Simulation. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall

Size: px
Start display at page:

Download "Simulation. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall"

Transcription

1 Simulation Chapter

2 Chapter Topics The Monte Carlo Process Computer Simulation with Excel Spreadsheets Simulation of a Queuing System Continuous Probability Distributions Statistical Analysis of Simulation Results Crystal Ball Verification of the Simulation Model Areas of Simulation Application 14-2

3 Overview Analogue simulation replaces a physical system with an analogous physical system that is easier to manipulate. In computer mathematical simulation a system is replaced with a mathematical model that is analyzed with the computer. Simulation offers a means of analyzing very complex systems that cannot be analyzed using the other management science techniques in the text. 14-3

4 Monte Carlo Process A large proportion of the applications of simulations are for probabilistic models. The Monte Carlo technique is defined as a technique for selecting numbers randomly from a probability distribution for use in a trial (computer run) of a simulation model. The basic principle behind the process is the same as in the operation of gambling devices in casinos (such as those in Monte Carlo, Monaco). 14-4

5 Monte Carlo Process Use of Random Numbers (1 of 10) In the Monte Carlo process, values for a random variable are generated by sampling from a probability distribution. Example: ComputerWorld demand data for laptops selling for $4,300 over a period of 100 weeks. Table 14.1 Probability Distribution of Demand for Laptop PC s 14-5

6 Monte Carlo Process Use of Random Numbers (2 of 10) The purpose of the Monte Carlo process is to generate the random variable, demand, by sampling from the probability distribution P(x). The partitioned roulette wheel replicates the probability distribution for demand if the values of demand occur in a random manner. The segment at which the wheel stops indicates demand for one week. 14-6

7 Monte Carlo Process Use of Random Numbers (3 of 10) Figure 14.1 A Roulette Wheel for Demand 14-7

8 Monte Carlo Process Use of Random Numbers (4 of 10) When the wheel is spun, the actual demand for PCs is determined by a number at rim of the wheel. Figure 14.2 Numbered Roulette Wheel 14-8

9 Monte Carlo Process Use of Random Numbers (5 of 10) Table 14.2 Generating Demand from Random Numbers 14-9

10 Monte Carlo Process Use of Random Numbers (6 of 10) Select number from a random number table: Table 14.3 Delightfully Random Numbers 14-10

11 Monte Carlo Process Use of Random Numbers (7 of 10) Repeating selection of random numbers simulates demand for a period of time. Estimated average demand = 31/15 = 2.07 laptop PCs per week. Estimated average revenue = $133,300/15 = $8,

12 Monte Carlo Process Use of Random Numbers (8 of 10) Table

13 Monte Carlo Process Use of Random Numbers (9 of 10) Average demand could have been calculated analytically: n E( x) = P( xi) x i = 1 where: i xi = P( xi) = n= demand value i probability of demand the number of different demand values therefore: E( x) = (.20)(0) + (.40)(1) + (.20)(2) + (.10)(3) + (.10)(4) = 1.5 PC's per week 14-13

14 Monte Carlo Process Use of Random Numbers (10 of 10) The more period simulated, the more accurate the results. Simulation results will not equal analytical results unless enough trials have been conducted to reach steady state. Often difficult to validate results of simulation - that true steady state has been reached and that simulation model truly replicates reality. When analytical analysis is not possible, there is no analytical standard of comparison thus making validation even more difficult

15 Computer Simulation with Excel Spreadsheets Generating Random Numbers (1 of 2) As simulation models get more complex they become impossible to perform manually. In simulation modeling, random numbers are generated by a mathematical process instead of a physical process (such as wheel spinning). Random numbers are typically generated on the computer using a numerical technique and thus are not true random numbers but pseudorandom numbers

16 Computer Simulation with Excel Spreadsheets Generating Random Numbers (2 of 2) Artificially created random numbers must have the following characteristics: 1. The random numbers must be uniformly distributed. 2. The numerical technique for generating the numbers must be efficient. 3. The sequence of random numbers should reflect no pattern

17 Simulation with Excel Spreadsheets (1 of 3) Exhibit

18 Simulation with Excel Spreadsheets (2 of 3) Exhibit

19 Simulation with Excel Spreadsheets (3 of 3) Exhibit

20 Computer Simulation with Excel Spreadsheets Decision Making with Simulation (1 of 2) Revised ComputerWorld example; order size of one laptop each week. Exhibit

21 Computer Simulation with Excel Spreadsheets Decision Making with Simulation (2 of 2) Order size of two laptops each week. Exhibit

22 Simulation of a Queuing System Burlingham Mills Example (1 of 3) Table 14.5 Distribution of Arrival Intervals Table 14.6 Distribution of Service Times 14-22

23 Simulation of a Queuing System Burlingham Mills Example (2 of 3) Average waiting time = 12.5days/10 batches = 1.25 days per batch Average time in the system = 24.5 days/10 batches = 2.45 days per batch 14-23

24 Simulation of a Queuing System Burlingham Mills Example (3 of 3) Caveats: Results may be viewed with skepticism. Ten trials do not ensure steady-state results. Starting conditions can affect simulation results. If no batches are in the system at start, simulation must run until it replicates normal operating system. If system starts with items already in the system, simulation must begin with items in the system

25 Computer Simulation with Excel Burlingham Mills Example Exhibit

26 Continuous Probability Distributions A continuous function must beused for continuous distributions. Example : f(x) = x, 0 x 4 where x = time (minutes) 8 Cumulativeprobability of x: x x x 1x 1 1 x 2 F(x) = dx x dx 0 8 = 8 = F(x) = x 2 16 Let F(x) = the random number r r = x2 16 x = 4 r By generating a random number,r, a value x for "time" is determined. Example : if r =.25, x = 4.25 = 2 minutes 14-26

27 Machine Breakdown and Maintenance System Simulation (1 of 6) Bigelow Manufacturing Company must decide if it should implement a machine maintenance program at a cost of $20,000 per year that would reduce the frequency of breakdowns and thus time for repair which is $2,000 per day in lost production. A continuous probability distribution of the time between machine breakdowns: f(x) = x/8, 0 x 4 weeks, where x = weeks between machine breakdowns x = 4*sqrt(r i ), value of x for a given value of r i

28 Machine Breakdown and Maintenance System Simulation (2 of 6) Table 14.8 Probability Distribution of Machine Repair Time 14-28

29 Machine Breakdown and Maintenance System Simulation (3 of 6) Revised probability of time between machine breakdowns: f(x) = x/18, 0 x 6 weeks where x = weeks between machine breakdowns x = 6*sqrt(r i ) Table

30 Machine Breakdown and Maintenance System Simulation (4 of 6) Simulation of system without maintenance program (total annual repair cost of $84,000): Table

31 Machine Breakdown and Maintenance System Simulation (5 of 6) Simulation of system with maintenance program (total annual repair cost of $42,000): Table

32 Machine Breakdown and Maintenance System Simulation (6 of 6) Results and caveats: Implement maintenance program since cost savings appear to be $42,000 per year and maintenance program will cost $20,000 per year. However, there are potential problems caused by simulating both systems only once. Simulation results could exhibit significant variation since time between breakdowns and repair times are probabilistic. To be sure of accuracy of results, simulations of each system must be run many times and average results computed. Efficient computer simulation required to do this

33 Machine Breakdown and Maintenance System Simulation with Excel (1 of 2) Original machine breakdown example: Exhibit

34 Machine Breakdown and Maintenance System Simulation with Excel (2 of 2) Simulation with maintenance program. Exhibit

35 Statistical Analysis of Simulation Results (1 of 2) Outcomes of simulation modeling are statistical measure such as averages. Statistical results are typically subjected to additional statistical analysis to determine their degree of accuracy. Confidence limits are developed for the analysis of the statistical validity of simulation results

36 Statistical Analysis of Simulation Results (2 of 2) Formulas for 95% confidence limits: upper confidence limit lower confidence limit = x+ ( 1. 96)( s/ n) = x ( 1. 96)( s/ n) where x is the mean and s the standard deviation from a sample of size n from any population. We can be 95% confident that the true population mean will be between the upper confidence limit and lower confidence limit

37 Simulation Results Statistical Analysis with Excel (1 of 3) Simulation with maintenance program. Exhibit

38 Simulation Results Statistical Analysis with Excel (2 of 3) Exhibit

39 Simulation Results Statistical Analysis with Excel (3 of 3) Exhibit

40 Crystal Ball Overview Many realistic simulation problems contain more complex probability distributions than those used in the examples. However there are several simulation add-ins for Excel that provide a capability to perform simulation analysis with a variety of probability distributions in a spreadsheet format. Crystal Ball, published by Decisioneering, is one of these. Crystal Ball is a risk analysis and forecasting program that uses Monte Carlo simulation to provide a statistical range of results

41 Crystal Ball Simulation of Profit Analysis Model (1 of 15) Recap of Western Clothing Company break-even and profit analysis: Price (p) for jeans is $23 variable cost (c v ) is $8 Fixed cost (c f ) is $10,000 Profit Z = vp - c f v c break-even volume v = c f /(p - c v ) = 10,000/(23-8) = pairs

42 Crystal Ball Simulation of Profit Analysis Model (2 of 15) Modifications to demonstrate Crystal Ball Assume volume is now volume demanded and is defined by a normal probability distribution with mean of 1,050 and standard deviation of 410 pairs of jeans. Price is uncertain and defined by a uniform probability distribution from $20 to $26. Variable cost is not constant but defined by a triangular probability distribution. Will determine average profit and profitability with given probabilistic variables

43 Crystal Ball Simulation of Profit Analysis Model (3 of 15) 14-43

44 Crystal Ball Simulation of Profit Analysis Model (4 of 15) Exhibit

45 Crystal Ball Simulation of Profit Analysis Model (5 of 15) Exhibit

46 Crystal Ball Simulation of Profit Analysis Model (6 of 15) Exhibit

47 Crystal Ball Simulation of Profit Analysis Model (7 of 15) Exhibit

48 Crystal Ball Simulation of Profit Analysis Model (8 of 15) Exhibit

49 Crystal Ball Simulation of Profit Analysis Model (9 of 15) Exhibit

50 Crystal Ball Simulation of Profit Analysis Model (10 of 15) Exhibit

51 Crystal Ball Simulation of Profit Analysis Model (11 of 15) Exhibit

52 Crystal Ball Simulation of Profit Analysis Model (12 of 15) Exhibit

53 Crystal Ball Simulation of Profit Analysis Model (13 of 15) Exhibit

54 Crystal Ball Simulation of Profit Analysis Model (14 of 15) Exhibit

55 Crystal Ball Simulation of Profit Analysis Model (15 of 15) Exhibit

56 Verification of the Simulation Model (1 of 2) Analyst wants to be certain that model is internally correct and that all operations are logical and mathematically correct. Testing procedures for validity: Run a small number of trials of the model and compare with manually derived solutions. Divide the model into parts and run parts separately to reduce complexity of checking. Simplify mathematical relationships (if possible) for easier testing. Compare results with actual real-world data

57 Verification of the Simulation Model (2 of 2) Analyst must determine if model starting conditions are correct (system empty, etc). Must determine how long model should run to insure steady-state conditions. A standard, fool-proof procedure for validation is not available. Validity of the model rests ultimately on the expertise and experience of the model developer

58 Some Areas of Simulation Application Queuing Inventory Control Production and Manufacturing Finance Marketing Public Service Operations Environmental and Resource Analysis 14-58

59 Example Problem Solution (1 of 6) Willow Creek Emergency Rescue Squad Minor emergency requires two-person crew Regular emergency requires a three-person crew Major emergency requires a five-person crew 14-59

60 Example Problem Solution (2 of 6) Distribution of number of calls per night and emergency type: Calls Probability Emergency Type Minor Regular Major Probability Manually simulate 10 nights of calls 2. Determine average number of calls each night 3. Determine maximum number of crew members that might be needed on any given night

61 Example Problem Solution (3 of 6) Step 1: Develop random number ranges for the probability distributions. Calls Probability Cumulative Probability Random Number Range, r , 00 Emergency Type Minor Regular Major Probability Cumulative Probability Random Number Range, r ,

62 Example Problem Solution (4 of 6) Step 2: Set Up a Tabular Simulation (use second column of random numbers in Table 14.3)

63 Example Problem Solution (5 of 6) Step 2 continued: 14-63

64 Example Problem Solution (6 of 6) Step 3: Compute Results: average number of minor emergency calls per night = 10/10 =1.0 average number of regular emergency calls per night =14/10 = 1.4 average number of major emergency calls per night = 3/10 = 0.30 If calls of all types occurred on same night, maximum number of squad members required would be

65 14-65

Decision Support and Intelligent Systems. Monte Carlo Simulation

Decision Support and Intelligent Systems. Monte Carlo Simulation 887654 Decision Support and Intelligent Systems Monte Carlo Simulation Monte Carlo Monte Carlo is a technique for selecting numbers randomly from a probability distribution. A mathematical process used

More information

BASIC SIMULATION CONCEPTS

BASIC SIMULATION CONCEPTS BASIC SIMULATION CONCEPTS INTRODUCTION Simulation is a technique that involves modeling a situation and performing experiments on that model. A model is a program that imitates a physical or business process

More information

You ve already read basics of simulation now I will be taking up method of simulation, that is Random Number Generation

You ve already read basics of simulation now I will be taking up method of simulation, that is Random Number Generation Unit 5 SIMULATION THEORY Lesson 39 Learning objective: To learn random number generation. Methods of simulation. Monte Carlo method of simulation You ve already read basics of simulation now I will be

More information

Simulation: Solving Dynamic Models ABE 5646 Week 12, Spring 2009

Simulation: Solving Dynamic Models ABE 5646 Week 12, Spring 2009 Simulation: Solving Dynamic Models ABE 5646 Week 12, Spring 2009 Week Description Reading Material 12 Mar 23- Mar 27 Uncertainty and Sensitivity Analysis Two forms of crop models Random sampling for stochastic

More information

An Introduction to Management Science, 12e. Instructions for Using Excel 2007

An Introduction to Management Science, 12e. Instructions for Using Excel 2007 An Introduction to Management Science, 12e Instructions for Using Excel 2007 Appendix 12.2 Simulation Using Crystal Ball Pages 591 2: Defining and Entering Assumptions We are now ready to define the probability

More information

Chapter 6: Simulation Using Spread-Sheets (Excel)

Chapter 6: Simulation Using Spread-Sheets (Excel) Chapter 6: Simulation Using Spread-Sheets (Excel) Refer to Reading Assignments 1 Simulation Using Spread-Sheets (Excel) OBJECTIVES To be able to Generate random numbers within a spreadsheet environment.

More information

Probability Models.S4 Simulating Random Variables

Probability Models.S4 Simulating Random Variables Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard Probability Models.S4 Simulating Random Variables In the fashion of the last several sections, we will often create probability

More information

RANDOM NUMBERS GENERATION

RANDOM NUMBERS GENERATION Chapter 4 RANDOM NUMBERS GENERATION M. Ragheb 9//2013 4.1. INTRODUCTION The use and generation of random numbers uniformly distributed over the unit interval: [0, 1] is a unique feature of the Monte Carlo

More information

RANDOM NUMBERS GENERATION

RANDOM NUMBERS GENERATION Chapter 4 RANDOM NUMBERS GENERATION M. Ragheb 10/2/2015 4.1. INTRODUCTION The use and generation of random numbers uniformly distributed over the unit interval: [0, 1] is a unique feature of the Monte

More information

GoldSim: Using Simulation to Move Beyond the Limitations of Spreadsheet Models

GoldSim: Using Simulation to Move Beyond the Limitations of Spreadsheet Models GoldSim: Using Simulation to Move Beyond the Limitations of Spreadsheet Models White Paper Abstract While spreadsheets are appropriate for many types of applications, due to a number of inherent limitations

More information

Il caso della Prescriptive Maintenance

Il caso della Prescriptive Maintenance Reimagine 2018 HPE Pointnext AI at Work Il caso della Prescriptive Maintenance nel mondo industriale Edmondo De Salvo WW AI, Data & Emerging Technology Center of Excellence 24 maggio 2018 We live in a

More information

A Random Number Based Method for Monte Carlo Integration

A Random Number Based Method for Monte Carlo Integration A Random Number Based Method for Monte Carlo Integration J Wang and G Harrell Department Math and CS, Valdosta State University, Valdosta, Georgia, USA Abstract - A new method is proposed for Monte Carlo

More information

ACCURACY AND EFFICIENCY OF MONTE CARLO METHOD. Julius Goodman. Bechtel Power Corporation E. Imperial Hwy. Norwalk, CA 90650, U.S.A.

ACCURACY AND EFFICIENCY OF MONTE CARLO METHOD. Julius Goodman. Bechtel Power Corporation E. Imperial Hwy. Norwalk, CA 90650, U.S.A. - 430 - ACCURACY AND EFFICIENCY OF MONTE CARLO METHOD Julius Goodman Bechtel Power Corporation 12400 E. Imperial Hwy. Norwalk, CA 90650, U.S.A. ABSTRACT The accuracy of Monte Carlo method of simulating

More information

An Excel Add-In for Capturing Simulation Statistics

An Excel Add-In for Capturing Simulation Statistics 2001 Joint Statistical Meetings Atlanta, GA An Excel Add-In for Capturing Simulation Statistics David C. Trindade david.trindade@sun.com Sun Microsystems, Inc. Cupertino, CA David Meade david.meade@amd.com

More information

ENM316E Simulation. The output obtained by running the simulation model once is also random.

ENM316E Simulation. The output obtained by running the simulation model once is also random. ENM 316E Simulation Lesson 6 Output analysis is the analysis of data generated from simulation study. The purpose of the output analysis To estimate the performance of a system To compare the performance

More information

APPENDIX K MONTE CARLO SIMULATION

APPENDIX K MONTE CARLO SIMULATION APPENDIX K MONTE CARLO SIMULATION K-1. Introduction. Monte Carlo simulation is a method of reliability analysis that should be used only when the system to be analyzed becomes too complex for use of simpler

More information

Quasi-Monte Carlo Methods Combating Complexity in Cost Risk Analysis

Quasi-Monte Carlo Methods Combating Complexity in Cost Risk Analysis Quasi-Monte Carlo Methods Combating Complexity in Cost Risk Analysis Blake Boswell Booz Allen Hamilton ISPA / SCEA Conference Albuquerque, NM June 2011 1 Table Of Contents Introduction Monte Carlo Methods

More information

Simulation with Arena

Simulation with Arena Simulation with Arena Sixth Edition W. David Kelton Professor Department of Operations, Business Analytics, and Information Systems University of Cincinnati Randall P. Sadowski Retired Nancy B. Zupick

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 13 Random Numbers and Stochastic Simulation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Discrete Filters and Particle Filters Models Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book SA-1 Probabilistic

More information

Comprehensive Practice Handout MATH 1325 entire semester

Comprehensive Practice Handout MATH 1325 entire semester 1 Comprehensive Practice Handout MATH 1325 entire semester Test 1 material Use the graph of f(x) below to answer the following 6 questions. 7 1. Find the value of lim x + f(x) 2. Find the value of lim

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations DESCRIPTION AND APPLICATION Outline Introduction Description of Method Cost Estimating Example Other Considerations Introduction Most interesting things are probabilistic (opinion)

More information

Lecture: Simulation. of Manufacturing Systems. Sivakumar AI. Simulation. SMA6304 M2 ---Factory Planning and scheduling. Simulation - A Predictive Tool

Lecture: Simulation. of Manufacturing Systems. Sivakumar AI. Simulation. SMA6304 M2 ---Factory Planning and scheduling. Simulation - A Predictive Tool SMA6304 M2 ---Factory Planning and scheduling Lecture Discrete Event of Manufacturing Systems Simulation Sivakumar AI Lecture: 12 copyright 2002 Sivakumar 1 Simulation Simulation - A Predictive Tool Next

More information

Launch the TotPlan application from Navigate > applications > Planning > TotPlan.

Launch the TotPlan application from Navigate > applications > Planning > TotPlan. 1 Log into Workspace Launch the TotPlan application from Navigate > applications > Planning > TotPlan. Click on the Quota Planning form in the Revenue folder. As we re planning the next fiscal year, we

More information

What s New in Oracle Crystal Ball? What s New in Version Browse to:

What s New in Oracle Crystal Ball? What s New in Version Browse to: What s New in Oracle Crystal Ball? Browse to: - What s new in version 11.1.1.0.00 - What s new in version 7.3 - What s new in version 7.2 - What s new in version 7.1 - What s new in version 7.0 - What

More information

The Plan: Basic statistics: Random and pseudorandom numbers and their generation: Chapter 16.

The Plan: Basic statistics: Random and pseudorandom numbers and their generation: Chapter 16. Scientific Computing with Case Studies SIAM Press, 29 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit IV Monte Carlo Computations Dianne P. O Leary c 28 What is a Monte-Carlo method?

More information

Week 3: Simulation, Loops, and. if/else Statements. Simulation in R. Conditional Expressions in R. Loops. Monte Carlo Procedures.

Week 3: Simulation, Loops, and. if/else Statements. Simulation in R. Conditional Expressions in R. Loops. Monte Carlo Procedures. ,, and,, and January 25, 2018 ,, and What is,, and A few questions about simulation: 1 What does statistical simulation mean to you? 2 Describe a setting where simulation can be used. of Roulette,, and

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit IV Monte Carlo

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit IV Monte Carlo Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit IV Monte Carlo Computations Dianne P. O Leary c 2008 1 What is a Monte-Carlo

More information

Monte Carlo Simula/on and Copula Func/on. by Gerardo Ferrara

Monte Carlo Simula/on and Copula Func/on. by Gerardo Ferrara Monte Carlo Simula/on and Copula Func/on by Gerardo Ferrara Introduc)on A Monte Carlo method is a computational algorithm that relies on repeated random sampling to compute its results. In a nutshell,

More information

Tutorial 10: Performing What-If Analyses. Microsoft Excel 2013 Enhanced

Tutorial 10: Performing What-If Analyses. Microsoft Excel 2013 Enhanced Tutorial 10: Performing What-If Analyses Microsoft Excel 2013 Enhanced Objectives Explore the principles of cost-volume-profit relationships Create a one-variable data table Create a two-variable data

More information

( )! 1! 3 = x + 1. ( ) =! x + 2

( )! 1! 3 = x + 1. ( ) =! x + 2 7.5 Graphing Parabolas 1. First complete the square: y = x 2 + 2x! 3 = x 2 + 2x + 1 ( )! 1! 3 = x + 1 ( ) 2! 4 The x-intercepts are 3,1 and the vertex is ( 1, 4). Graphing the parabola: 3. First complete

More information

Monte Carlo Techniques. Professor Stephen Sekula Guest Lecture PHY 4321/7305 Sep. 3, 2014

Monte Carlo Techniques. Professor Stephen Sekula Guest Lecture PHY 4321/7305 Sep. 3, 2014 Monte Carlo Techniques Professor Stephen Sekula Guest Lecture PHY 431/7305 Sep. 3, 014 What are Monte Carlo Techniques? Computational algorithms that rely on repeated random sampling in order to obtain

More information

A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection (Kohavi, 1995)

A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection (Kohavi, 1995) A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection (Kohavi, 1995) Department of Information, Operations and Management Sciences Stern School of Business, NYU padamopo@stern.nyu.edu

More information

What We ll Do... Random

What We ll Do... Random What We ll Do... Random- number generation Random Number Generation Generating random variates Nonstationary Poisson processes Variance reduction Sequential sampling Designing and executing simulation

More information

VARIANCE REDUCTION TECHNIQUES IN MONTE CARLO SIMULATIONS K. Ming Leung

VARIANCE REDUCTION TECHNIQUES IN MONTE CARLO SIMULATIONS K. Ming Leung POLYTECHNIC UNIVERSITY Department of Computer and Information Science VARIANCE REDUCTION TECHNIQUES IN MONTE CARLO SIMULATIONS K. Ming Leung Abstract: Techniques for reducing the variance in Monte Carlo

More information

Minimum Roughness: A New Approach to Interpolation and Smoothing

Minimum Roughness: A New Approach to Interpolation and Smoothing Minimum Roughness: A New Approach to Interpolation and Smoothing Griffith Feeney Demography Statistics Information Technology, Letter No. 6, 11 June 2014 INTERPOLATION is a way of filling in a series of

More information

A New Approach to Monte Carlo Simulation of Operations

A New Approach to Monte Carlo Simulation of Operations A New Approach to Monte Carlo Simulation of Operations Ankita Bihani #1 # School of Computing Sciences and Engineering, VIT University, Vellore, India Abstract Monte Carlo simulation are a wide class of

More information

L20 MPI Example, Numerical Integration. Let s now consider a real problem to write a parallel code for. Let s take the case of numerical integration.

L20 MPI Example, Numerical Integration. Let s now consider a real problem to write a parallel code for. Let s take the case of numerical integration. Geophysical Computing L20-1 L20 MPI Example, Numerical Integration 1. Numerical Integration Let s now consider a real problem to write a parallel code for. Let s take the case of numerical integration.

More information

PARAMETRIC ESTIMATION OF CONSTRUCTION COST USING COMBINED BOOTSTRAP AND REGRESSION TECHNIQUE

PARAMETRIC ESTIMATION OF CONSTRUCTION COST USING COMBINED BOOTSTRAP AND REGRESSION TECHNIQUE INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6308 (Print) ISSN 0976

More information

Math 1525 Excel Lab 1 Introduction to Excel Spring, 2001

Math 1525 Excel Lab 1 Introduction to Excel Spring, 2001 Math 1525 Excel Lab 1 Introduction to Excel Spring, 2001 Goal: The goal of Lab 1 is to introduce you to Microsoft Excel, to show you how to graph data and functions, and to practice solving problems with

More information

Optimization. Using Analytic Solver Platform REVIEW BASED ON MANAGEMENT SCIENCE

Optimization. Using Analytic Solver Platform REVIEW BASED ON MANAGEMENT SCIENCE Optimization Using Analytic Solver Platform REVIEW BASED ON MANAGEMENT SCIENCE What We ll Cover Today Introduction Frontline Systems Session Ι beta training program goals Overview of Analytic Solver Platform

More information

Using Simulation and Assignment Modeling for Optimization with Constraint in Ability of Servers

Using Simulation and Assignment Modeling for Optimization with Constraint in Ability of Servers Proceedings of the 2011 International Conference on Industrial Engineering and Operations Management Kuala Lumpur, Malaysia, January 22 24, 2011 Using Simulation and Assignment Modeling for Optimization

More information

Prophet 21 CommerceCenter

Prophet 21 CommerceCenter Prophet 21 CommerceCenter Advanced Reporting and Data Analysis with Knowledge Management Center Knowledge Management Center suite: course 2 of 3 This class is designed for Executives Upper Management Objectives

More information

Probability and Statistics for Final Year Engineering Students

Probability and Statistics for Final Year Engineering Students Probability and Statistics for Final Year Engineering Students By Yoni Nazarathy, Last Updated: April 11, 2011. Lecture 1: Introduction and Basic Terms Welcome to the course, time table, assessment, etc..

More information

Monte Carlo methods for risk analysis

Monte Carlo methods for risk analysis Monte Carlo methods for risk analysis Eric Marsden Context Some problems cannot be expressed in analytical form Some problems are difficult to define in a deterministic

More information

Monte Carlo Integration

Monte Carlo Integration Lab 18 Monte Carlo Integration Lab Objective: Implement Monte Carlo integration to estimate integrals. Use Monte Carlo Integration to calculate the integral of the joint normal distribution. Some multivariable

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction A Monte Carlo method is a compuational method that uses random numbers to compute (estimate) some quantity of interest. Very often the quantity we want to compute is the mean of

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Statistical Methods -

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Statistical Methods - Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Statistical Methods - Karsten Heeger heeger@wisc.edu Course Schedule and Reading course website http://neutrino.physics.wisc.edu/teaching/phys736/

More information

ISyE 6416: Computational Statistics Spring Lecture 13: Monte Carlo Methods

ISyE 6416: Computational Statistics Spring Lecture 13: Monte Carlo Methods ISyE 6416: Computational Statistics Spring 2017 Lecture 13: Monte Carlo Methods Prof. Yao Xie H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Determine area

More information

Proceedings of the 2010 Winter Simulation Conference B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

Proceedings of the 2010 Winter Simulation Conference B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds. Proceedings of the 2010 Winter Simulation Conference B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds. INVERSE DISCRETE EVENT MODELING FOR FACILITY PARAMETER ESTIMATION Reid Kress

More information

Monte Carlo Ray Tracing. Computer Graphics CMU /15-662

Monte Carlo Ray Tracing. Computer Graphics CMU /15-662 Monte Carlo Ray Tracing Computer Graphics CMU 15-462/15-662 TODAY: Monte Carlo Ray Tracing How do we render a photorealistic image? Put together many of the ideas we ve studied: - color - materials - radiometry

More information

8.1 Model building, verification, and validation

8.1 Model building, verification, and validation UNIT 8: VERIFICATION AND VALIDATION OF SIMULATION MODELS, OPTIMIZATION: Model building, verification and validation; Verification of simulation models; Calibration and validation of models. Optimization

More information

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Wolfram Burgard 1 Motivation Recall: Discrete filter Discretize the continuous state space High memory complexity

More information

BANK ATM QUEUEING MODEL: A CASE STUDY Ashish Upadhayay* 1

BANK ATM QUEUEING MODEL: A CASE STUDY Ashish Upadhayay* 1 ISSN 2277-2685 IJESR/May 2017/ Vol-7/Issue-5/40-45 Ashish Upadhayay / International Journal of Engineering & Science Research BANK ATM QUEUEING MODEL: A CASE STUDY Ashish Upadhayay* 1 1 Research Scholar,

More information

Chapter 16. Microscopic Traffic Simulation Overview Traffic Simulation Models

Chapter 16. Microscopic Traffic Simulation Overview Traffic Simulation Models Chapter 6 Microscopic Traffic Simulation 6. Overview The complexity of traffic stream behaviour and the difficulties in performing experiments with real world traffic make computer simulation an important

More information

DECISION SCIENCES INSTITUTE. Exponentially Derived Antithetic Random Numbers. (Full paper submission)

DECISION SCIENCES INSTITUTE. Exponentially Derived Antithetic Random Numbers. (Full paper submission) DECISION SCIENCES INSTITUTE (Full paper submission) Dennis Ridley, Ph.D. SBI, Florida A&M University and Scientific Computing, Florida State University dridley@fsu.edu Pierre Ngnepieba, Ph.D. Department

More information

Decision Support Risk handout. Simulating Spreadsheet models

Decision Support Risk handout. Simulating Spreadsheet models Decision Support Models @ Risk handout Simulating Spreadsheet models using @RISK 1. Step 1 1.1. Open Excel and @RISK enabling any macros if prompted 1.2. There are four on line help options available.

More information

Monte Carlo Simulation. Ben Kite KU CRMDA 2015 Summer Methodology Institute

Monte Carlo Simulation. Ben Kite KU CRMDA 2015 Summer Methodology Institute Monte Carlo Simulation Ben Kite KU CRMDA 2015 Summer Methodology Institute Created by Terrence D. Jorgensen, 2014 What Is a Monte Carlo Simulation? Anything that involves generating random data in a parameter

More information

Monte Carlo Methods. Named by Stanislaw Ulam and Nicholas Metropolis in 1940s for the famous gambling casino in Monaco.

Monte Carlo Methods. Named by Stanislaw Ulam and Nicholas Metropolis in 1940s for the famous gambling casino in Monaco. Monte Carlo Methods Named by Stanislaw Ulam and Nicholas Metropolis in 1940s for the famous gambling casino in Monaco. Used in numerous applications. Any method that uses random numbers to solve a problem

More information

iscrete-event System Simulation of Queues with Spreadsheets Combined with Simple VBA Code: A Teaching Case

iscrete-event System Simulation of Queues with Spreadsheets Combined with Simple VBA Code: A Teaching Case Nithipat Kamolsuk D iscrete-event System Simulation of Queues with Spreadsheets Combined with Simple VBA Code: A Teaching Case Chairperson, Department of General Science Faculty of Engineering and Technology

More information

Simulation Input Data Modeling

Simulation Input Data Modeling Introduction to Modeling and Simulation Simulation Input Data Modeling OSMAN BALCI Professor Department of Computer Science Virginia Polytechnic Institute and State University (Virginia Tech) Blacksburg,

More information

Professor Stephen Sekula

Professor Stephen Sekula Monte Carlo Techniques Professor Stephen Sekula Guest Lecture PHYS 4321/7305 What are Monte Carlo Techniques? Computational algorithms that rely on repeated random sampling in order to obtain numerical

More information

ORA DATA REQUEST ORA-SDGE-015-TCR SDG&E 2019 GRC A SDG&E RESPONSE DATE RECEIVED: NOVEMBER 7, 2017 DATE RESPONDED: NOVEMBER 22, 2017

ORA DATA REQUEST ORA-SDGE-015-TCR SDG&E 2019 GRC A SDG&E RESPONSE DATE RECEIVED: NOVEMBER 7, 2017 DATE RESPONDED: NOVEMBER 22, 2017 Exhibit Reference: SDG&E-14 SDG&E Witness: Alan F. Colton Subject: SDG&E-14 workpapers, digital format Please provide the following: 1. At the workshop for this GRC held November 1, 2017 at the CPUC, a

More information

Solve each equation. To analyze and manipulate quadratic models to identify key information about a relationship or real world situation.

Solve each equation. To analyze and manipulate quadratic models to identify key information about a relationship or real world situation. Test Yourself Solve each equation. Lesson 13 Problem Solving with Quadratic Functions Goals To analyze and manipulate quadratic models to identify key information about a relationship or real world situation.

More information

Optimizing Pharmaceutical Production Processes Using Quality by Design Methods

Optimizing Pharmaceutical Production Processes Using Quality by Design Methods Optimizing Pharmaceutical Production Processes Using Quality by Design Methods Bernd Heinen, SAS WHITE PAPER SAS White Paper Table of Contents Abstract.... The situation... Case study and database... Step

More information

Risk Assessment of a LM117 Voltage Regulator Circuit Design Using Crystal Ball and Minitab (Part 1) By Andrew G. Bell

Risk Assessment of a LM117 Voltage Regulator Circuit Design Using Crystal Ball and Minitab (Part 1) By Andrew G. Bell Risk Assessment of a LM7 Voltage Regulator Circuit Design Using Crystal Ball and Minitab (Part ) By Andrew G. Bell 3 August, 2006 Table of Contents Executive Summary 2 Introduction. 3 Design Requirements.

More information

Evolutionary Algorithms. CS Evolutionary Algorithms 1

Evolutionary Algorithms. CS Evolutionary Algorithms 1 Evolutionary Algorithms CS 478 - Evolutionary Algorithms 1 Evolutionary Computation/Algorithms Genetic Algorithms l Simulate natural evolution of structures via selection and reproduction, based on performance

More information

Duplicate Invoice Payments

Duplicate Invoice Payments Duplicate Invoice Payments David Macleod Internal Auditor Falkirk Council 4 December 2014 IDEA Scottish User Group 1 Outline of Presentation Background Risk Data Use of IDEA Findings 4 December 2014 IDEA

More information

Computational modeling

Computational modeling Computational modeling Lecture 8 : Monte Carlo Instructor : Cedric Weber Course : 4CCP1000 Integrals, how to calculate areas? 2 Integrals, calculate areas There are different ways to calculate areas Integration

More information

Don t Plan Capacity When You Should Predict Applications

Don t Plan Capacity When You Should Predict Applications Don t Plan Capacity When You Should Predict Applications Tim R. Norton Doctoral Candidate Colorado Technical University CMG97 Session 443, December 10, 1997 As application designs incorporate client/server

More information

A/B Testing Overview

A/B Testing Overview A/B Testing Overview A/B Testing (also known as Split testing) defines a way to compare two versions of an application or a web page that enables you to determine which one performs better. It is one of

More information

Machine Condition Monitoring = Improved Manufacturing

Machine Condition Monitoring = Improved Manufacturing April 2017 Machine Condition Monitoring = Improved Manufacturing Author: Sen Wu, Product Manager, Advantech Corporation www.advantech.com Traditional manufacturing done with saws, lathes, CNC systems and

More information

Step 1. Use a ruler or straight-edge to determine a line of best fit. One example is shown below.

Step 1. Use a ruler or straight-edge to determine a line of best fit. One example is shown below. Linear Models Modeling 1 ESSENTIALS Example Draw a straight line through the scatter plot so that the line represents a best fit approximation to the points. Then determine the equation for the line drawn.

More information

Reliability Analysis of Gamma Interconnection Network Systems

Reliability Analysis of Gamma Interconnection Network Systems International Journal of Performability Engineering, Vol. 5, No. 5, October 9, pp. 485-49. RAMS Consultants Printed in India Reliability Analysis of Gamma Interconnection Network Systems 1. Introduction

More information

Computational Methods. Randomness and Monte Carlo Methods

Computational Methods. Randomness and Monte Carlo Methods Computational Methods Randomness and Monte Carlo Methods Manfred Huber 2010 1 Randomness and Monte Carlo Methods Introducing randomness in an algorithm can lead to improved efficiencies Random sampling

More information

Paper SAS Taming the Rule. Charlotte Crain, Chris Upton, SAS Institute Inc.

Paper SAS Taming the Rule. Charlotte Crain, Chris Upton, SAS Institute Inc. ABSTRACT Paper SAS2620-2016 Taming the Rule Charlotte Crain, Chris Upton, SAS Institute Inc. When business rules are deployed and executed--whether a rule is fired or not if the rule-fire outcomes are

More information

Pair-Wise Multiple Comparisons (Simulation)

Pair-Wise Multiple Comparisons (Simulation) Chapter 580 Pair-Wise Multiple Comparisons (Simulation) Introduction This procedure uses simulation analyze the power and significance level of three pair-wise multiple-comparison procedures: Tukey-Kramer,

More information

Chapter 6 Multicriteria Decision Making

Chapter 6 Multicriteria Decision Making Chapter 6 Multicriteria Decision Making Chapter Topics Goal Programming Graphical Interpretation of Goal Programming Computer Solution of Goal Programming Problems with QM for Windows and Excel The Analytical

More information

Microscopic Traffic Simulation

Microscopic Traffic Simulation Microscopic Traffic Simulation Lecture Notes in Transportation Systems Engineering Prof. Tom V. Mathew Contents Overview 2 Traffic Simulation Models 2 2. Need for simulation.................................

More information

Introduction to Management Science, 12e (Taylor) Chapter 1 Management Science

Introduction to Management Science, 12e (Taylor) Chapter 1 Management Science Introduction to Management Science, 12e (Taylor) Chapter 1 Management Science 1) A management science solution can be either a recommended decision or information that helps a manager make a decision.

More information

Fathom Dynamic Data TM Version 2 Specifications

Fathom Dynamic Data TM Version 2 Specifications Data Sources Fathom Dynamic Data TM Version 2 Specifications Use data from one of the many sample documents that come with Fathom. Enter your own data by typing into a case table. Paste data from other

More information

BESTFIT, DISTRIBUTION FITTING SOFTWARE BY PALISADE CORPORATION

BESTFIT, DISTRIBUTION FITTING SOFTWARE BY PALISADE CORPORATION Proceedings of the 1996 Winter Simulation Conference ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. S\vain BESTFIT, DISTRIBUTION FITTING SOFTWARE BY PALISADE CORPORATION Linda lankauskas Sam

More information

Key Features. Defect Rates. Traditional Unit testing: 25 faults / KLOC System testing: 25 / KLOC Inspections: / KLOC

Key Features. Defect Rates. Traditional Unit testing: 25 faults / KLOC System testing: 25 / KLOC Inspections: / KLOC Cleanroom attempt to mathematically-based, scientific engineering process of software development Cleanroom software engineering yields software that is correct by mathematically sound design, and software

More information

Generating random samples from user-defined distributions

Generating random samples from user-defined distributions The Stata Journal (2011) 11, Number 2, pp. 299 304 Generating random samples from user-defined distributions Katarína Lukácsy Central European University Budapest, Hungary lukacsy katarina@phd.ceu.hu Abstract.

More information

Gauss for Econometrics: Simulation

Gauss for Econometrics: Simulation Gauss for Econometrics: Simulation R.G. Pierse 1. Introduction Simulation is a very useful tool in econometric modelling. It allows the economist to examine the properties of models and estimators when

More information

MULTI-DIMENSIONAL MONTE CARLO INTEGRATION

MULTI-DIMENSIONAL MONTE CARLO INTEGRATION CS580: Computer Graphics KAIST School of Computing Chapter 3 MULTI-DIMENSIONAL MONTE CARLO INTEGRATION 2 1 Monte Carlo Integration This describes a simple technique for the numerical evaluation of integrals

More information

Integration. Volume Estimation

Integration. Volume Estimation Monte Carlo Integration Lab Objective: Many important integrals cannot be evaluated symbolically because the integrand has no antiderivative. Traditional numerical integration techniques like Newton-Cotes

More information

Simulation Modeling and Analysis

Simulation Modeling and Analysis Simulation Modeling and Analysis FOURTH EDITION Averill M. Law President Averill M. Law & Associates, Inc. Tucson, Arizona, USA www. averill-law. com Boston Burr Ridge, IL Dubuque, IA New York San Francisco

More information

Fast Automated Estimation of Variance in Discrete Quantitative Stochastic Simulation

Fast Automated Estimation of Variance in Discrete Quantitative Stochastic Simulation Fast Automated Estimation of Variance in Discrete Quantitative Stochastic Simulation November 2010 Nelson Shaw njd50@uclive.ac.nz Department of Computer Science and Software Engineering University of Canterbury,

More information

METROPOLIS MONTE CARLO SIMULATION

METROPOLIS MONTE CARLO SIMULATION POLYTECHNIC UNIVERSITY Department of Computer and Information Science METROPOLIS MONTE CARLO SIMULATION K. Ming Leung Abstract: The Metropolis method is another method of generating random deviates that

More information

Excel Forecasting Tools Review

Excel Forecasting Tools Review Excel Forecasting Tools Review Duke MBA Computer Preparation Excel Forecasting Tools Review Focus The focus of this assignment is on four Excel 2003 forecasting tools: The Data Table, the Scenario Manager,

More information

Why is scheduling so difficult?

Why is scheduling so difficult? Queueing Page 1 Why is scheduling so difficult? Wednesday, November 8, 2017 7:35 AM Scheduling is a matter of great controversy. Should it be fair? (O(log n)) Should it instead be fast? (O(1)) As well,

More information

Learning Objectives. Continuous Random Variables & The Normal Probability Distribution. Continuous Random Variable

Learning Objectives. Continuous Random Variables & The Normal Probability Distribution. Continuous Random Variable Learning Objectives Continuous Random Variables & The Normal Probability Distribution 1. Understand characteristics about continuous random variables and probability distributions 2. Understand the uniform

More information

Advanced Financial Modeling Macros. EduPristine

Advanced Financial Modeling Macros. EduPristine Advanced Financial Modeling Macros EduPristine www.edupristine.com/ca Agenda Introduction to Macros & Advanced Application Building in Excel Introduction and context Key Concepts in Macros Macros as recorded

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. Lecture 14

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. Lecture 14 Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics Lecture 14 Karsten Heeger heeger@wisc.edu Course Schedule and Reading course website http://neutrino.physics.wisc.edu/teaching/phys736/

More information

An experiment to show undergraduate students the impact of transient analysis decisions on parameter estimation for non-terminating simulated systems

An experiment to show undergraduate students the impact of transient analysis decisions on parameter estimation for non-terminating simulated systems World Transactions on Engineering and Technology Education Vol.4, No.2, 2005 2005 UICEE An experiment to show undergraduate students the impact of transient analysis decisions on parameter estimation for

More information

Bootstrapping Method for 14 June 2016 R. Russell Rhinehart. Bootstrapping

Bootstrapping Method for  14 June 2016 R. Russell Rhinehart. Bootstrapping Bootstrapping Method for www.r3eda.com 14 June 2016 R. Russell Rhinehart Bootstrapping This is extracted from the book, Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation,

More information

Laboratory #11. Bootstrap Estimates

Laboratory #11. Bootstrap Estimates Name Laboratory #11. Bootstrap Estimates Randomization methods so far have been used to compute p-values for hypothesis testing. Randomization methods can also be used to place confidence limits around

More information