frank Schuster, Dr. Martin Haueis

Measuring the World: Designing Robust Vehicle Localization for Autonomous Driving. Frank Schuster, Dr. Martin Haueis Measuring the World: Designing Robust Vehicle Localization for Autonomous Driving Frank Schuster, Dr. Martin Haueis Agenda Motivation: Why measure the world for autonomous driving? Map Content: What do

More information

Visual Perception for Autonomous Driving on the NVIDIA DrivePX2 and using SYNTHIA

Visual Perception for Autonomous Driving on the NVIDIA DrivePX2 and using SYNTHIA Visual Perception for Autonomous Driving on the NVIDIA DrivePX2 and using SYNTHIA Dr. Juan C. Moure Dr. Antonio Espinosa http://grupsderecerca.uab.cat/hpca4se/en/content/gpu http://adas.cvc.uab.es/elektra/

More information

Depth from Stereo. Dominic Cheng February 7, 2018

Depth from Stereo. Dominic Cheng February 7, 2018 Depth from Stereo Dominic Cheng February 7, 2018 Agenda 1. Introduction to stereo 2. Efficient Deep Learning for Stereo Matching (W. Luo, A. Schwing, and R. Urtasun. In CVPR 2016.) 3. Cascade Residual

More information

Creating Affordable and Reliable Autonomous Vehicle Systems

Creating Affordable and Reliable Autonomous Vehicle Systems Creating Affordable and Reliable Autonomous Vehicle Systems Shaoshan Liu shaoshan.liu@perceptin.io Autonomous Driving Localization Most crucial task of autonomous driving Solutions: GNSS but withvariations,

More information

W4. Perception & Situation Awareness & Decision making

W4. Perception & Situation Awareness & Decision making W4. Perception & Situation Awareness & Decision making Robot Perception for Dynamic environments: Outline & DP-Grids concept Dynamic Probabilistic Grids Bayesian Occupancy Filter concept Dynamic Probabilistic

More information

Towards Autonomous Vehicle. What is an autonomous vehicle? Vehicle driving on its own with zero mistakes How? Using sensors

Towards Autonomous Vehicle. What is an autonomous vehicle? Vehicle driving on its own with zero mistakes How? Using sensors 7 May 2017 Disclaimer Towards Autonomous Vehicle What is an autonomous vehicle? Vehicle driving on its own with zero mistakes How? Using sensors Why Vision Sensors? Humans use both eyes as main sense

More information

Multi-View 3D Object Detection Network for Autonomous Driving

Multi-View 3D Object Detection Network for Autonomous Driving Multi-View 3D Object Detection Network for Autonomous Driving Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, Tian Xia CVPR 2017 (Spotlight) Presented By: Jason Ku Overview Motivation Dataset Network Architecture

More information

Collaborative Mapping with Streetlevel Images in the Wild. Yubin Kuang Co-founder and Computer Vision Lead

Collaborative Mapping with Streetlevel Images in the Wild. Yubin Kuang Co-founder and Computer Vision Lead Collaborative Mapping with Streetlevel Images in the Wild Yubin Kuang Co-founder and Computer Vision Lead Mapillary Mapillary is a street-level imagery platform, powered by collaboration and computer vision.

More information

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS Zhao Chen Machine Learning Intern, NVIDIA ABOUT ME 5th year PhD student in physics @ Stanford by day, deep learning computer vision scientist

More information

VISION FOR AUTOMOTIVE DRIVING

VISION FOR AUTOMOTIVE DRIVING VISION FOR AUTOMOTIVE DRIVING French Japanese Workshop on Deep Learning & AI, Paris, October 25th, 2017 Quoc Cuong PHAM, PhD Vision and Content Engineering Lab AI & MACHINE LEARNING FOR ADAS AND SELF-DRIVING

More information

Non-flat Road Detection Based on A Local Descriptor

Non-flat Road Detection Based on A Local Descriptor Non-flat Road Detection Based on A Local Descriptor Kangru Wang, Lei Qu, Lili Chen, Yuzhang Gu, Xiaolin Zhang Abstrct The detection of road surface and free space remains challenging for non-flat plane,

More information

Towards Fully-automated Driving. tue-mps.org. Challenges and Potential Solutions. Dr. Gijs Dubbelman Mobile Perception Systems EE-SPS/VCA

Towards Fully-automated Driving. tue-mps.org. Challenges and Potential Solutions. Dr. Gijs Dubbelman Mobile Perception Systems EE-SPS/VCA Towards Fully-automated Driving Challenges and Potential Solutions Dr. Gijs Dubbelman Mobile Perception Systems EE-SPS/VCA Mobile Perception Systems 6 PhDs, 1 postdoc, 1 project manager, 2 software engineers

More information

Synscapes A photorealistic syntehtic dataset for street scene parsing Jonas Unger Department of Science and Technology Linköpings Universitet.

Synscapes A photorealistic syntehtic dataset for street scene parsing Jonas Unger Department of Science and Technology Linköpings Universitet. Synscapes A photorealistic syntehtic dataset for street scene parsing Jonas Unger Department of Science and Technology Linköpings Universitet 7D Labs VINNOVA https://7dlabs.com Photo-realistic image synthesis

More information

Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey

Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey Evangelos MALTEZOS, Charalabos IOANNIDIS, Anastasios DOULAMIS and Nikolaos DOULAMIS Laboratory of Photogrammetry, School of Rural

More information

TorontoCity: Seeing the World with a Million Eyes

TorontoCity: Seeing the World with a Million Eyes TorontoCity: Seeing the World with a Million Eyes Authors Shenlong Wang, Min Bai, Gellert Mattyus, Hang Chu, Wenjie Luo, Bin Yang Justin Liang, Joel Cheverie, Sanja Fidler, Raquel Urtasun * Project Completed

More information

Deep Incremental Scene Understanding. Federico Tombari & Christian Rupprecht Technical University of Munich, Germany

Deep Incremental Scene Understanding. Federico Tombari & Christian Rupprecht Technical University of Munich, Germany Deep Incremental Scene Understanding Federico Tombari & Christian Rupprecht Technical University of Munich, Germany C. Couprie et al. "Toward Real-time Indoor Semantic Segmentation Using Depth Information"

More information

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Object Detection CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Problem Description Arguably the most important part of perception Long term goals for object recognition: Generalization

More information

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia Deep learning for dense per-pixel prediction Chunhua Shen The University of Adelaide, Australia Image understanding Classification error Convolution Neural Networks 0.3 0.2 0.1 Image Classification [Krizhevsky

More information

Detecting the Unexpected: The Path to Road Obstacles Prevention in Autonomous Driving

Detecting the Unexpected: The Path to Road Obstacles Prevention in Autonomous Driving Detecting the Unexpected: The Path to Road Obstacles Prevention in Autonomous Driving Shmoolik Mangan, PhD Algorithms Development Manager, VAYAVISION AutonomousTech TLV Israel 2018 VAYAVISION s approach

More information

Vision based autonomous driving - A survey of recent methods. -Tejus Gupta

Vision based autonomous driving - A survey of recent methods. -Tejus Gupta Vision based autonomous driving - A survey of recent methods -Tejus Gupta Presently, there are three major paradigms for vision based autonomous driving: Directly map input image to driving action using

More information

Machine learning based automatic extrinsic calibration of an onboard monocular camera for driving assistance applications on smart mobile devices

Machine learning based automatic extrinsic calibration of an onboard monocular camera for driving assistance applications on smart mobile devices Technical University of Cluj-Napoca Image Processing and Pattern Recognition Research Center www.cv.utcluj.ro Machine learning based automatic extrinsic calibration of an onboard monocular camera for driving

More information

Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains

Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains Jiahao Pang 1 Wenxiu Sun 1 Chengxi Yang 1 Jimmy Ren 1 Ruichao Xiao 1 Jin Zeng 1 Liang Lin 1,2 1 SenseTime Research

More information

Mask R-CNN. By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi

Mask R-CNN. By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi Mask R-CNN By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi Types of Computer Vision Tasks http://cs231n.stanford.edu/ Semantic vs Instance Segmentation Image

More information

Self Driving. DNN * * Reinforcement * Unsupervised *

Self Driving. DNN * * Reinforcement * Unsupervised * CNN 응용 Methods Traditional Deep-Learning based Non-machine Learning Machine-Learning based method Supervised SVM MLP CNN RNN (LSTM) Localizati on GPS, SLAM Self Driving Perception Pedestrian detection

More information

2 OVERVIEW OF RELATED WORK

2 OVERVIEW OF RELATED WORK Utsushi SAKAI Jun OGATA This paper presents a pedestrian detection system based on the fusion of sensors for LIDAR and convolutional neural network based image classification. By using LIDAR our method

More information

Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization

Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization Marcus A. Brubaker (Toyota Technological Institute at Chicago) Andreas Geiger (Karlsruhe Institute of Technology & MPI Tübingen) Raquel

More information

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Allan Zelener Dissertation Proposal December 12 th 2016 Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Overview 1. Introduction to 3D Object Identification

More information

arxiv: v1 [cs.cv] 16 Mar 2018

arxiv: v1 [cs.cv] 16 Mar 2018 The ApolloScape Dataset for Autonomous Driving Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao, Dingfu Zhou, Peng Wang, Yuanqing Lin, and Ruigang Yang arxiv:1803.06184v1 [cs.cv] 16 Mar 2018 Baidu

More information

LEARNING RIGIDITY IN DYNAMIC SCENES FOR SCENE FLOW ESTIMATION

LEARNING RIGIDITY IN DYNAMIC SCENES FOR SCENE FLOW ESTIMATION LEARNING RIGIDITY IN DYNAMIC SCENES FOR SCENE FLOW ESTIMATION Kihwan Kim, Senior Research Scientist Zhaoyang Lv, Kihwan Kim, Alejandro Troccoli, Deqing Sun, James M. Rehg, Jan Kautz CORRESPENDECES IN COMPUTER

More information

CONTENT ENGINEERING & VISION LABORATORY. Régis Vinciguerra

CONTENT ENGINEERING & VISION LABORATORY. Régis Vinciguerra CONTENT ENGINEERING & VISION LABORATORY Régis Vinciguerra regis.vinciguerra@cea.fr ALTERNATIVE ENERGIES AND ATOMIC ENERGY COMMISSION Military Applications Division (DAM) Nuclear Energy Division (DEN) Technological

More information

Joint Object Detection and Viewpoint Estimation using CNN features

Joint Object Detection and Viewpoint Estimation using CNN features Joint Object Detection and Viewpoint Estimation using CNN features Carlos Guindel, David Martín and José M. Armingol cguindel@ing.uc3m.es Intelligent Systems Laboratory Universidad Carlos III de Madrid

More information

Pedestrian Detection Using Correlated Lidar and Image Data EECS442 Final Project Fall 2016

Pedestrian Detection Using Correlated Lidar and Image Data EECS442 Final Project Fall 2016 edestrian Detection Using Correlated Lidar and Image Data EECS442 Final roject Fall 2016 Samuel Rohrer University of Michigan rohrer@umich.edu Ian Lin University of Michigan tiannis@umich.edu Abstract

More information

Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018

Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018 Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018 Asaf Moses Systematics Ltd., Technical Product Manager aviasafm@systematics.co.il 1 Autonomous

More information

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss AAAI 2018, New Orleans, USA Simon Meister, Junhwa Hur, and Stefan Roth Department of Computer Science, TU Darmstadt 2 Deep

More information

Amodal and Panoptic Segmentation. Stephanie Liu, Andrew Zhou

Amodal and Panoptic Segmentation. Stephanie Liu, Andrew Zhou Amodal and Panoptic Segmentation Stephanie Liu, Andrew Zhou This lecture: 1. 2. 3. 4. Semantic Amodal Segmentation Cityscapes Dataset ADE20K Dataset Panoptic Segmentation Semantic Amodal Segmentation Yan

More information

A System for Real-time Detection and Tracking of Vehicles from a Single Car-mounted Camera

A System for Real-time Detection and Tracking of Vehicles from a Single Car-mounted Camera A System for Real-time Detection and Tracking of Vehicles from a Single Car-mounted Camera Claudio Caraffi, Tomas Vojir, Jiri Trefny, Jan Sochman, Jiri Matas Toyota Motor Europe Center for Machine Perception,

More information

Realtime Object Detection and Segmentation for HD Mapping

Realtime Object Detection and Segmentation for HD Mapping Realtime Object Detection and Segmentation for HD Mapping William Raveane Lead AI Engineer Bahram Yoosefizonooz Technical Director NavInfo Europe Advanced Research Lab Presented at GTC Europe 2018 AI in

More information

Semantic Segmentation

Semantic Segmentation Semantic Segmentation UCLA:https://goo.gl/images/I0VTi2 OUTLINE Semantic Segmentation Why? Paper to talk about: Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell,

More information

Calibration of a rotating multi-beam Lidar

Calibration of a rotating multi-beam Lidar The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2010, Taipei, Taiwan Calibration of a rotating multi-beam Lidar Naveed Muhammad 1,2 and Simon Lacroix 1,2 Abstract

More information

arxiv: v1 [cs.cv] 20 Dec 2016

arxiv: v1 [cs.cv] 20 Dec 2016 End-to-End Pedestrian Collision Warning System based on a Convolutional Neural Network with Semantic Segmentation arxiv:1612.06558v1 [cs.cv] 20 Dec 2016 Heechul Jung heechul@dgist.ac.kr Min-Kook Choi mkchoi@dgist.ac.kr

More information

arxiv: v2 [cs.cv] 12 Jul 2018

arxiv: v2 [cs.cv] 12 Jul 2018 The ApolloScape Dataset for Autonomous Driving Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao, Dingfu Zhou, Peng Wang, Yuanqing Lin, and Ruigang Yang arxiv:1803.06184v2 [cs.cv] 12 Jul 2018 Baidu

More information

Camera-based Vehicle Velocity Estimation using Spatiotemporal Depth and Motion Features

Camera-based Vehicle Velocity Estimation using Spatiotemporal Depth and Motion Features Camera-based Vehicle Velocity Estimation using Spatiotemporal Depth and Motion Features Moritz Kampelmuehler* kampelmuehler@student.tugraz.at Michael Mueller* michael.g.mueller@student.tugraz.at Christoph

More information

Automatic Dense Semantic Mapping From Visual Street-level Imagery

Automatic Dense Semantic Mapping From Visual Street-level Imagery Automatic Dense Semantic Mapping From Visual Street-level Imagery Sunando Sengupta [1], Paul Sturgess [1], Lubor Ladicky [2], Phillip H.S. Torr [1] [1] Oxford Brookes University [2] Visual Geometry Group,

More information

Computing the Stereo Matching Cost with CNN

Computing the Stereo Matching Cost with CNN University at Austin Figure. The of lefttexas column displays the left input image, while the right column displays the output of our stereo method. Examples are sorted by difficulty, with easy examples

More information

Cloud-based Large Scale Video Analysis

Cloud-based Large Scale Video Analysis Cloud-based Large Scale Video Analysis Marcos Nieto Principal Researcher Vicomtech-IK4 Joachim Kreikemeier Manager V-Drive Valeo Schalter und Sensoren GmbH INDEX 1. Cloud-LSVA project 2. ADAS validation

More information

Ground Plane Detection with a Local Descriptor

Ground Plane Detection with a Local Descriptor Ground Plane Detection with a Local Descriptor Kangru Wang, Lei Qu, Lili Chen, Yuzhang Gu, Dongchen Zhu, Xiaolin Zhang Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong April 21st, 2016 Today Administrivia Free parameters in an approach, model, or algorithm? Egocentric videos by Aisha

More information

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation Object detection using Region Proposals (RCNN) Ernest Cheung COMP790-125 Presentation 1 2 Problem to solve Object detection Input: Image Output: Bounding box of the object 3 Object detection using CNN

More information

From 3D descriptors to monocular 6D pose: what have we learned?

From 3D descriptors to monocular 6D pose: what have we learned? ECCV Workshop on Recovering 6D Object Pose From 3D descriptors to monocular 6D pose: what have we learned? Federico Tombari CAMP - TUM Dynamic occlusion Low latency High accuracy, low jitter No expensive

More information

Team Aware Perception System using Stereo Vision and Radar

Team Aware Perception System using Stereo Vision and Radar Team Aware Perception System using Stereo Vision and Radar System Development Review 03/ 08 / 2017 Amit Agarwal Harry Golash Yihao Qian Menghan Zhang Zihao (Theo) Zhang Project Description Develop a standalone

More information

Visual features detection based on deep neural network in autonomous driving tasks

Visual features detection based on deep neural network in autonomous driving tasks 430 Fomin I., Gromoshinskii D., Stepanov D. Visual features detection based on deep neural network in autonomous driving tasks Ivan Fomin, Dmitrii Gromoshinskii, Dmitry Stepanov Computer vision lab Russian

More information

MULTI-MODAL MAPPING. Robotics Day, 31 Mar Frank Mascarich, Shehryar Khattak, Tung Dang

MULTI-MODAL MAPPING. Robotics Day, 31 Mar Frank Mascarich, Shehryar Khattak, Tung Dang MULTI-MODAL MAPPING Robotics Day, 31 Mar 2017 Frank Mascarich, Shehryar Khattak, Tung Dang Application-Specific Sensors Cameras TOF Cameras PERCEPTION LiDAR IMU Localization Mapping Autonomy Robotic Perception

More information

EVALUATION OF DEEP LEARNING BASED STEREO MATCHING METHODS: FROM GROUND TO AERIAL IMAGES

EVALUATION OF DEEP LEARNING BASED STEREO MATCHING METHODS: FROM GROUND TO AERIAL IMAGES EVALUATION OF DEEP LEARNING BASED STEREO MATCHING METHODS: FROM GROUND TO AERIAL IMAGES J. Liu 1, S. Ji 1,*, C. Zhang 1, Z. Qin 1 1 School of Remote Sensing and Information Engineering, Wuhan University,

More information

Unified, real-time object detection

Unified, real-time object detection Unified, real-time object detection Final Project Report, Group 02, 8 Nov 2016 Akshat Agarwal (13068), Siddharth Tanwar (13699) CS698N: Recent Advances in Computer Vision, Jul Nov 2016 Instructor: Gaurav

More information

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601 Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network Nathan Sun CIS601 Introduction Face ID is complicated by alterations to an individual s appearance Beard,

More information

Object Detection on Self-Driving Cars in China. Lingyun Li

Object Detection on Self-Driving Cars in China. Lingyun Li Object Detection on Self-Driving Cars in China Lingyun Li Introduction Motivation: Perception is the key of self-driving cars Data set: 10000 images with annotation 2000 images without annotation (not

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

Depth Learning: When Depth Estimation Meets Deep Learning

Depth Learning: When Depth Estimation Meets Deep Learning Depth Learning: When Depth Estimation Meets Deep Learning Prof. Liang LIN SenseTime Research & Sun Yat-sen University NITRE, June 18, 2018 Outline Part 1. Introduction Motivation Stereo Matching Single

More information

Automotive 3D Object Detection Without Target Domain Annotations

Automotive 3D Object Detection Without Target Domain Annotations Master of Science Thesis in Electrical Engineering Department of Electrical Engineering, Linköping University, 2018 Automotive 3D Object Detection Without Target Domain Annotations Erik Linder-Norén and

More information

Efficient L-Shape Fitting for Vehicle Detection Using Laser Scanners

Efficient L-Shape Fitting for Vehicle Detection Using Laser Scanners Efficient L-Shape Fitting for Vehicle Detection Using Laser Scanners Xiao Zhang, Wenda Xu, Chiyu Dong, John M. Dolan, Electrical and Computer Engineering, Carnegie Mellon University Robotics Institute,

More information

When Big Datasets are Not Enough: The need for visual virtual worlds.

When Big Datasets are Not Enough: The need for visual virtual worlds. When Big Datasets are Not Enough: The need for visual virtual worlds. Alan Yuille Bloomberg Distinguished Professor Departments of Cognitive Science and Computer Science Johns Hopkins University Computational

More information

ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials)

ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials) ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials) Yinda Zhang 1,2, Sameh Khamis 1, Christoph Rhemann 1, Julien Valentin 1, Adarsh Kowdle 1, Vladimir

More information

On Board 6D Visual Sensors for Intersection Driving Assistance Systems

On Board 6D Visual Sensors for Intersection Driving Assistance Systems On Board 6D Visual Sensors for Intersection Driving Assistance Systems S. Nedevschi, T. Marita, R. Danescu, F. Oniga, S. Bota, I. Haller, C. Pantilie, M. Drulea, C. Golban Sergiu.Nedevschi@cs.utcluj.ro

More information

Epipolar geometry-based ego-localization using an in-vehicle monocular camera

Epipolar geometry-based ego-localization using an in-vehicle monocular camera Epipolar geometry-based ego-localization using an in-vehicle monocular camera Haruya Kyutoku 1, Yasutomo Kawanishi 1, Daisuke Deguchi 1, Ichiro Ide 1, Hiroshi Murase 1 1 : Nagoya University, Japan E-mail:

More information

iqmulus/terramobilita benchmark on Urban Analysis

iqmulus/terramobilita benchmark on Urban Analysis iqmulus/terramobilita benchmark on Urban Analysis Bruno Vallet, Mathieu Brédif, Béatriz Marcotegui, Andres Serna, Nicolas Paparoditis 1 / 50 Introduction 2 / 50 Introduction Mobile laser scanning (MLS)

More information

The Hilbert Problems of Computer Vision. Jitendra Malik UC Berkeley & Google, Inc.

The Hilbert Problems of Computer Vision. Jitendra Malik UC Berkeley & Google, Inc. The Hilbert Problems of Computer Vision Jitendra Malik UC Berkeley & Google, Inc. This talk The computational power of the human brain Research is the art of the soluble Hilbert problems, circa 2004 Hilbert

More information

(Deep) Learning for Robot Perception and Navigation. Wolfram Burgard

(Deep) Learning for Robot Perception and Navigation. Wolfram Burgard (Deep) Learning for Robot Perception and Navigation Wolfram Burgard Deep Learning for Robot Perception (and Navigation) Lifeng Bo, Claas Bollen, Thomas Brox, Andreas Eitel, Dieter Fox, Gabriel L. Oliveira,

More information

Simulation: A Must for Autonomous Driving

Simulation: A Must for Autonomous Driving Simulation: A Must for Autonomous Driving NVIDIA GTC 2018 (SILICON VALLEY) / Talk ID: S8859 Rohit Ramanna Business Development Manager Smart Virtual Prototyping, ESI North America Rodolphe Tchalekian EMEA

More information

arxiv: v1 [cs.cv] 4 Aug 2017

arxiv: v1 [cs.cv] 4 Aug 2017 Augmented Reality Meets Computer Vision : Efficient Data Generation for Urban Driving Scenes Hassan Abu Alhaija 1 Siva Karthik Mustikovela 1 Lars Mescheder 2 Andreas Geiger 2,3 Carsten Rother 1 arxiv:1708.01566v1

More information

S7348: Deep Learning in Ford's Autonomous Vehicles. Bryan Goodman Argo AI 9 May 2017

S7348: Deep Learning in Ford's Autonomous Vehicles. Bryan Goodman Argo AI 9 May 2017 S7348: Deep Learning in Ford's Autonomous Vehicles Bryan Goodman Argo AI 9 May 2017 1 Ford s 12 Year History in Autonomous Driving Today: examples from Stereo image processing Object detection Using RNN

More information

Flow Estimation. Min Bai. February 8, University of Toronto. Min Bai (UofT) Flow Estimation February 8, / 47

Flow Estimation. Min Bai. February 8, University of Toronto. Min Bai (UofT) Flow Estimation February 8, / 47 Flow Estimation Min Bai University of Toronto February 8, 2016 Min Bai (UofT) Flow Estimation February 8, 2016 1 / 47 Outline Optical Flow - Continued Min Bai (UofT) Flow Estimation February 8, 2016 2

More information

Efficient Segmentation-Aided Text Detection For Intelligent Robots

Efficient Segmentation-Aided Text Detection For Intelligent Robots Efficient Segmentation-Aided Text Detection For Intelligent Robots Junting Zhang, Yuewei Na, Siyang Li, C.-C. Jay Kuo University of Southern California Outline Problem Definition and Motivation Related

More information

Mapping with Dynamic-Object Probabilities Calculated from Single 3D Range Scans

Mapping with Dynamic-Object Probabilities Calculated from Single 3D Range Scans Mapping with Dynamic-Object Probabilities Calculated from Single 3D Range Scans Philipp Ruchti Wolfram Burgard Abstract Various autonomous robotic systems require maps for robust and safe navigation. Particularly

More information

Optical flow. Cordelia Schmid

Optical flow. Cordelia Schmid Optical flow Cordelia Schmid Motion field The motion field is the projection of the 3D scene motion into the image Optical flow Definition: optical flow is the apparent motion of brightness patterns in

More information

Perception, Planning, Control, and Coordination for Autonomous Vehicles

Perception, Planning, Control, and Coordination for Autonomous Vehicles machines Article Perception, Planning, Control, and Coordination for Autonomous Vehicles Scott Drew Pendleton 1, *, Hans Andersen 1, Xinxin Du 2, Xiaotong Shen 2, Malika Meghjani 2, You Hong Eng 2, Daniela

More information

Towards a visual perception system for LNG pipe inspection

Towards a visual perception system for LNG pipe inspection Towards a visual perception system for LNG pipe inspection LPV Project Team: Brett Browning (PI), Peter Rander (co PI), Peter Hansen Hatem Alismail, Mohamed Mustafa, Joey Gannon Qri8 Lab A Brief Overview

More information

Scene Understanding Networks for Autonomous Driving based on Around View Monitoring System

Scene Understanding Networks for Autonomous Driving based on Around View Monitoring System Scene Understanding Networks for Autonomous Driving based on Around View Monitoring System JeongYeol Baek 1,*, Ioana Veronica Chelu 2,*, Livia Iordache 2, Vlad Paunescu 2, HyunJoo Ryu 1, Alexandru Ghiuta

More information

Regionlet Object Detector with Hand-crafted and CNN Feature

Regionlet Object Detector with Hand-crafted and CNN Feature Regionlet Object Detector with Hand-crafted and CNN Feature Xiaoyu Wang Research Xiaoyu Wang Research Ming Yang Horizon Robotics Shenghuo Zhu Alibaba Group Yuanqing Lin Baidu Overview of this section Regionlet

More information

Quality Assurance and Quality Control Procedures for Survey-Grade Mobile Mapping Systems

Quality Assurance and Quality Control Procedures for Survey-Grade Mobile Mapping Systems Quality Assurance and Quality Control Procedures for Survey-Grade Mobile Mapping Systems Latin America Geospatial Forum November, 2015 Agenda 1. Who is Teledyne Optech 2. The Lynx Mobile Mapper 3. Mobile

More information

Image processing techniques for driver assistance. Razvan Itu June 2014, Technical University Cluj-Napoca

Image processing techniques for driver assistance. Razvan Itu June 2014, Technical University Cluj-Napoca Image processing techniques for driver assistance Razvan Itu June 2014, Technical University Cluj-Napoca Introduction Computer vision & image processing from wiki: any form of signal processing for which

More information

Computer Vision: Making machines see

Computer Vision: Making machines see Computer Vision: Making machines see Roberto Cipolla Department of Engineering http://www.eng.cam.ac.uk/~cipolla/people.html http://www.toshiba.eu/eu/cambridge-research- Laboratory/ Vision: what is where

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps

OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps Georgios Floros, Benito van der Zander and Bastian Leibe RWTH Aachen University, Germany http://www.vision.rwth-aachen.de floros@vision.rwth-aachen.de

More information

Hide-and-Seek: Forcing a network to be Meticulous for Weakly-supervised Object and Action Localization

Hide-and-Seek: Forcing a network to be Meticulous for Weakly-supervised Object and Action Localization Hide-and-Seek: Forcing a network to be Meticulous for Weakly-supervised Object and Action Localization Krishna Kumar Singh and Yong Jae Lee University of California, Davis ---- Paper Presentation Yixian

More information

Object Detection Based on Deep Learning

Object Detection Based on Deep Learning Object Detection Based on Deep Learning Yurii Pashchenko AI Ukraine 2016, Kharkiv, 2016 Image classification (mostly what you ve seen) http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

More information

Flow-Based Video Recognition

Flow-Based Video Recognition Flow-Based Video Recognition Jifeng Dai Visual Computing Group, Microsoft Research Asia Joint work with Xizhou Zhu*, Yuwen Xiong*, Yujie Wang*, Lu Yuan and Yichen Wei (* interns) Talk pipeline Introduction

More information

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research)

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) Joint Inference in Image Databases via Dense Correspondence Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) My work Throughout the year (and my PhD thesis): Temporal Video Analysis

More information

Developing Algorithms for Robotics and Autonomous Systems

Developing Algorithms for Robotics and Autonomous Systems Developing Algorithms for Robotics and Autonomous Systems Jorik Caljouw 2015 The MathWorks, Inc. 1 Key Takeaway of this Talk Success in developing an autonomous robotics system requires: 1. Multi-domain

More information

Deep Face Recognition. Nathan Sun

Deep Face Recognition. Nathan Sun Deep Face Recognition Nathan Sun Why Facial Recognition? Picture ID or video tracking Higher Security for Facial Recognition Software Immensely useful to police in tracking suspects Your face will be an

More information

3D Convolutional Neural Networks for Landing Zone Detection from LiDAR

3D Convolutional Neural Networks for Landing Zone Detection from LiDAR 3D Convolutional Neural Networks for Landing Zone Detection from LiDAR Daniel Mataruna and Sebastian Scherer Presented by: Sabin Kafle Outline Introduction Preliminaries Approach Volumetric Density Mapping

More information

Stereo Vision Based Traversable Region Detection for Mobile Robots Using U-V-Disparity

Stereo Vision Based Traversable Region Detection for Mobile Robots Using U-V-Disparity Stereo Vision Based Traversable Region Detection for Mobile Robots Using U-V-Disparity ZHU Xiaozhou, LU Huimin, Member, IEEE, YANG Xingrui, LI Yubo, ZHANG Hui College of Mechatronics and Automation, National

More information

SpatialFuser. Offers support for GNSS and INS navigation systems. Supports multiple remote sensing equipment configurations.

SpatialFuser. Offers support for GNSS and INS navigation systems. Supports multiple remote sensing equipment configurations. SPATIALFUSER SpatialFuser SpatialFuser is designed to georeference data acquired by our LiDAR mapping systems into common mapping formats such as LAS/LAZ or GPX. The main purpose of SpatialFuser is to

More information

Learning Semantic Environment Perception for Cognitive Robots

Learning Semantic Environment Perception for Cognitive Robots Learning Semantic Environment Perception for Cognitive Robots Sven Behnke University of Bonn, Germany Computer Science Institute VI Autonomous Intelligent Systems Some of Our Cognitive Robots Equipped

More information

arxiv: v1 [cs.ro] 23 Feb 2018

arxiv: v1 [cs.ro] 23 Feb 2018 IMLS-SLAM: scan-to-model matching based on 3D data Jean-Emmanuel Deschaud 1 1 MINES ParisTech, PSL Research University, Centre for Robotics, 60 Bd St Michel 75006 Paris, France arxiv:1802.08633v1 [cs.ro]

More information

Computer Vision at Cambridge: Reconstruction,Registration and Recognition

Computer Vision at Cambridge: Reconstruction,Registration and Recognition Computer Vision at Cambridge: Reconstruction,Registration and Recognition Roberto Cipolla Research team http://www.eng.cam.ac.uk/~cipolla/people.html Cognitive Systems Engineering Cognitive Systems Engineering

More information

Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing

Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing Supplementary Material Introduction In this supplementary material, Section 2 details the 3D annotation for CAD models and real

More information

Tri-modal Human Body Segmentation

Tri-modal Human Body Segmentation Tri-modal Human Body Segmentation Master of Science Thesis Cristina Palmero Cantariño Advisor: Sergio Escalera Guerrero February 6, 2014 Outline 1 Introduction 2 Tri-modal dataset 3 Proposed baseline 4

More information

Supplementary Material for Sparsity Invariant CNNs

Supplementary Material for Sparsity Invariant CNNs Supplementary Material for Sparsity Invariant CNNs Jonas Uhrig,1,2 Nick Schneider,1,3 Lukas Schneider 1,4 Uwe Franke 1 Thomas Brox 2 Andreas Geiger 4,5 1 Daimler R&D Sindelfingen 2 University of Freiburg

More information