Monte Carlo Simulations

Size: px
Start display at page:

Download "Monte Carlo Simulations"

Transcription

1 Monte Carlo Simulations DESCRIPTION AND APPLICATION

2 Outline Introduction Description of Method Cost Estimating Example Other Considerations

3 Introduction Most interesting things are probabilistic (opinion) Not really probabilistic once you get really down in the weeds but we generally can t control everything so effectively probabilistic When analyzing problems we want to understand the outcome based on the inputs Range Mean Mode Full distribution, if possible

4 Gambling Example Rolling a (fair) 6 sided die The probability of landing on each side is the same What is the average value of a roll? The analytical average is EE xx = 6 xx=1 xx pp(xx) 6 = xx 1 xx=1 6 = 3.5

5 Gambling Example (cont d) We could easily test this by rolling die over and over again Set 1 6, 3, 2, 2, 5, 6, 2, 4, 3, 3 Avg = 3.6 Set 2 1, 1, 2, 1, 1, 2, 1, 4, 4, 1 Avg = 1.8 Set 3 5, 3, 5, 1, 6, 5, 5, 2, 5, 2 Avg = 3.9 For 1000 samples the Avg is 3.53 based on that sample If we know the how to find the answer, why are we doing this? What if there are two dice?

6 Sums of Random Variables The distribution of a sum of independent random variables can be found using a convolution Ex: XX with ff XX xx, YY with ff YY yy Then ZZ = X + Y has ff ZZ zz = ff gg zz = ffxx zz yy gg yy dddd Convolutions for general distributions can be very hard to compute May not have a closed form for many different distribution types Real world is NOT independent! Not guaranteed to be Normal or approximately normal Usually resort to numerical methods to approximate Simulation is the only way to get an answer There may not exist a closed form total distribution

7 Monte Carlo Methods Monte Carlo Methods definitions A class of computational algorithms that rely on repeated random sampling to compute their results (Wikipedia) Any method which solves a problem by generating suitable random numbers and observing that fraction of the numbers obeying some property or properties (Wolfram MathWorld) Specifically NOT a computer but a computing algorithm You could do it all be hand (and Fermi did some of this) Rolling a die is an example of a Monte Carlo simulation Typically use computers because of their speed, memory and reliability Computers can do simple problems really fast without mistakes

8 Monte Carlo History Statistical Sampling methods have been known for many years but are generally infeasible by hand (unless you have a lot of time and patience) Estimating ππ through Buffon s Experiment (18th Century) Predicting experiment results using statistical sampling (Fermi) Calculating the probability of winning solitaire (Ulam) The Modern Age Near the End of WWII, ENIAC provided an opportunity use computers to support the nuclear bomb effort Next several computers were built to increase capability to do Monte Carlo! More Samples is Better! The name Monte Carlo was derived from Stanislaw Ulam s uncle who would borrow money from the family by saying that I just have to go to Monte Carlo

9 Monte Carlo Algorithm Given a specified model with inputs and outputs 1. Define the distribution of possible inputs 2. Generate a set of random inputs 3. Compute (deterministic) outputs based on randomly selected inputs 4. Record data 5. Repeat steps 2-4 as necessary The stopping conditions could be Predetermined number of iterations Precision of outputs (the answer stops changing)

10 Generating Input Samples For univariate distributions, use the inverse of the CDF Inverse CDFs only require numbers (probability values) in [0, 1]

11 Generating Input Samples With the Inverse input distribution(s) selected we only need to generate random numbers in [0,1] Two Options: Observe some physical process Atmospheric noise, Lottery machines, etc. (TRNG) Use an algorithm to generate sufficiently random numbers Pseudorandom number generator (PRNG)

12 Pseudorandom Presented at the 2017 ICEAA Professional Development & Training Workshop Number Generators Algorithms that use a seed value or a previous value to generate a new number in a sequence There are lots of pseudo random number generators Only some of them are actually good

13 PRNG Quality Quality PRNGs for Monte Carlo Simulations have the following characteristics Good Distribution Coverage Seemingly unpredictable Long Period Repeatability Efficiency Any PRNG that doesn t have these qualities may be insufficient for Monte Carlo sampling Crystal Ball uses an Multiplicative Congruential Generator (older but has 8 different options (Mersenne Twister as default)

14 Other Considerations AKA - ADVANCED TOPICS

15 Correlation It is essential to account for relationships among inputs! Correlation captures the essence of Drucker s Law*: If one thing goes wrong, everything else will, and at the same time. Correlation is a pairwise measure of how two inputs vary at the same time Values range from [-1, 1] Positive as one goes up, so does the other Negative as one goes up, the other goes down *Drucker, Peter F. Management, Tasks, Responsibilities, and Practices, p. 681

16 Latin Hypercube Sampling When the Monte Carlo iterations are expensive, using a different sampling approach can reduce the number of overall iterations required to achieve a tolerance. Standard MC sampling picks numbers from anywhere within [0,1] Latin Hypercube Sampling breaks [0,1] into subintervals and then samples Assures samples fill out the distribution

17 Latin Hypercube Sampling Results Standard MC sampling may be clustered Latin Hypercube Sampling (LHS) can provide for faster convergence of statistical properties The LHS advantage over MC sampling diminishes when As the number of samples increases As the number of sampled parameters increases

18 Common Distributions for Cost Estimating Presented at the 2017 ICEAA Professional Development & Training Workshop *From 2016 ICEAA CEA06 Monte Carlo : Looking Under the Hood

19 Deterministic Application

20 Deterministic Application How can you calculate pi? Throw Darts Pick random points in [-r,r]x[-r,r] If point (xx, yy) has xx 2 + yy 2 rr 2, then the point is in the circle Blue square has area = 4 rr 2 Gray Circle has area = ππrr 2 The percentage of points inside the circle should be ππ 4

21 Monte Carlo Sampling Set up Assume uniform distribution for X and Y points Use Excel Rand and scale to [-r,r] Pi Estimate is 4* CUM % in

22 Results As number of sample point increases: The percentage of points inside and outside the circle better approximates the respective areas The ππ estimate error decreases

23 Excel Only Approach It is possible to use an Excel Only approach but there are some major limitations Storage of numbers (inputs and outputs) Generating inputs from various distributions Handling Correlation It is possible to use VBA code, but most of the same limitations exist, now just hidden in code that may not be easily traceable Excel Add-ins can provide a fairly easy way to accomplish the uncertainty quantification and risk analysis

24 Calculating Pi with Crystal Ball Taking advantage of the Excel Add-in Crystal Ball we can make a simple model and let it handle the bookkeeping

25 Results Monte Carlo software tools can Manage the data Present results through descriptive statistics and charts Actual sample data can be extracted for additional analysis if desired

26 Applications to Cost Estimating

27 Cost Estimating Models Cost Estimates are models Outputs may be nonlinearly related to many inputs Inputs may be of a large variety of distributions Continuous or Discrete Inputs may be related The distribution of any output is not guaranteed to have a nice solution CLT may not apply! We may also require additional information Sensitivity Information Best Case / Worst Case Etc.

28 Example Demo File Missile System Estimate TBE already established Need to quantify the uncertainty in the model Our SMEs already told us what the distributions are We need to input them into our Monte Carlo Tool (Crystal Ball)

29 Select Distribution Wide Variety available or define your own!

30 Set Parameters The Assumption cells will contain the random sample at each iteration

31 Set Outputs The Forecast cells require an equation to calculate the output

32 Simulation Preferences Always double check your run preferences!

33 Results We got an answer, but it doesn t look quite right

34 The Problem of N Recall the ππ calculation How many Monte Carlo iterations does it take to get the average? Looks pretty good after 1000 Depends on your tolerance Generally, the more variables you have the more samples you need

35 Results Increase the number of iterations to improve result

36 Correlation Matrix Most Monte Carlo Tools use a Rank correlation to handle the relationship of many different types of distributions

37 Results (Positive) Correlation increases the over distribution coverage

38 Questions?

UNIT 9A Randomness in Computation: Random Number Generators

UNIT 9A Randomness in Computation: Random Number Generators UNIT 9A Randomness in Computation: Random Number Generators 1 Last Unit Computer organization: what s under the hood 3 This Unit Random number generation Using pseudorandom numbers 4 Overview The concept

More information

Quasi-Monte Carlo Methods Combating Complexity in Cost Risk Analysis

Quasi-Monte Carlo Methods Combating Complexity in Cost Risk Analysis Quasi-Monte Carlo Methods Combating Complexity in Cost Risk Analysis Blake Boswell Booz Allen Hamilton ISPA / SCEA Conference Albuquerque, NM June 2011 1 Table Of Contents Introduction Monte Carlo Methods

More information

Photon Maps. The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces)

Photon Maps. The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces) Photon Mapping 1/36 Photon Maps The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces) As opposed to the radiosity method that stores information on surface

More information

BASIC SIMULATION CONCEPTS

BASIC SIMULATION CONCEPTS BASIC SIMULATION CONCEPTS INTRODUCTION Simulation is a technique that involves modeling a situation and performing experiments on that model. A model is a program that imitates a physical or business process

More information

You ve already read basics of simulation now I will be taking up method of simulation, that is Random Number Generation

You ve already read basics of simulation now I will be taking up method of simulation, that is Random Number Generation Unit 5 SIMULATION THEORY Lesson 39 Learning objective: To learn random number generation. Methods of simulation. Monte Carlo method of simulation You ve already read basics of simulation now I will be

More information

Chapter Four: Loops II

Chapter Four: Loops II Chapter Four: Loops II Slides by Evan Gallagher & Nikolay Kirov Chapter Goals To understand nested loops To implement programs that read and process data sets To use a computer for simulations Processing

More information

Monte Carlo Integration and Random Numbers

Monte Carlo Integration and Random Numbers Monte Carlo Integration and Random Numbers Higher dimensional integration u Simpson rule with M evaluations in u one dimension the error is order M -4! u d dimensions the error is order M -4/d u In general

More information

Probability and Statistics for Final Year Engineering Students

Probability and Statistics for Final Year Engineering Students Probability and Statistics for Final Year Engineering Students By Yoni Nazarathy, Last Updated: April 11, 2011. Lecture 1: Introduction and Basic Terms Welcome to the course, time table, assessment, etc..

More information

CS 179: GPU Computing. Lecture 16: Simulations and Randomness

CS 179: GPU Computing. Lecture 16: Simulations and Randomness CS 179: GPU Computing Lecture 16: Simulations and Randomness Simulations South Bay Simulations, http://www.panix.com/~brosen/graphics/iacc.400.jpg Exa Corporation, http://www.exa.com/images/f16.png Flysurfer

More information

GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao

GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao GAMES Webinar: Rendering Tutorial 2 Monte Carlo Methods Shuang Zhao Assistant Professor Computer Science Department University of California, Irvine GAMES Webinar Shuang Zhao 1 Outline 1. Monte Carlo integration

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 13 Random Numbers and Stochastic Simulation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright

More information

Computational Methods. Randomness and Monte Carlo Methods

Computational Methods. Randomness and Monte Carlo Methods Computational Methods Randomness and Monte Carlo Methods Manfred Huber 2010 1 Randomness and Monte Carlo Methods Introducing randomness in an algorithm can lead to improved efficiencies Random sampling

More information

Chapter Four: Loops. Slides by Evan Gallagher. C++ for Everyone by Cay Horstmann Copyright 2012 by John Wiley & Sons. All rights reserved

Chapter Four: Loops. Slides by Evan Gallagher. C++ for Everyone by Cay Horstmann Copyright 2012 by John Wiley & Sons. All rights reserved Chapter Four: Loops Slides by Evan Gallagher The Three Loops in C++ C++ has these three looping statements: while for do The while Loop while (condition) { statements } The condition is some kind of test

More information

Ph3 Mathematica Homework: Week 8

Ph3 Mathematica Homework: Week 8 Ph3 Mathematica Homework: Week 8 Eric D. Black California Institute of Technology v1.1 Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin. For, as has

More information

Gaussian Mixture Models For Clustering Data. Soft Clustering and the EM Algorithm

Gaussian Mixture Models For Clustering Data. Soft Clustering and the EM Algorithm Gaussian Mixture Models For Clustering Data Soft Clustering and the EM Algorithm K-Means Clustering Input: Observations: xx ii R dd ii {1,., NN} Number of Clusters: kk Output: Cluster Assignments. Cluster

More information

Proposed Pseudorandom Number Generator

Proposed Pseudorandom Number Generator IJSRD National Conference on Technological Advancement and Automatization in Engineering January 2016 ISSN:2321-0613 Mahesh S Naik Research Scholar Shri Jagdishprasad Jhabarmal Tibrewala University, Rajasthan

More information

Advanced Financial Modeling Macros. EduPristine

Advanced Financial Modeling Macros. EduPristine Advanced Financial Modeling Macros EduPristine www.edupristine.com/ca Agenda Introduction to Macros & Advanced Application Building in Excel Introduction and context Key Concepts in Macros Macros as recorded

More information

Section 2.3: Monte Carlo Simulation

Section 2.3: Monte Carlo Simulation Section 2.3: Monte Carlo Simulation Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5 Discrete-Event Simulation: A First Course Section 2.3: Monte Carlo Simulation 1/1 Section

More information

Monte Carlo Techniques. Professor Stephen Sekula Guest Lecture PHY 4321/7305 Sep. 3, 2014

Monte Carlo Techniques. Professor Stephen Sekula Guest Lecture PHY 4321/7305 Sep. 3, 2014 Monte Carlo Techniques Professor Stephen Sekula Guest Lecture PHY 431/7305 Sep. 3, 014 What are Monte Carlo Techniques? Computational algorithms that rely on repeated random sampling in order to obtain

More information

COSC160: Data Structures Hashing Structures. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Data Structures Hashing Structures. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Data Structures Hashing Structures Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Hashing Structures I. Motivation and Review II. Hash Functions III. HashTables I. Implementations

More information

CSE 586 Final Programming Project Spring 2011 Due date: Tuesday, May 3

CSE 586 Final Programming Project Spring 2011 Due date: Tuesday, May 3 CSE 586 Final Programming Project Spring 2011 Due date: Tuesday, May 3 What I have in mind for our last programming project is to do something with either graphical models or random sampling. A few ideas

More information

Structured Data, LLC RiskAMP User Guide. User Guide for the RiskAMP Monte Carlo Add-in

Structured Data, LLC RiskAMP User Guide. User Guide for the RiskAMP Monte Carlo Add-in Structured Data, LLC RiskAMP User Guide User Guide for the RiskAMP Monte Carlo Add-in Structured Data, LLC February, 2007 On the web at www.riskamp.com Contents Random Distribution Functions... 3 Normal

More information

Decision Support and Intelligent Systems. Monte Carlo Simulation

Decision Support and Intelligent Systems. Monte Carlo Simulation 887654 Decision Support and Intelligent Systems Monte Carlo Simulation Monte Carlo Monte Carlo is a technique for selecting numbers randomly from a probability distribution. A mathematical process used

More information

Monte Carlo Methods. Named by Stanislaw Ulam and Nicholas Metropolis in 1940s for the famous gambling casino in Monaco.

Monte Carlo Methods. Named by Stanislaw Ulam and Nicholas Metropolis in 1940s for the famous gambling casino in Monaco. Monte Carlo Methods Named by Stanislaw Ulam and Nicholas Metropolis in 1940s for the famous gambling casino in Monaco. Used in numerous applications. Any method that uses random numbers to solve a problem

More information

UNIT 9A Randomness in Computation: Random Number Generators Principles of Computing, Carnegie Mellon University - CORTINA

UNIT 9A Randomness in Computation: Random Number Generators Principles of Computing, Carnegie Mellon University - CORTINA UNIT 9A Randomness in Computation: Random Number Generators 1 Course Announcements We are in the process of setting up the tutoring help system. PS7 is due Wednesday 3/20 in class Midterm 2 (written) is

More information

Fractals and the Chaos Game

Fractals and the Chaos Game Math: Outside the box! Fractals and the Chaos Game Monday February 23, 2009 3:30-4:20 IRMACS theatre, ASB 10900 Randall Pyke Senior Lecturer Department of Mathematics, SFU A Game. Is this a random walk?

More information

L20 MPI Example, Numerical Integration. Let s now consider a real problem to write a parallel code for. Let s take the case of numerical integration.

L20 MPI Example, Numerical Integration. Let s now consider a real problem to write a parallel code for. Let s take the case of numerical integration. Geophysical Computing L20-1 L20 MPI Example, Numerical Integration 1. Numerical Integration Let s now consider a real problem to write a parallel code for. Let s take the case of numerical integration.

More information

Random Number Generator Andy Chen

Random Number Generator Andy Chen Andy Chen University of California, Santa Barbara Andy Chen University of California, Santa Barbara Spring 2017 1 / 17 Introduction Does true randomness exist scientifically? If you know all the elements

More information

Monte Carlo methods for risk analysis

Monte Carlo methods for risk analysis Monte Carlo methods for risk analysis Eric Marsden Context Some problems cannot be expressed in analytical form Some problems are difficult to define in a deterministic

More information

Random Number Generation and Monte Carlo Methods

Random Number Generation and Monte Carlo Methods James E. Gentle Random Number Generation and Monte Carlo Methods With 30 Illustrations Springer Contents Preface vii 1 Simulating Random Numbers from a Uniform Distribution 1 1.1 Linear Congruential Generators

More information

Professor Stephen Sekula

Professor Stephen Sekula Monte Carlo Techniques Professor Stephen Sekula Guest Lecture PHYS 4321/7305 What are Monte Carlo Techniques? Computational algorithms that rely on repeated random sampling in order to obtain numerical

More information

Using the DATAMINE Program

Using the DATAMINE Program 6 Using the DATAMINE Program 304 Using the DATAMINE Program This chapter serves as a user s manual for the DATAMINE program, which demonstrates the algorithms presented in this book. Each menu selection

More information

Information Security CS526

Information Security CS526 Information CS 526 Topic 3 Ciphers and Cipher : Stream Ciphers, Block Ciphers, Perfect Secrecy, and IND-CPA 1 Announcements HW1 is out, due on Sept 10 Start early, late policy is 3 total late days for

More information

Feature selection. LING 572 Fei Xia

Feature selection. LING 572 Fei Xia Feature selection LING 572 Fei Xia 1 Creating attribute-value table x 1 x 2 f 1 f 2 f K y Choose features: Define feature templates Instantiate the feature templates Dimensionality reduction: feature selection

More information

4. Use a loop to print the first 25 Fibonacci numbers. Do you need to store these values in a data structure such as an array or list?

4. Use a loop to print the first 25 Fibonacci numbers. Do you need to store these values in a data structure such as an array or list? 1 Practice problems Here is a collection of some relatively straightforward problems that let you practice simple nuts and bolts of programming. Each problem is intended to be a separate program. 1. Write

More information

MONTE CARLO SIMULATION AND DESIGN OF EXPERIMENTS FOR IMPROVED PIN-PAD ALIGNMENT

MONTE CARLO SIMULATION AND DESIGN OF EXPERIMENTS FOR IMPROVED PIN-PAD ALIGNMENT MONTE CARLO SIMULATION AND DESIGN OF EXPERIMENTS FOR IMPROVED PIN-PAD ALIGNMENT by John DeBauche, Engineering Manager Johnstech International Johnstech is known for providing high performance and lowest

More information

The Role of Uncertainty Quantification in Model Verification and Validation. Part 4 NESSUS Overview

The Role of Uncertainty Quantification in Model Verification and Validation. Part 4 NESSUS Overview The Role of Uncertainty Quantification in Model Verification and Validation Part 4 NESSUS Overview 1 NESSUS Overview Short Course on Probabilistic Analysis and Uncertainty Quantification Southwest Research

More information

CS 241 Honors Nothing is Ever Random

CS 241 Honors Nothing is Ever Random CS 241 Honors Nothing is Ever Random Kevin Hong University of Illinois Urbana-Champaign Feburary 13, 2018 Kevin Hong (UIUC) Randomness and Entropy Feburary 13, 2018 1 / 11 Kevin Hong (UIUC) Randomness

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 2 December 8, 2014 Outline 1 Random Number Generation 2 Uniform Random Variables 3 Normal Random Variables 4 Correlated Random Variables Random Number Generation Monte Carlo

More information

What is the Monte Carlo Method?

What is the Monte Carlo Method? Program What is the Monte Carlo Method? A bit of history Applications The core of Monte Carlo: Random realizations 1st example: Initial conditions for N-body simulations 2nd example: Simulating a proper

More information

v MODFLOW Stochastic Modeling, Parameter Randomization GMS 10.3 Tutorial

v MODFLOW Stochastic Modeling, Parameter Randomization GMS 10.3 Tutorial v. 10.3 GMS 10.3 Tutorial MODFLOW Stochastic Modeling, Parameter Randomization Run MODFLOW in Stochastic (Monte Carlo) Mode by Randomly Varying Parameters Objectives Learn how to develop a stochastic (Monte

More information

Monte Carlo Integration COS 323

Monte Carlo Integration COS 323 Monte Carlo Integration COS 323 Last time Interpolatory Quadrature Review formulation; error analysis Newton-Cotes Quadrature Midpoint, Trapezoid, Simpson s Rule Error analysis for trapezoid, midpoint

More information

Lecture 2: Introduction to Numerical Simulation

Lecture 2: Introduction to Numerical Simulation Lecture 2: Introduction to Numerical Simulation Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris Outline of The Talk 1 Simulation of Random variables Outline 1 Simulation of Random variables Random

More information

Advanced Operating Systems (CS 202) Scheduling (2)

Advanced Operating Systems (CS 202) Scheduling (2) Advanced Operating Systems (CS 202) Scheduling (2) Lottery Scheduling 2 2 2 Problems with Traditional schedulers Priority systems are ad hoc: highest priority always wins Try to support fair share by adjusting

More information

GOV 2001/ 1002/ E-2001 Section 1 1 Monte Carlo Simulation

GOV 2001/ 1002/ E-2001 Section 1 1 Monte Carlo Simulation GOV 2001/ 1002/ E-2001 Section 1 1 Monte Carlo Simulation Anton Strezhnev Harvard University January 27, 2016 1 These notes and accompanying code draw on the notes from TF s from previous years. 1 / 33

More information

UNIT 9A Randomness in Computa5on: Random Number Generators. Randomness in Compu5ng

UNIT 9A Randomness in Computa5on: Random Number Generators. Randomness in Compu5ng UNIT 9A Randomness in Computa5on: Random Number Generators 1 Randomness in Compu5ng Determinism -- in all algorithms and programs we have seen so far, given an input and a sequence of steps, we get a unique

More information

Previous Lecture: Today s Lecture: Announcements: Nesting if-statements Logical operators short-circuit. Iteration using for

Previous Lecture: Today s Lecture: Announcements: Nesting if-statements Logical operators short-circuit. Iteration using for Previous Lecture: Nesting if-statements Logical operators short-circuit Today s Lecture: Iteration using for Announcements: Discussion this week is in the classrooms as listed in Student Center Register

More information

1. Practice the use of the C ++ repetition constructs of for, while, and do-while. 2. Use computer-generated random numbers.

1. Practice the use of the C ++ repetition constructs of for, while, and do-while. 2. Use computer-generated random numbers. 1 Purpose This lab illustrates the use of looping structures by introducing a class of programming problems called numerical algorithms. 1. Practice the use of the C ++ repetition constructs of for, while,

More information

Monte Carlo Integration

Monte Carlo Integration Lab 18 Monte Carlo Integration Lab Objective: Implement Monte Carlo integration to estimate integrals. Use Monte Carlo Integration to calculate the integral of the joint normal distribution. Some multivariable

More information

Categorical Data in a Designed Experiment Part 2: Sizing with a Binary Response

Categorical Data in a Designed Experiment Part 2: Sizing with a Binary Response Categorical Data in a Designed Experiment Part 2: Sizing with a Binary Response Authored by: Francisco Ortiz, PhD Version 2: 19 July 2018 Revised 18 October 2018 The goal of the STAT COE is to assist in

More information

Short-Cut MCMC: An Alternative to Adaptation

Short-Cut MCMC: An Alternative to Adaptation Short-Cut MCMC: An Alternative to Adaptation Radford M. Neal Dept. of Statistics and Dept. of Computer Science University of Toronto http://www.cs.utoronto.ca/ radford/ Third Workshop on Monte Carlo Methods,

More information

ECLT 5810 Clustering

ECLT 5810 Clustering ECLT 5810 Clustering What is Cluster Analysis? Cluster: a collection of data objects Similar to one another within the same cluster Dissimilar to the objects in other clusters Cluster analysis Grouping

More information

ROLE OF RANDOM NUMBERS IN SIMULATIONS OF ECONOMIC PROCESSES

ROLE OF RANDOM NUMBERS IN SIMULATIONS OF ECONOMIC PROCESSES 562 ROLE OF RANDOM NUMBERS IN SIMULATIONS OF ECONOMIC PROCESSES Dominika Crnjac Milić, Ph.D. J.J. Strossmayer University in Osijek Faculty of Electrical Engineering Ljiljanka Kvesić, M.Sc. University of

More information

Computer Experiments: Space Filling Design and Gaussian Process Modeling

Computer Experiments: Space Filling Design and Gaussian Process Modeling Computer Experiments: Space Filling Design and Gaussian Process Modeling Best Practice Authored by: Cory Natoli Sarah Burke, Ph.D. 30 March 2018 The goal of the STAT COE is to assist in developing rigorous,

More information

Simulation. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall

Simulation. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Simulation Chapter 14 14-1 Chapter Topics The Monte Carlo Process Computer Simulation with Excel Spreadsheets Simulation of a Queuing System Continuous Probability Distributions Statistical Analysis of

More information

Computer Experiments. Designs

Computer Experiments. Designs Computer Experiments Designs Differences between physical and computer Recall experiments 1. The code is deterministic. There is no random error (measurement error). As a result, no replication is needed.

More information

Concept of Curve Fitting Difference with Interpolation

Concept of Curve Fitting Difference with Interpolation Curve Fitting Content Concept of Curve Fitting Difference with Interpolation Estimation of Linear Parameters by Least Squares Curve Fitting by Polynomial Least Squares Estimation of Non-linear Parameters

More information

Compressive Sensing Matrix Generation by Random Methods

Compressive Sensing Matrix Generation by Random Methods Compressive Sensing Matrix Generation by Random Methods Charles Drake Poole December, 00 Abstract Compressed sensing is a method of recovering interesting images from sparse sampling. To get an ideal reconstruction

More information

Robot Motion Planning

Robot Motion Planning Robot Motion Planning James Bruce Computer Science Department Carnegie Mellon University April 7, 2004 Agent Planning An agent is a situated entity which can choose and execute actions within in an environment.

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction A Monte Carlo method is a compuational method that uses random numbers to compute (estimate) some quantity of interest. Very often the quantity we want to compute is the mean of

More information

v Prerequisite Tutorials Required Components Time

v Prerequisite Tutorials Required Components Time v. 10.0 GMS 10.0 Tutorial MODFLOW Stochastic Modeling, Parameter Randomization Run MODFLOW in Stochastic (Monte Carlo) Mode by Randomly Varying Parameters Objectives Learn how to develop a stochastic (Monte

More information

The Plan: Basic statistics: Random and pseudorandom numbers and their generation: Chapter 16.

The Plan: Basic statistics: Random and pseudorandom numbers and their generation: Chapter 16. Scientific Computing with Case Studies SIAM Press, 29 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit IV Monte Carlo Computations Dianne P. O Leary c 28 What is a Monte-Carlo method?

More information

VARIANCE REDUCTION TECHNIQUES IN MONTE CARLO SIMULATIONS K. Ming Leung

VARIANCE REDUCTION TECHNIQUES IN MONTE CARLO SIMULATIONS K. Ming Leung POLYTECHNIC UNIVERSITY Department of Computer and Information Science VARIANCE REDUCTION TECHNIQUES IN MONTE CARLO SIMULATIONS K. Ming Leung Abstract: Techniques for reducing the variance in Monte Carlo

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit IV Monte Carlo

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit IV Monte Carlo Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit IV Monte Carlo Computations Dianne P. O Leary c 2008 1 What is a Monte-Carlo

More information

Probabilistic Analysis Tutorial

Probabilistic Analysis Tutorial Probabilistic Analysis Tutorial 2-1 Probabilistic Analysis Tutorial This tutorial will familiarize the user with the Probabilistic Analysis features of Swedge. In a Probabilistic Analysis, you can define

More information

Introduction to the Monte Carlo Method Ryan Godwin ECON 7010

Introduction to the Monte Carlo Method Ryan Godwin ECON 7010 1 Introduction to the Monte Carlo Method Ryan Godwin ECON 7010 The Monte Carlo method provides a laboratory in which the properties of estimators and tests can be explored. Although the Monte Carlo method

More information

Manual_implementation_of_the_Mersenne_twister_PseudoRandom_N

Manual_implementation_of_the_Mersenne_twister_PseudoRandom_N Manual_implementation_of_the_Mersenne_twister_PseudoRandom_N May 4, 2017 1 Table of Contents 1 Manual implementation of the Mersenne twister PseudoRandom Number Generator (PRNG) 1.1 Common API for the

More information

APPENDIX K MONTE CARLO SIMULATION

APPENDIX K MONTE CARLO SIMULATION APPENDIX K MONTE CARLO SIMULATION K-1. Introduction. Monte Carlo simulation is a method of reliability analysis that should be used only when the system to be analyzed becomes too complex for use of simpler

More information

10.4 Linear interpolation method Newton s method

10.4 Linear interpolation method Newton s method 10.4 Linear interpolation method The next best thing one can do is the linear interpolation method, also known as the double false position method. This method works similarly to the bisection method by

More information

Modeling Plant Succession with Markov Matrices

Modeling Plant Succession with Markov Matrices Modeling Plant Succession with Markov Matrices 1 Modeling Plant Succession with Markov Matrices Concluding Paper Undergraduate Biology and Math Training Program New Jersey Institute of Technology Catherine

More information

Fast Generation of Nested Space-filling Latin Hypercube Sample Designs. Keith Dalbey, PhD

Fast Generation of Nested Space-filling Latin Hypercube Sample Designs. Keith Dalbey, PhD Fast Generation of Nested Space-filling Latin Hypercube Sample Designs Keith Dalbey, PhD Sandia National Labs, Dept 1441 Optimization & Uncertainty Quantification George N. Karystinos, PhD Technical University

More information

APPENDIX B STEP-BY-STEP APPLICATIONS OF THE FEMWATER-LHS

APPENDIX B STEP-BY-STEP APPLICATIONS OF THE FEMWATER-LHS APPENDIX B STEP-BY-STEP APPLICATIONS OF THE FEMWATER-LHS Steady Two-Dimensional Drainage Problem 1. Double-click on the Argus ONE icon to open Argus ONE. 2. From the PIEs menu found along the top of the

More information

Application of K-Means Clustering Methodology to Cost Estimation

Application of K-Means Clustering Methodology to Cost Estimation Application of K-Means Clustering Methodology to Cost Estimation Mr. Jacob J. Walzer, Kalman & Co., Inc. 2018 Professional Development & Training Workshop 6/2018 Background There are many ways to analyze

More information

Sample some Pi Monte. Introduction. Creating the Simulation. Answers & Teacher Notes

Sample some Pi Monte. Introduction. Creating the Simulation. Answers & Teacher Notes Sample some Pi Monte Answers & Teacher Notes 7 8 9 10 11 12 TI-Nspire Investigation Student 45 min Introduction The Monte-Carlo technique uses probability to model or forecast scenarios. In this activity

More information

Monte Carlo Integration COS 323

Monte Carlo Integration COS 323 Monte Carlo Integration COS 323 Integration in d Dimensions? One option: nested 1-D integration f(x,y) g(y) y f ( x, y) dx dy ( ) = g y dy x Evaluate the latter numerically, but each sample of g(y) is

More information

ECLT 5810 Clustering

ECLT 5810 Clustering ECLT 5810 Clustering What is Cluster Analysis? Cluster: a collection of data objects Similar to one another within the same cluster Dissimilar to the objects in other clusters Cluster analysis Grouping

More information

Random Numbers Random Walk

Random Numbers Random Walk Random Numbers Random Walk Computational Physics Random Numbers Random Walk Outline Random Systems Random Numbers Monte Carlo Integration Example Random Walk Exercise 7 Introduction Random Systems Deterministic

More information

Monte Carlo Simula/on and Copula Func/on. by Gerardo Ferrara

Monte Carlo Simula/on and Copula Func/on. by Gerardo Ferrara Monte Carlo Simula/on and Copula Func/on by Gerardo Ferrara Introduc)on A Monte Carlo method is a computational algorithm that relies on repeated random sampling to compute its results. In a nutshell,

More information

Today. Lecture 4: Last time. The EM algorithm. We examine clustering in a little more detail; we went over it a somewhat quickly last time

Today. Lecture 4: Last time. The EM algorithm. We examine clustering in a little more detail; we went over it a somewhat quickly last time Today Lecture 4: We examine clustering in a little more detail; we went over it a somewhat quickly last time The CAD data will return and give us an opportunity to work with curves (!) We then examine

More information

Halftoning and quasi-monte Carlo

Halftoning and quasi-monte Carlo Halftoning and quasi-monte Carlo Ken Hanson CCS-2, Methods for Advanced Scientific Simulations Los Alamos National Laboratory This presentation available at http://www.lanl.gov/home/kmh/ LA-UR-04-1854

More information

COPULA MODELS FOR BIG DATA USING DATA SHUFFLING

COPULA MODELS FOR BIG DATA USING DATA SHUFFLING COPULA MODELS FOR BIG DATA USING DATA SHUFFLING Krish Muralidhar, Rathindra Sarathy Department of Marketing & Supply Chain Management, Price College of Business, University of Oklahoma, Norman OK 73019

More information

Lesson 10. Homework Problem Set Sample Solutions. then Print True else Print False End if. False False True False False False

Lesson 10. Homework Problem Set Sample Solutions. then Print True else Print False End if. False False True False False False Homework Problem Set Sample Solutions 1. Perform the instructions in the following programming code as if you were a computer and your paper were the computer screen. Declare xx integer For all xx from

More information

Adaptive spatial resampling as a Markov chain Monte Carlo method for uncertainty quantification in seismic reservoir characterization

Adaptive spatial resampling as a Markov chain Monte Carlo method for uncertainty quantification in seismic reservoir characterization 1 Adaptive spatial resampling as a Markov chain Monte Carlo method for uncertainty quantification in seismic reservoir characterization Cheolkyun Jeong, Tapan Mukerji, and Gregoire Mariethoz Department

More information

GMS 9.0 Tutorial MODFLOW Stochastic Modeling, PEST Null Space Monte Carlo I Use PEST to create multiple calibrated MODFLOW simulations

GMS 9.0 Tutorial MODFLOW Stochastic Modeling, PEST Null Space Monte Carlo I Use PEST to create multiple calibrated MODFLOW simulations v. 9.0 GMS 9.0 Tutorial MODFLOW Stochastic Modeling, PEST Null Space Monte Carlo I Use PEST to create multiple calibrated MODFLOW simulations Objectives The PEST Null Space Monte Carlo modeling option

More information

Introduction to Excel Workshop

Introduction to Excel Workshop Introduction to Excel Workshop Empirical Reasoning Center September 9, 2016 1 Important Terminology 1. Rows are identified by numbers. 2. Columns are identified by letters. 3. Cells are identified by the

More information

20 - Analyzing Focus Groups

20 - Analyzing Focus Groups 20 - Analyzing Focus Groups Contents 20 - ANALYZING FOCUS GROUPS... 1 HOW CAN MAXQDA SUPPORT FOCUS GROUP ANALYSIS?... 1 USING THE LEXICAL SEARCH FOR CONTRIBUTIONS FROM PARTICIPANTS... 1 THE OVERVIEW OF

More information

Simulation-Supported Decision Making. Gene Allen Director, Collaborative Development MSC Software Corporation

Simulation-Supported Decision Making. Gene Allen Director, Collaborative Development MSC Software Corporation Simulation-Supported Decision Making Gene Allen Director, Collaborative Development MSC Software Corporation Simulation A Tool for Decision Making Quickly Identify and Understand How a Product Functions:

More information

Information Security CS526

Information Security CS526 Information Security CS 526 Topic 3 Cryptography: One-time Pad, Information Theoretic Security, and Stream CIphers 1 Announcements HW1 is out, due on Sept 11 Start early, late policy is 3 total late days

More information

Sampling and Monte-Carlo Integration

Sampling and Monte-Carlo Integration Sampling and Monte-Carlo Integration Sampling and Monte-Carlo Integration Last Time Pixels are samples Sampling theorem Convolution & multiplication Aliasing: spectrum replication Ideal filter And its

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

Monte Carlo Integration

Monte Carlo Integration Lecture 11: Monte Carlo Integration Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 Reminder: Quadrature-Based Numerical Integration f(x) Z b a f(x)dx x 0 = a x 1 x 2 x 3 x 4 = b E.g.

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

COMP 110 Programming Exercise: Simulation of the Game of Craps

COMP 110 Programming Exercise: Simulation of the Game of Craps COMP 110 Programming Exercise: Simulation of the Game of Craps Craps is a game of chance played by rolling two dice for a series of rolls and placing bets on the outcomes. The background on probability,

More information

Monte Carlo modelling and applications to imaging

Monte Carlo modelling and applications to imaging Monte Carlo modelling and applications to imaging The Monte Carlo method is a method to obtain a result through repeated random sampling of the outcome of a system. One of the earliest applications, in

More information

(Refer Slide Time: 02:59)

(Refer Slide Time: 02:59) Numerical Methods and Programming P. B. Sunil Kumar Department of Physics Indian Institute of Technology, Madras Lecture - 7 Error propagation and stability Last class we discussed about the representation

More information

Superdiffusion and Lévy Flights. A Particle Transport Monte Carlo Simulation Code

Superdiffusion and Lévy Flights. A Particle Transport Monte Carlo Simulation Code Superdiffusion and Lévy Flights A Particle Transport Monte Carlo Simulation Code Eduardo J. Nunes-Pereira Centro de Física Escola de Ciências Universidade do Minho Page 1 of 49 ANOMALOUS TRANSPORT Definitions

More information

A Random Number Based Method for Monte Carlo Integration

A Random Number Based Method for Monte Carlo Integration A Random Number Based Method for Monte Carlo Integration J Wang and G Harrell Department Math and CS, Valdosta State University, Valdosta, Georgia, USA Abstract - A new method is proposed for Monte Carlo

More information

lecture 19: monte carlo methods

lecture 19: monte carlo methods lecture 19: monte carlo methods STAT 598z: Introduction to computing for statistics Vinayak Rao Department of Statistics, Purdue University April 3, 2019 Monte Carlo integration We want to calculate integrals/summations

More information

Focus Group Analysis

Focus Group Analysis Focus Group Analysis Contents FOCUS GROUP ANALYSIS... 1 HOW CAN MAXQDA SUPPORT FOCUS GROUP ANALYSIS?... 1 IMPORTING FOCUS GROUP TRANSCRIPTS... 1 TRANFORMING AN ALREADY IMPORTED TEXT INTO A FOCUS GROUP

More information

To complete the computer assignments, you ll use the EViews software installed on the lab PCs in WMC 2502 and WMC 2506.

To complete the computer assignments, you ll use the EViews software installed on the lab PCs in WMC 2502 and WMC 2506. An Introduction to EViews The purpose of the computer assignments in BUEC 333 is to give you some experience using econometric software to analyse real-world data. Along the way, you ll become acquainted

More information