Machine Learning Techniques for Bacteria Classification

Size: px
Start display at page:

Download "Machine Learning Techniques for Bacteria Classification"

Transcription

1 Machine Learning Techniques for Bacteria Classification Massimo La Rosa Riccardo Rizzo Alfonso M. Urso S. Gaglio ICAR-CNR University of Palermo Workshop on Hardware Architectures Beyond 2020: Challenges and Opportunities for Computational Biology and Bioinformatics Napoli December 19, 2007

2 Outline Motivation Goals A new approach to microbial identification Genotypic feature based taxonomy Visualization Methodologies Self organizing Topographic map Deterministic annealing Results A methodology to create a visualization and classification tool Conclusions

3 Outline Motivation Goals A new approach to microbial identification Genotypic feature based taxonomy Visualization Methodologies Self organizing Topographic map Deterministic annealing Results A methodology to create a visualization and classification tool Conclusions

4 Motivation Microbial identification is crucial for the study of infectious diseases. Bacterial taxonomy is usually based on phenotypic characters A new approach based on bacteria genotype is under development 16S rrna housekeeping gene for taxonomic purposes

5 Outline Motivation Goals A new approach to microbial identification Genotypic feature based taxonomy Visualization Methodologies Self organizing Topographic map Deterministic annealing Results A methodology to create a visualization and classification tool Conclusions

6 Goal Genotypic features based taxonomy Topographic representation bacteria clusters of the Finding misclassification = discovery of new pathogens Classifying organisms with an unusual phenotype

7 Outline Motivation Goals A new approach to microbial identification Genotypic feature based taxonomy Visualization Methodologies Self organizing Topographic map Deterministic annealing Results A methodology to create a visualization and classification tool Conclusions

8 Methodologies General framework Building Dataset Sequence Alignment Evolutionary Distance Soft Topographic Map Algorithm

9 General framework 1 downloading and filtering gene sequences from NCBI databases 2 sequence alignment (Needleman-Wunsch) 3 computing dissimilarity matrix (evolutionary distance) 4 clustering (SOM on pairwise distances) and visualization (UMatrix style map) Sequence Results DB Filtering Taxonomy Sequence Computing Retrieval Alignment Distance 2 Sequence File 1 Labeling 3 Clustering and mapping 4

10 Building Dataset 14 Orders Phylum BXII (Proteobacteria) Class III (Gammaproteobacteria) S rrna gene sequences downloaded from GenBank database

11 Sequence Alignment Sequence alignment allows to compare homologous sites of the same gene between two different species Two well known alignment algorithms used: ClustalW: multiple-alignment Needleman-Wunsch: pairwise alignment

12 Evolutionary Distance The simplest type of distance is the number of nucleotide substitutions per site. Warning: it underrates real distances Jukes and Cantor method was used: it provides a better estimate of evolutionary distances Evolutionary distances are elements of the symmetric dissimilarity matrix: Type strain

13 Soft Topographic Map Algorithm (1) Extension of Kohonen's SOM for pairwise data The position of bacteria clusters in the topographic maps is based on the optimization, through deterministic annealing technique, of a cost function that takes its minimum when each data point is mapped to the best matching neuron Topographic map showing relationships among Bacteria clusters Dissimilarity matrix Type strain , , , input Soft Topographic Map Algorithm output

14 Soft Topographic Map Algorithm (2) 1) Initialization Step: a) put e t r n t r, t, r, [0, 1] b) compute lookup table table for for hhrsrs c) choose initial value of of,, final, increasing temperature factor final, increasing temperature, threshold, threshold factor 2) Training Step: (Annealing cycle) a) while final final (Annealing cycle) i. repeat (EM cycle) cycle) A) A) E E step: step: compute compute P P xx tt C C rr tt,, rr B) compute B) M M step: step: compute new new aa tt rr,, tt,, rr C) C) M M step: step: compute compute ee new new tr tr,, tt,, rr new old old e r e t r etnew e tr t r ii. ii. until until iii. iii. put put b) end b) end while while Neighborhood function : 2 r s hr s =exp, r, s 2 2 Assignment probability : exp e t r P x t C r =, t,r exp e t u u Partial assignment cost : 1 e t r = hrs at ' s dtt ' at ' ' s d t ' t ' ', t, r 2 t'' s t' Weighting factor : hrs P x t C s at r= s s hrs P xt ' C s t', t,r

15 Soft Topographic map Input vector The topographic map is a lattice (two dimensional in our case) that self organize in the pattern space

16 Soft Topographic Map Algorithm (3) The algorithm that moves this lattice is called deterministic annealing Deterministic annealing The advantage of deterministic annealing is to find a global minimum of the approximation error 1) Initialization Step: a) put e t r n t r, t, r, [0, 1] b) compute lookup table for h rs c) choose initial value of, final, increasing temperature factor, threshold 2) Training Step: a) while final (Annealing cycle) i. repeat (EM cycle) A) E step: compute P x t C r t, r B) M step: compute Neighborhood function : r s 2 hr s =exp, r,s 2 2 Assignment probability : exp e t r P x t C r =, t,r exp et u u Partial assignment cost : 1 e t r = h rs at ' s d tt ' a t ' ' s d t ' t ' ', t, r 2 t'' s t' a new tr, t,r C) M step: compute e new tr, t,r old ii. until e new t r e t r iii. put b) end while Weighting factor : hrs P x t C s at r= s hrs P x t ' C s t' s, t,r

17 Outline Motivation Goals A new approach to microbial identification Genotypic feature based taxonomy Visualization Methodologies Self organizing Topographic map Deterministic annealing Results A methodology to create a visualization and classification tool Conclusions

18 Experimental Results From 8x8 up to 45x45 map dimensions We trained 20 maps of each geometry in order to avoid the dependence from the initial conditions The results obtained using the two alignments methods do not present any significant difference 12x12 map 16x16 map 20x20 map

19 Experimental tests Hardware resources 16 nodes cluster, dual processor Xeon 3.4 GHz, 4 GB RAM, 6 TB storage, Myrinet-Fiber communication Software Languages: Java, Python Libraries: BioJava, Jama... Map size Average processing time (min.) 8x8 0,6 9x9 1 10x x x x x x x x x x x x x x x x

20 Map Evaluation Mixed Clusters

21 Map Evaluation Usually topology measures are considered, but in our case there is not a space that contains the patterns (sequences) Probable topology distortion Ideal Map We only have distances between patterns, and no metrics!

22 Map evaluation We take rows and columns of the maps and compare the order of the elements in map with the order obtained from the dissimilarity matrix

23 Map evaluation This sequence......is compared with... Dissimilarity matrix Type strain the sequence of the same objects obtained from the dissimilarity matrix This comparison is made using the Spearman coefficient in order to obtain a similarity value among the two sequences. Of course the two sequences should be the same in a good map

24 Map Evaluation

25 Map evaluation We have an index for each map and we can see that some geometry are better than other Low number of mixed clusters Low value of Spearman Coefficient The Best Map

26 The Best Map

27 Comparison with the phylogenetic tree

28 Outline Motivation Goals A new approach to microbial identification Genotypic feature based taxonomy Visualization Methodologies Self organizing Topographic map Deterministic annealing Results A methodology to create a visualization and classification tool Conclusions

29 Conclusions Soft Topographic Map for clustering and classification of bacteria Genotype based taxonomy Detecting singular situations Further analysis with other housekeeping genes or using other distance algorithms, e.g. Normalized Compressed Distance

9/29/13. Outline Data mining tasks. Clustering algorithms. Applications of clustering in biology

9/29/13. Outline Data mining tasks. Clustering algorithms. Applications of clustering in biology 9/9/ I9 Introduction to Bioinformatics, Clustering algorithms Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Outline Data mining tasks Predictive tasks vs descriptive tasks Example

More information

When you use the EzTaxon server for your study, please cite the following article:

When you use the EzTaxon server for your study, please cite the following article: Microbiology Activity #11 - Analysis of 16S rrna sequence data In sexually reproducing organisms, species are defined by the ability to produce fertile offspring. In bacteria, species are defined by several

More information

MetAmp: a tool for Meta-Amplicon analysis User Manual

MetAmp: a tool for Meta-Amplicon analysis User Manual November 12, 2014 MetAmp: a tool for Meta-Amplicon analysis User Manual Ilya Y. Zhbannikov 1, Janet E. Williams 1, James A. Foster 1,2,3 3 Institute for Bioinformatics and Evolutionary Studies, University

More information

BLAST, Profile, and PSI-BLAST

BLAST, Profile, and PSI-BLAST BLAST, Profile, and PSI-BLAST Jianlin Cheng, PhD School of Electrical Engineering and Computer Science University of Central Florida 26 Free for academic use Copyright @ Jianlin Cheng & original sources

More information

Sequence Clustering Tools

Sequence Clustering Tools Sequence Clustering Tools [Internal Report] Saliya Ekanayake School of Informatics and Computing Indiana University sekanaya@cs.indiana.edu 1. Introduction The sequence clustering work carried out by SALSA

More information

Biology 644: Bioinformatics

Biology 644: Bioinformatics Find the best alignment between 2 sequences with lengths n and m, respectively Best alignment is very dependent upon the substitution matrix and gap penalties The Global Alignment Problem tries to find

More information

Main Reference. Marc A. Suchard: Stochastic Models for Horizontal Gene Transfer: Taking a Random Walk through Tree Space Genetics 2005

Main Reference. Marc A. Suchard: Stochastic Models for Horizontal Gene Transfer: Taking a Random Walk through Tree Space Genetics 2005 Stochastic Models for Horizontal Gene Transfer Dajiang Liu Department of Statistics Main Reference Marc A. Suchard: Stochastic Models for Horizontal Gene Transfer: Taing a Random Wal through Tree Space

More information

Chapter 7: Competitive learning, clustering, and self-organizing maps

Chapter 7: Competitive learning, clustering, and self-organizing maps Chapter 7: Competitive learning, clustering, and self-organizing maps António R. C. Paiva EEL 6814 Spring 2008 Outline Competitive learning Clustering Self-Organizing Maps What is competition in neural

More information

HORIZONTAL GENE TRANSFER DETECTION

HORIZONTAL GENE TRANSFER DETECTION HORIZONTAL GENE TRANSFER DETECTION Sequenzanalyse und Genomik (Modul 10-202-2207) Alejandro Nabor Lozada-Chávez Before start, the user must create a new folder or directory (WORKING DIRECTORY) for all

More information

Bioinformatics explained: BLAST. March 8, 2007

Bioinformatics explained: BLAST. March 8, 2007 Bioinformatics Explained Bioinformatics explained: BLAST March 8, 2007 CLC bio Gustav Wieds Vej 10 8000 Aarhus C Denmark Telephone: +45 70 22 55 09 Fax: +45 70 22 55 19 www.clcbio.com info@clcbio.com Bioinformatics

More information

MetaPhyler Usage Manual

MetaPhyler Usage Manual MetaPhyler Usage Manual Bo Liu boliu@umiacs.umd.edu March 13, 2012 Contents 1 What is MetaPhyler 1 2 Installation 1 3 Quick Start 2 3.1 Taxonomic profiling for metagenomic sequences.............. 2 3.2

More information

Figure (5) Kohonen Self-Organized Map

Figure (5) Kohonen Self-Organized Map 2- KOHONEN SELF-ORGANIZING MAPS (SOM) - The self-organizing neural networks assume a topological structure among the cluster units. - There are m cluster units, arranged in a one- or two-dimensional array;

More information

Bioinformatics for Biologists

Bioinformatics for Biologists Bioinformatics for Biologists Sequence Analysis: Part I. Pairwise alignment and database searching Fran Lewitter, Ph.D. Director Bioinformatics & Research Computing Whitehead Institute Topics to Cover

More information

Tutorial. OTU Clustering Step by Step. Sample to Insight. June 28, 2018

Tutorial. OTU Clustering Step by Step. Sample to Insight. June 28, 2018 OTU Clustering Step by Step June 28, 2018 Sample to Insight QIAGEN Aarhus Silkeborgvej 2 Prismet 8000 Aarhus C Denmark Telephone: +45 70 22 32 44 www.qiagenbioinformatics.com ts-bioinformatics@qiagen.com

More information

Function approximation using RBF network. 10 basis functions and 25 data points.

Function approximation using RBF network. 10 basis functions and 25 data points. 1 Function approximation using RBF network F (x j ) = m 1 w i ϕ( x j t i ) i=1 j = 1... N, m 1 = 10, N = 25 10 basis functions and 25 data points. Basis function centers are plotted with circles and data

More information

SOM+EOF for Finding Missing Values

SOM+EOF for Finding Missing Values SOM+EOF for Finding Missing Values Antti Sorjamaa 1, Paul Merlin 2, Bertrand Maillet 2 and Amaury Lendasse 1 1- Helsinki University of Technology - CIS P.O. Box 5400, 02015 HUT - Finland 2- Variances and

More information

SVM Classification in -Arrays

SVM Classification in -Arrays SVM Classification in -Arrays SVM classification and validation of cancer tissue samples using microarray expression data Furey et al, 2000 Special Topics in Bioinformatics, SS10 A. Regl, 7055213 What

More information

Projection with Public Data (PPD)

Projection with Public Data (PPD) Projection with Public Data (PPD) Goal To compare users 16S rrna data with published datasets by processing and normalization them together, and projecting into 3D PCoA plot for visual comparative analysis

More information

SCALABLE AND ROBUST DIMENSION REDUCTION AND CLUSTERING. Yang Ruan. Advised by Geoffrey Fox

SCALABLE AND ROBUST DIMENSION REDUCTION AND CLUSTERING. Yang Ruan. Advised by Geoffrey Fox SCALABLE AND ROBUST DIMENSION REDUCTION AND CLUSTERING Yang Ruan Advised by Geoffrey Fox Outline Motivation Research Issues Experimental Analysis Conclusion and Futurework Motivation Data Deluge Increasing

More information

AMPHORA2 User Manual. An Automated Phylogenomic Inference Pipeline for Bacterial and Archaeal Sequences. COPYRIGHT 2011 by Martin Wu

AMPHORA2 User Manual. An Automated Phylogenomic Inference Pipeline for Bacterial and Archaeal Sequences. COPYRIGHT 2011 by Martin Wu AMPHORA2 User Manual An Automated Phylogenomic Inference Pipeline for Bacterial and Archaeal Sequences. COPYRIGHT 2011 by Martin Wu AMPHORA2 is free software: you may redistribute it and/or modify its

More information

Simulation of Molecular Evolution with Bioinformatics Analysis

Simulation of Molecular Evolution with Bioinformatics Analysis Simulation of Molecular Evolution with Bioinformatics Analysis Barbara N. Beck, Rochester Community and Technical College, Rochester, MN Project created by: Barbara N. Beck, Ph.D., Rochester Community

More information

Basics of Multiple Sequence Alignment

Basics of Multiple Sequence Alignment Basics of Multiple Sequence Alignment Tandy Warnow February 10, 2018 Basics of Multiple Sequence Alignment Tandy Warnow Basic issues What is a multiple sequence alignment? Evolutionary processes operating

More information

Phylogenetics. Introduction to Bioinformatics Dortmund, Lectures: Sven Rahmann. Exercises: Udo Feldkamp, Michael Wurst

Phylogenetics. Introduction to Bioinformatics Dortmund, Lectures: Sven Rahmann. Exercises: Udo Feldkamp, Michael Wurst Phylogenetics Introduction to Bioinformatics Dortmund, 16.-20.07.2007 Lectures: Sven Rahmann Exercises: Udo Feldkamp, Michael Wurst 1 Phylogenetics phylum = tree phylogenetics: reconstruction of evolutionary

More information

PHYLOGENETIC TREE BUILDING USING A NOVEL COMPRESSION-BASED NON-SYMMETRIC DISSIMILARITY MEASURE

PHYLOGENETIC TREE BUILDING USING A NOVEL COMPRESSION-BASED NON-SYMMETRIC DISSIMILARITY MEASURE - 21 - PHYLOGENETIC TREE BUILDING USING A NOVEL COMPRESSION-BASED NON-SYMMETRIC DISSIMILARITY MEASURE R. BUSA-FEKETE 1 A. KOCSOR 1 * CS. BAGYINKA 2 1 Research Group on Artificial Intelligence of the Hungarian

More information

Pairwise Sequence Alignment. Zhongming Zhao, PhD

Pairwise Sequence Alignment. Zhongming Zhao, PhD Pairwise Sequence Alignment Zhongming Zhao, PhD Email: zhongming.zhao@vanderbilt.edu http://bioinfo.mc.vanderbilt.edu/ Sequence Similarity match mismatch A T T A C G C G T A C C A T A T T A T G C G A T

More information

Kraken: ultrafast metagenomic sequence classification using exact alignments

Kraken: ultrafast metagenomic sequence classification using exact alignments Kraken: ultrafast metagenomic sequence classification using exact alignments Derrick E. Wood and Steven L. Salzberg Bioinformatics journal club October 8, 2014 Märt Roosaare Need for speed Metagenomic

More information

Profiles and Multiple Alignments. COMP 571 Luay Nakhleh, Rice University

Profiles and Multiple Alignments. COMP 571 Luay Nakhleh, Rice University Profiles and Multiple Alignments COMP 571 Luay Nakhleh, Rice University Outline Profiles and sequence logos Profile hidden Markov models Aligning profiles Multiple sequence alignment by gradual sequence

More information

7/19/09 A Primer on Clustering: I. Models and Algorithms 1

7/19/09 A Primer on Clustering: I. Models and Algorithms 1 7/19/9 A Primer on Clustering: I. Models and Algorithms 1 7/19/9 A Primer on Clustering: I. Models and Algorithms 2 7/19/9 A Primer on Clustering: I. Models and Algorithms 3 A Primer on Clustering : I.Models

More information

Analyzing ICAT Data. Analyzing ICAT Data

Analyzing ICAT Data. Analyzing ICAT Data Analyzing ICAT Data Gary Van Domselaar University of Alberta Analyzing ICAT Data ICAT: Isotope Coded Affinity Tag Introduced in 1999 by Ruedi Aebersold as a method for quantitative analysis of complex

More information

FASTA. Besides that, FASTA package provides SSEARCH, an implementation of the optimal Smith- Waterman algorithm.

FASTA. Besides that, FASTA package provides SSEARCH, an implementation of the optimal Smith- Waterman algorithm. FASTA INTRODUCTION Definition (by David J. Lipman and William R. Pearson in 1985) - Compares a sequence of protein to another sequence or database of a protein, or a sequence of DNA to another sequence

More information

Compares a sequence of protein to another sequence or database of a protein, or a sequence of DNA to another sequence or library of DNA.

Compares a sequence of protein to another sequence or database of a protein, or a sequence of DNA to another sequence or library of DNA. Compares a sequence of protein to another sequence or database of a protein, or a sequence of DNA to another sequence or library of DNA. Fasta is used to compare a protein or DNA sequence to all of the

More information

Parsimony-Based Approaches to Inferring Phylogenetic Trees

Parsimony-Based Approaches to Inferring Phylogenetic Trees Parsimony-Based Approaches to Inferring Phylogenetic Trees BMI/CS 576 www.biostat.wisc.edu/bmi576.html Mark Craven craven@biostat.wisc.edu Fall 0 Phylogenetic tree approaches! three general types! distance:

More information

On the Efficacy of Haskell for High Performance Computational Biology

On the Efficacy of Haskell for High Performance Computational Biology On the Efficacy of Haskell for High Performance Computational Biology Jacqueline Addesa Academic Advisors: Jeremy Archuleta, Wu chun Feng 1. Problem and Motivation Biologists can leverage the power of

More information

Sequence alignment algorithms

Sequence alignment algorithms Sequence alignment algorithms Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, February 23 rd 27 After this lecture, you can decide when to use local and global sequence alignments

More information

DACIDR: Deterministic Annealed Clustering with Interpolative Dimension Reduction using a Large Collection of 16S rrna Sequences

DACIDR: Deterministic Annealed Clustering with Interpolative Dimension Reduction using a Large Collection of 16S rrna Sequences DACIDR: Deterministic Annealed Clustering with Interpolative Dimension Reduction using a Large Collection of 16S rrna Sequences Yang Ruan 1,3, Saliya Ekanayake 1,3, Mina Rho 2,3, Haixu Tang 2,3, Seung-Hee

More information

Tutorial. OTU Clustering Step by Step. Sample to Insight. March 2, 2017

Tutorial. OTU Clustering Step by Step. Sample to Insight. March 2, 2017 OTU Clustering Step by Step March 2, 2017 Sample to Insight QIAGEN Aarhus Silkeborgvej 2 Prismet 8000 Aarhus C Denmark Telephone: +45 70 22 32 44 www.qiagenbioinformatics.com AdvancedGenomicsSupport@qiagen.com

More information

Research on Pairwise Sequence Alignment Needleman-Wunsch Algorithm

Research on Pairwise Sequence Alignment Needleman-Wunsch Algorithm 5th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE 2017) Research on Pairwise Sequence Alignment Needleman-Wunsch Algorithm Xiantao Jiang1, a,*,xueliang

More information

BLAST MCDB 187. Friday, February 8, 13

BLAST MCDB 187. Friday, February 8, 13 BLAST MCDB 187 BLAST Basic Local Alignment Sequence Tool Uses shortcut to compute alignments of a sequence against a database very quickly Typically takes about a minute to align a sequence against a database

More information

A Dendrogram. Bioinformatics (Lec 17)

A Dendrogram. Bioinformatics (Lec 17) A Dendrogram 3/15/05 1 Hierarchical Clustering [Johnson, SC, 1967] Given n points in R d, compute the distance between every pair of points While (not done) Pick closest pair of points s i and s j and

More information

MEGAN5 tutorial, September 2014, Daniel Huson

MEGAN5 tutorial, September 2014, Daniel Huson MEGAN5 tutorial, September 2014, Daniel Huson This tutorial covers the use of the latest version of MEGAN5. Here is an outline of the steps that we will cover. Note that the computationally most timeconsuming

More information

Gegenees genome format...7. Gegenees comparisons...8 Creating a fragmented all-all comparison...9 The alignment The analysis...

Gegenees genome format...7. Gegenees comparisons...8 Creating a fragmented all-all comparison...9 The alignment The analysis... User Manual: Gegenees V 1.1.0 What is Gegenees?...1 Version system:...2 What's new...2 Installation:...2 Perspectives...4 The workspace...4 The local database...6 Populate the local database...7 Gegenees

More information

DIMACS Tutorial on Phylogenetic Trees and Rapidly Evolving Pathogens. Katherine St. John City University of New York 1

DIMACS Tutorial on Phylogenetic Trees and Rapidly Evolving Pathogens. Katherine St. John City University of New York 1 DIMACS Tutorial on Phylogenetic Trees and Rapidly Evolving Pathogens Katherine St. John City University of New York 1 Thanks to the DIMACS Staff Linda Casals Walter Morris Nicole Clark Katherine St. John

More information

An Approach for Privacy Preserving in Association Rule Mining Using Data Restriction

An Approach for Privacy Preserving in Association Rule Mining Using Data Restriction International Journal of Engineering Science Invention Volume 2 Issue 1 January. 2013 An Approach for Privacy Preserving in Association Rule Mining Using Data Restriction Janakiramaiah Bonam 1, Dr.RamaMohan

More information

Alignment and clustering tools for sequence analysis. Omar Abudayyeh Presentation December 9, 2015

Alignment and clustering tools for sequence analysis. Omar Abudayyeh Presentation December 9, 2015 Alignment and clustering tools for sequence analysis Omar Abudayyeh 18.337 Presentation December 9, 2015 Introduction Sequence comparison is critical for inferring biological relationships within large

More information

Study of a Simple Pruning Strategy with Days Algorithm

Study of a Simple Pruning Strategy with Days Algorithm Study of a Simple Pruning Strategy with ays Algorithm Thomas G. Kristensen Abstract We wish to calculate all pairwise Robinson Foulds distances in a set of trees. Traditional algorithms for doing this

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) CISC 636 Computational Biology & Bioinformatics (Fall 2016) Sequence pairwise alignment Score statistics: E-value and p-value Heuristic algorithms: BLAST and FASTA Database search: gene finding and annotations

More information

Lecture Overview. Sequence search & alignment. Searching sequence databases. Sequence Alignment & Search. Goals: Motivations:

Lecture Overview. Sequence search & alignment. Searching sequence databases. Sequence Alignment & Search. Goals: Motivations: Lecture Overview Sequence Alignment & Search Karin Verspoor, Ph.D. Faculty, Computational Bioscience Program University of Colorado School of Medicine With credit and thanks to Larry Hunter for creating

More information

Gene Clustering & Classification

Gene Clustering & Classification BINF, Introduction to Computational Biology Gene Clustering & Classification Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Introduction to Gene Clustering

More information

Genomics. Nolan C. Kane

Genomics. Nolan C. Kane Genomics Nolan C. Kane Nolan.Kane@Colorado.edu Course info http://nkane.weebly.com/genomics.html Emails let me know if you are not getting them! Email me at nolan.kane@colorado.edu Office hours by appointment

More information

Particle Swarm Optimization Methods for Pattern. Recognition and Image Processing

Particle Swarm Optimization Methods for Pattern. Recognition and Image Processing Particle Swarm Optimization Methods for Pattern Recognition and Image Processing by Mahamed G. H. Omran Submitted in partial fulfillment of the requirements for the degree Philosophiae Doctor in the Faculty

More information

CHAPTER-6 WEB USAGE MINING USING CLUSTERING

CHAPTER-6 WEB USAGE MINING USING CLUSTERING CHAPTER-6 WEB USAGE MINING USING CLUSTERING 6.1 Related work in Clustering Technique 6.2 Quantifiable Analysis of Distance Measurement Techniques 6.3 Approaches to Formation of Clusters 6.4 Conclusion

More information

Sequence Alignment & Search

Sequence Alignment & Search Sequence Alignment & Search Karin Verspoor, Ph.D. Faculty, Computational Bioscience Program University of Colorado School of Medicine With credit and thanks to Larry Hunter for creating the first version

More information

B L A S T! BLAST: Basic local alignment search tool. Copyright notice. February 6, Pairwise alignment: key points. Outline of tonight s lecture

B L A S T! BLAST: Basic local alignment search tool. Copyright notice. February 6, Pairwise alignment: key points. Outline of tonight s lecture February 6, 2008 BLAST: Basic local alignment search tool B L A S T! Jonathan Pevsner, Ph.D. Introduction to Bioinformatics pevsner@jhmi.edu 4.633.0 Copyright notice Many of the images in this powerpoint

More information

Dynamic Programming User Manual v1.0 Anton E. Weisstein, Truman State University Aug. 19, 2014

Dynamic Programming User Manual v1.0 Anton E. Weisstein, Truman State University Aug. 19, 2014 Dynamic Programming User Manual v1.0 Anton E. Weisstein, Truman State University Aug. 19, 2014 Dynamic programming is a group of mathematical methods used to sequentially split a complicated problem into

More information

Bioinformatics. Sequence alignment BLAST Significance. Next time Protein Structure

Bioinformatics. Sequence alignment BLAST Significance. Next time Protein Structure Bioinformatics Sequence alignment BLAST Significance Next time Protein Structure 1 Experimental origins of sequence data The Sanger dideoxynucleotide method F Each color is one lane of an electrophoresis

More information

SCALABLE AND ROBUST CLUSTERING AND VISUALIZATION FOR LARGE-SCALE BIOINFORMATICS DATA

SCALABLE AND ROBUST CLUSTERING AND VISUALIZATION FOR LARGE-SCALE BIOINFORMATICS DATA SCALABLE AND ROBUST CLUSTERING AND VISUALIZATION FOR LARGE-SCALE BIOINFORMATICS DATA Yang Ruan Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for

More information

Dynamic Programming & Smith-Waterman algorithm

Dynamic Programming & Smith-Waterman algorithm m m Seminar: Classical Papers in Bioinformatics May 3rd, 2010 m m 1 2 3 m m Introduction m Definition is a method of solving problems by breaking them down into simpler steps problem need to contain overlapping

More information

Scaling species tree estimation methods to large datasets using NJMerge

Scaling species tree estimation methods to large datasets using NJMerge Scaling species tree estimation methods to large datasets using NJMerge Erin Molloy and Tandy Warnow {emolloy2, warnow}@illinois.edu University of Illinois at Urbana Champaign 2018 Phylogenomics Software

More information

Taxonomic classification of SSU rrna community sequence data using CREST

Taxonomic classification of SSU rrna community sequence data using CREST Taxonomic classification of SSU rrna community sequence data using CREST 2014 Workshop on Genomics, Cesky Krumlov Anders Lanzén Overview 1. Familiarise yourself with CREST installation...2 2. Download

More information

As of August 15, 2008, GenBank contained bases from reported sequences. The search procedure should be

As of August 15, 2008, GenBank contained bases from reported sequences. The search procedure should be 48 Bioinformatics I, WS 09-10, S. Henz (script by D. Huson) November 26, 2009 4 BLAST and BLAT Outline of the chapter: 1. Heuristics for the pairwise local alignment of two sequences 2. BLAST: search and

More information

Clustering Techniques

Clustering Techniques Clustering Techniques Bioinformatics: Issues and Algorithms CSE 308-408 Fall 2007 Lecture 16 Lopresti Fall 2007 Lecture 16-1 - Administrative notes Your final project / paper proposal is due on Friday,

More information

Sequence Comparison: Dynamic Programming. Genome 373 Genomic Informatics Elhanan Borenstein

Sequence Comparison: Dynamic Programming. Genome 373 Genomic Informatics Elhanan Borenstein Sequence omparison: Dynamic Programming Genome 373 Genomic Informatics Elhanan Borenstein quick review: hallenges Find the best global alignment of two sequences Find the best global alignment of multiple

More information

Time Series Prediction as a Problem of Missing Values: Application to ESTSP2007 and NN3 Competition Benchmarks

Time Series Prediction as a Problem of Missing Values: Application to ESTSP2007 and NN3 Competition Benchmarks Series Prediction as a Problem of Missing Values: Application to ESTSP7 and NN3 Competition Benchmarks Antti Sorjamaa and Amaury Lendasse Abstract In this paper, time series prediction is considered as

More information

Finding data. HMMER Answer key

Finding data. HMMER Answer key Finding data HMMER Answer key HMMER input is prepared using VectorBase ClustalW, which runs a Java application for the graphical representation of the results. If you get an error message that blocks this

More information

Cluster analysis of 3D seismic data for oil and gas exploration

Cluster analysis of 3D seismic data for oil and gas exploration Data Mining VII: Data, Text and Web Mining and their Business Applications 63 Cluster analysis of 3D seismic data for oil and gas exploration D. R. S. Moraes, R. P. Espíndola, A. G. Evsukoff & N. F. F.

More information

CLUSTERING IN BIOINFORMATICS

CLUSTERING IN BIOINFORMATICS CLUSTERING IN BIOINFORMATICS CSE/BIMM/BENG 8 MAY 4, 0 OVERVIEW Define the clustering problem Motivation: gene expression and microarrays Types of clustering Clustering algorithms Other applications of

More information

OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT

OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT Asif Ali Khan*, Laiq Hassan*, Salim Ullah* ABSTRACT: In bioinformatics, sequence alignment is a common and insistent task. Biologists align

More information

Tutorial. Typing and Epidemiological Clustering of Common Pathogens (beta) Sample to Insight. November 21, 2017

Tutorial. Typing and Epidemiological Clustering of Common Pathogens (beta) Sample to Insight. November 21, 2017 Typing and Epidemiological Clustering of Common Pathogens (beta) November 21, 2017 Sample to Insight QIAGEN Aarhus Silkeborgvej 2 Prismet 8000 Aarhus C Denmark Telephone: +45 70 22 32 44 www.qiagenbioinformatics.com

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 15: Microarray clustering http://compbio.pbworks.com/f/wood2.gif Some slides were adapted from Dr. Shaojie Zhang (University of Central Florida) Microarray

More information

Comparison of Sequence Similarity Measures for Distant Evolutionary Relationships

Comparison of Sequence Similarity Measures for Distant Evolutionary Relationships Comparison of Sequence Similarity Measures for Distant Evolutionary Relationships Abhishek Majumdar, Peter Z. Revesz Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln,

More information

Using Secure Computation for Statistical Analysis of Quantitative Genomic Assay Data

Using Secure Computation for Statistical Analysis of Quantitative Genomic Assay Data Using Secure Computation for Statistical Analysis of Quantitative Genomic Assay Data Justin Wagner Ph.D. Candidate University of Maryland, College Park Advisor: Hector Corrada Bravo Genomic Assay Analysis

More information

When we search a nucleic acid databases, there is no need for you to carry out your own six frame translation. Mascot always performs a 6 frame

When we search a nucleic acid databases, there is no need for you to carry out your own six frame translation. Mascot always performs a 6 frame 1 When we search a nucleic acid databases, there is no need for you to carry out your own six frame translation. Mascot always performs a 6 frame translation on the fly. That is, 3 reading frames from

More information

What do I do if my blast searches seem to have all the top hits from the same genus or species?

What do I do if my blast searches seem to have all the top hits from the same genus or species? What do I do if my blast searches seem to have all the top hits from the same genus or species? If the bacterial species you are using to annotate is clinically significant or of great research interest,

More information

Strand: Fast Sequence Comparison using MapReduce and Locality Sensitive Hashing

Strand: Fast Sequence Comparison using MapReduce and Locality Sensitive Hashing Strand: Fast Sequence Comparison using MapReduce and Locality Sensitive Hashing Jake Drew Computer Science and Engineering Department Southern Methodist University Dallas, TX, USA www.jakemdrew.com jdrew@smu.edu

More information

Sequence analysis Pairwise sequence alignment

Sequence analysis Pairwise sequence alignment UMF11 Introduction to bioinformatics, 25 Sequence analysis Pairwise sequence alignment 1. Sequence alignment Lecturer: Marina lexandersson 12 September, 25 here are two types of sequence alignments, global

More information

Distance based tree reconstruction. Hierarchical clustering (UPGMA) Neighbor-Joining (NJ)

Distance based tree reconstruction. Hierarchical clustering (UPGMA) Neighbor-Joining (NJ) Distance based tree reconstruction Hierarchical clustering (UPGMA) Neighbor-Joining (NJ) All organisms have evolved from a common ancestor. Infer the evolutionary tree (tree topology and edge lengths)

More information

Evolutionary design for the behaviour of cellular automaton-based complex systems

Evolutionary design for the behaviour of cellular automaton-based complex systems Evolutionary design for the behaviour of cellular automaton-based complex systems School of Computer Science & IT University of Nottingham Adaptive Computing in Design and Manufacture Bristol Motivation

More information

Algorithms for Bioinformatics

Algorithms for Bioinformatics Adapted from slides by Leena Salmena and Veli Mäkinen, which are partly from http: //bix.ucsd.edu/bioalgorithms/slides.php. 582670 Algorithms for Bioinformatics Lecture 6: Distance based clustering and

More information

Introduction to Phylogenetics Week 2. Databases and Sequence Formats

Introduction to Phylogenetics Week 2. Databases and Sequence Formats Introduction to Phylogenetics Week 2 Databases and Sequence Formats I. Databases Crucial to bioinformatics The bigger the database, the more comparative research data Requires scientists to upload data

More information

Lecture 2 Parallel Programming Platforms

Lecture 2 Parallel Programming Platforms Lecture 2 Parallel Programming Platforms Flynn s Taxonomy In 1966, Michael Flynn classified systems according to numbers of instruction streams and the number of data stream. Data stream Single Multiple

More information

Multiple alignment. Multiple alignment. Computational complexity. Multiple sequence alignment. Consensus. 2 1 sec sec sec

Multiple alignment. Multiple alignment. Computational complexity. Multiple sequence alignment. Consensus. 2 1 sec sec sec Introduction to Bioinformatics Iosif Vaisman Email: ivaisman@gmu.edu VTISCTGSSSNIGAG-NHVKWYQQLPG VTISCTGTSSNIGS--ITVNWYQQLPG LRLSCSSSGFIFSS--YAMYWVRQAPG LSLTCTVSGTSFDD--YYSTWVRQPPG PEVTCVVVDVSHEDPQVKFNWYVDG--

More information

Today s Lecture. Edit graph & alignment algorithms. Local vs global Computational complexity of pairwise alignment Multiple sequence alignment

Today s Lecture. Edit graph & alignment algorithms. Local vs global Computational complexity of pairwise alignment Multiple sequence alignment Today s Lecture Edit graph & alignment algorithms Smith-Waterman algorithm Needleman-Wunsch algorithm Local vs global Computational complexity of pairwise alignment Multiple sequence alignment 1 Sequence

More information

Managing big biological sequence data with Biostrings and DECIPHER. Erik Wright University of Wisconsin-Madison

Managing big biological sequence data with Biostrings and DECIPHER. Erik Wright University of Wisconsin-Madison Managing big biological sequence data with Biostrings and DECIPHER Erik Wright University of Wisconsin-Madison What you should learn How to use the Biostrings and DECIPHER packages Creating a database

More information

Machine Learning : Clustering, Self-Organizing Maps

Machine Learning : Clustering, Self-Organizing Maps Machine Learning Clustering, Self-Organizing Maps 12/12/2013 Machine Learning : Clustering, Self-Organizing Maps Clustering The task: partition a set of objects into meaningful subsets (clusters). The

More information

Strand: Fast Sequence Comparison using MapReduce and Locality Sensitive Hashing

Strand: Fast Sequence Comparison using MapReduce and Locality Sensitive Hashing Strand: Fast Sequence Comparison using MapReduce and Locality Sensitive Hashing Jake Drew Computer Science and Engineering Department Southern Methodist University Dallas, TX, USA www.jakemdrew.com jdrew@smu.edu

More information

Supplementary Material

Supplementary Material Software Requirements: Python Version 2.7 Biopython Version 1.60 Python Modules: httplib, urllib2, ete2 (An Environment for Tree Exploration (ETE), Optional) ARB Version 5.1 Goal: Importing alignment,

More information

NCBI News, November 2009

NCBI News, November 2009 Peter Cooper, Ph.D. NCBI cooper@ncbi.nlm.nh.gov Dawn Lipshultz, M.S. NCBI lipshult@ncbi.nlm.nih.gov Featured Resource: New Discovery-oriented PubMed and NCBI Homepage The NCBI Site Guide A new and improved

More information

On phylogenetic trees algebraic geometer's view

On phylogenetic trees algebraic geometer's view On phylogenetic trees algebraic geometer's view Joint project with Weronika Buczyńska and other students Microsoft Research Center Trento, Feb. 16th, 2006 What about algebraic geometry? Nature [biology]

More information

Lecture 6: Genetic Algorithm. An Introduction to Meta-Heuristics, Produced by Qiangfu Zhao (Since 2012), All rights reserved

Lecture 6: Genetic Algorithm. An Introduction to Meta-Heuristics, Produced by Qiangfu Zhao (Since 2012), All rights reserved Lecture 6: Genetic Algorithm An Introduction to Meta-Heuristics, Produced by Qiangfu Zhao (Since 2012), All rights reserved Lec06/1 Search and optimization again Given a problem, the set of all possible

More information

CS313 Exercise 4 Cover Page Fall 2017

CS313 Exercise 4 Cover Page Fall 2017 CS313 Exercise 4 Cover Page Fall 2017 Due by the start of class on Thursday, October 12, 2017. Name(s): In the TIME column, please estimate the time you spent on the parts of this exercise. Please try

More information

Axiom Analysis Suite Release Notes (For research use only. Not for use in diagnostic procedures.)

Axiom Analysis Suite Release Notes (For research use only. Not for use in diagnostic procedures.) Axiom Analysis Suite 4.0.1 Release Notes (For research use only. Not for use in diagnostic procedures.) Axiom Analysis Suite 4.0.1 includes the following changes/updates: 1. For library packages that support

More information

Metric Learning for Large-Scale Image Classification:

Metric Learning for Large-Scale Image Classification: Metric Learning for Large-Scale Image Classification: Generalizing to New Classes at Near-Zero Cost Florent Perronnin 1 work published at ECCV 2012 with: Thomas Mensink 1,2 Jakob Verbeek 2 Gabriela Csurka

More information

COMPARATIVE MICROBIAL GENOMICS ANALYSIS WORKSHOP. Exercise 2: Predicting Protein-encoding Genes, BlastMatrix, BlastAtlas

COMPARATIVE MICROBIAL GENOMICS ANALYSIS WORKSHOP. Exercise 2: Predicting Protein-encoding Genes, BlastMatrix, BlastAtlas COMPARATIVE MICROBIAL GENOMICS ANALYSIS WORKSHOP Exercise 2: Predicting Protein-encoding Genes, BlastMatrix, BlastAtlas First of all connect once again to the CBS system: Open ssh shell client. Press Quick

More information

CSE 549: Computational Biology

CSE 549: Computational Biology CSE 549: Computational Biology Phylogenomics 1 slides marked with * by Carl Kingsford Tree of Life 2 * H5N1 Influenza Strains Salzberg, Kingsford, et al., 2007 3 * H5N1 Influenza Strains The 2007 outbreak

More information

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06 Clustering CS294 Practical Machine Learning Junming Yin 10/09/06 Outline Introduction Unsupervised learning What is clustering? Application Dissimilarity (similarity) of objects Clustering algorithm K-means,

More information

Interactive Text Mining with Iterative Denoising

Interactive Text Mining with Iterative Denoising Interactive Text Mining with Iterative Denoising, PhD kegiles@vcu.edu www.people.vcu.edu/~kegiles Assistant Professor Department of Statistics and Operations Research Virginia Commonwealth University Interactive

More information

Slide07 Haykin Chapter 9: Self-Organizing Maps

Slide07 Haykin Chapter 9: Self-Organizing Maps Slide07 Haykin Chapter 9: Self-Organizing Maps CPSC 636-600 Instructor: Yoonsuck Choe Spring 2012 Introduction Self-organizing maps (SOM) is based on competitive learning, where output neurons compete

More information

Semi-Supervised Clustering with Partial Background Information

Semi-Supervised Clustering with Partial Background Information Semi-Supervised Clustering with Partial Background Information Jing Gao Pang-Ning Tan Haibin Cheng Abstract Incorporating background knowledge into unsupervised clustering algorithms has been the subject

More information

Kyrre Glette INF3490 Evolvable Hardware Cartesian Genetic Programming

Kyrre Glette INF3490 Evolvable Hardware Cartesian Genetic Programming Kyrre Glette kyrrehg@ifi INF3490 Evolvable Hardware Cartesian Genetic Programming Overview Introduction to Evolvable Hardware (EHW) Cartesian Genetic Programming Applications of EHW 3 Evolvable Hardware

More information

ClinVar. Jennifer Lee, PhD, NCBI/NLM/NIH ClinVar

ClinVar. Jennifer Lee, PhD, NCBI/NLM/NIH ClinVar ClinVar What is ClinVar ClinVar is a freely available, central archive for associating observed variation with supporting clinical and experimental evidence for a wide range of disorders. The database

More information