Estimating Noise and Dimensionality in BCI Data Sets: Towards Illiteracy Comprehension

Size: px
Start display at page:

Download "Estimating Noise and Dimensionality in BCI Data Sets: Towards Illiteracy Comprehension"

Transcription

1 Estimating Noise and Dimensionality in BCI Data Sets: Towards Illiteracy Comprehension Claudia Sannelli, Mikio Braun, Michael Tangermann, Klaus-Robert Müller, Machine Learning Laboratory, Dept. Computer Science, Berlin University of Technology, Berlin, Germany Intelligent Data Analysis Group, Fraunhofer FIRST, Berlin, Germany Abstract About one third of the BCI subjects cannot communicate via BCI, a phenomenon that is known as BCI illiteracy. New investigations aiming to an early prediction of illiteracy would be very helpful to understand this phenomenon and to avoid hard BCI training for many subjects. In this paper, the first application on to electroencephalogram (EEG) of a newly developed machine learning tool, Relevant Dimension Estimation (), is presented. Detecting the label relevant information present in a data set, estimates the intrinsic noise and the complexity of the learning problem. Applied to EEG data collected during motor imagery paradigms, is able to deliver interesting insights into the illiteracy phenomenon. In particular can demonstrate that illiteracy is mostly not due to the non-stationarity or high ensionality present in the data, but rather due to a high intrinsic noise in the label related information. Moreover, in this paper is shown how to detect individual BCI-illiterate subjects in a very reliable way, based on a combination of the several features extracted by. Introduction Rehabilitation and communication for amyotrophic lateral sclerosis (ALS) patients are the most important motivations and long term goals for Brain Computer Interfaces (BCI), a research area which has enjoyed a growing interest in the last decade. In contrast, most BCI studies are performed on healthy subjects and work on improving existing algorithms for the classification of mental states using electroencephalogram (EEG). Actually, about one third of the BCI-users is still not able to communicate with the machines. Even a healthy subject could become very frustrated during an experiment, when he realizes that he is a so called BCI-illiterate, and very few patients are willing to experience this situation. BCI medical applications could find larger acceptance, if the ratio of BCI-illiterate users could be minimized to a very small percentage. A robust prediction of BCI illiteracy would also help to avoid false hopes and to reduce the efforts needed to train a patient for communication by BCI. For this purpose, new methods for EEG data set exploration and new features describing EEG data sets are needed in order to be used as predictors for BCI illiteracy. Relevant Dimension Estimation () is an algorithm proposed in [] which makes use of kernel PCA (Principal Component Analysis) in the feature space together with label information in order to assess the actual class related information contained in a data set. In particular, estimates two properties: () the ension of the subspace in kernel space containing the relevant information, and () the noise contained in the labels. Both numbers allow to measure the interaction between the data set and a chosen kernel, and in particular to give an accurate image of the problem complexity of the amount of noise contained in a learning problem.

2 Setting Name Band [Hz] Time [ms] Channels Feature calib-power-all all band power calib-power-sel sel sel sel band power calib-power-cench C* band power calib-power-cench-alpha C* band power calib-csp-feat sel sel sel CSP features Table : Preprocessing parameter settings. In this study, a first application of on EEG. Using Gaussian kernels of different widths, the ensionality of the data set and the amount of noise is estimated at different scales. Our hypothesis is that a data set from an illiterate subject is intrinsically high ensional and therefore not well classifiable with features generated by the Common Spatial Patterns (CSP) method. To test this hypothesis, features extracted by are compared with the CSP features in terms of classification performance. Experimental setup A dataset of 8 BCI sessions from 0 healthy subjects has been investigated. Data was recording with the Berlin BCI (BBCI) during classical motor imagery BCI experiments (see e.g. [, ]). In the calibration session, the subjects were asked to perform trials of motor imagery for the left or right hand and for the foot. Two classes were then chosen for the feedback session, depending on the offline classification performance of a linear classifier that processed CSP features []. In the feedback session, targets and feedback of the classifier output were given visually. Methods. Preprocessing Within this study, several preprocessing parameter settings have been used. The preprocessing steps for each setting are as follows: () low pass filtering at 00 Hz, () cutting continuous EEG in epochs in a specific time interval after the stimulus presentation, () optional channel selection, () rejecting bad trials and channels by variance based artifact rejection, () selecting trials belonging to the classes already chosen for the online feedback, (6) filtering in a setting specific frequency band and () calculating band power. Preprocessing settings differentiate in steps,, 6 and, see the overview in Table. In the Channel column, all means that all channels after step are used in calculating the features, i.e step was ignored. On the contrary, sel means that a further channel selection has been applied. In particular, the channel subset was determined by a heuristic that at the day of the experiment in order to maximize CSP performance. The same convention for sel is valid for the second and third columns. Finally, C* means that all central channels (according to the 0-0 EEG system) were used.. has been applied on each data set. A Gaussian RBF (radial basis function) kernel has been chosen. Two parameters had to be selected: the kernel width and the ension, i.e. the number of leading kernel PCA components. The range for the kernel width γ was between 0 and 0. The range for the ension d was [, N/] where N is the number of trials available. For each kernel width γ, the kernel matrix K( and the sorted eigenvectors E( have been calculated. In order to estimate the kernel width and the ension of each data set, both methods indicated in [] have been used. The first method finds the kernel width γ and the ension d which minimize the negative log-likelihood function L(γ, d) defined as

3 with L(γ, d) = d n log σ + n d n log σ () σ = d d i= s i and σ = n d n i=d+ s i () In the above equation, s i = u T i Y are the contributions to labels of the kernel PCA components and u i are the eigenvectors of E(. Within the second method, the label predictions are calculated for each parameter combination using the projections on the label of the kernel PCA components S(d, = d i= u iu T i. The best kernel width γ and the ension d are then chosen minimizing the leave-one-out cross-validation error as computed in [].. Noise Estimation The noise present in a data set is calculated by as the mean squared error over the label predictions obtained using the estimated best number of kernel components and the best kernel width: Noise = N N (SY i Y i ) () i= The variance of the negative log-likelihoods over all kernel widths and kernel PCA ensions has also been calculated as a feature, in order to capture the intrinsic noise. The smoothness of the log-likelihood function has also been calculated as the distance of the function from a smooth surface modelled by a fifth degree polynomial fitting the original function scaled between 0 and. Results. Subject Specific Analysis In figure, the negative log-likelihood functions calculated as in equation for three different preprocessing settings (,, and described in table ) are shown. Results from a subject with very good BCI performance (calibration error =.0) are visualized in the top row, while results from a subject with bad BCI performance, probably illiterate (calibration error =.0) are visualized in the bottom row. An evident difference can be seen between the functions resulting for the two subjects, even with the first preprocessing, where no subject depending frequency band, channels and time interval selection has been applied. Looking at the negative log-likelihood functions it can be hypothesized that the first method described in section. will fail in searching the best kernel width and ensionality, due to the extremely noisy function and many local minima. In fact, the results obtained looking at the minimum of the function revealed to be not robust against small changing in preprocessing settings, especially for subjects with bad BCI performance. For this reason, the second method has been chosen to estimate robustly the best kernel width and the best ension. Still, the negative log-likelihood function as shown in figure is extremely informative regarding the noise in feature space present in a data set and it is independent from the method chosen for parameter selection. The log-likelihood function for bad subjects is not just much less smooth, but its range is also much smaller than for good subjects. For this reason, as described in section., the smoothness and the variance of the log-likelihood function have been calculated as additional features indicating the noise in the data set. No significant improvement can be seen with other preprocessing settings, even with the subject specific parameter selections, as shown in the center column of figure. Applying on CSP features, which consist at most on 6 channels, the feature space becomes particularly free of noise

4 calib power allch, log likelihood function calib CSPfeat, log likelihood function calib power selch, log likelihood function calib power selch, log likelihood function calib power allch, log likelihood function calib CSPfeat, log likelihood function d 00 im Figure : Negative log-likelihood function for all kernel widths and ensions. Top: good performing BCI subject (CSP calibration error =.0). Bottom: bad performing BCI subject (CSP calibration error =.0). From left to right, three different preprocessing settings: calib-powerallch, calib-power-selch, calib-cspfeat. best width: log0(=0.0, best : best width: log0(=.6, best : Projs on labels log function 6 Projs on labels log function PCAs PCAs Figure : Negative log-likelihood function for the best kernel width. Preprocessing settings: calibpower-selch. Left: good BCI subject. Right: bad BCI subject. and low ensional, so that the log-likelihood function is very smooth as shown on the right side of figure. On the contrary, the surface extension is still much less for BCI subjects with poor performance, so that the variance is in fact a good feature to analyze. In figure, the negative log-likelihood function for the best kernel width is shown. The contributions of each kernel PCA component calculated as shown in section. are visualized on the background. Also in this case, a strong difference between the two subjects can be observed. In particular, when less noise is present, the first kernel PCA components are much more informative, so that one can ideally separate the model in two components as in equation, the first one containing the relevant information essential for label prediction and the second one containing mainly noise. In noisy data set as the second one, no structure can be seen in the contributions, since the noise is distributed over all components.. Group Analysis In order to simply confirm how much features correlate with subject performance, we investigated the correlation between the features extracted by with the simplest preprocessing setting calib-power-allch and the CSP performance on the same calibration data set, i.e the CSP

5 r =.90e 0, p =.8e 0 r =.60e 0, p =.e 0 r =.e 0, p =.6e 0 kernel width Noise Dimension var logf r =.00e 0, p =.8e 0 r =.6e 0, p =.0e 0 smoothness logf Figure : Correlation between and CSP offline performance. Setting: calib-power-allch. offline error. The results are shown in figure : for each subject, in each subplot, a feature is plotted against the CSP offline error. Correlation and significance values are written in the titles. Already with the simplest setting, strong correlation with subject performance can be observed for all features and it becomes even stronger for the calib-power-selch setting, not shown because of lack of space. Subjects with CSP offline classification error greater then 0% are represented by circles, while crosses are used for the others. The two groups are divided by a vertical line. In particular, the subjects with worst performance are pretty close and can be grouped as points having the following properties: () high noise, () small ensionality, () small kernel width, () small variance of the negative log-likelihood function, () small smoothness of the negative log-likelihood function. A bigger challenge is to gain additional information about a subject using, and try to predict from the calibration data his future online performance. For this reason, we investigated the correlation between features for the calib-power-selch setting and the CSP online error obtained from the feedback data. Results are shown in figure where the same conventions as in figure apply. Also, the correlation between CSP offline error and CSP online error is shown on the last subplot. Even if the correlation between CSP offline error and CSP online error is slightly better then for the features, subjects with poor performance (CSP online error >= 0%) can still be better characterized by () high noise, () small kernel width, () small ension, without using the CSP algorithm. Discussion In contrast to the hypothesis about the high ensionality of BCI illiterate data sets, the chooses very few kernel components for the feature subspace containing the label relevant information. This happens because the noise in the data set is so high that the relevant information is distributed over all components, as revealed by the structure of the projections in figure. In fact, the high noise prevents from choosing more components and forces to choose a small kernel width. As explained in [], particularly noisy free data set could also have very high ensionality and very large kernel width, exactly at the opposite of BCI illiterates. This also means that illiteracy is not due to the non-stationarity present in the data, but rather due to a high intrinsic noise in the label information, meaning that the class membership cannot be

6 r =.8e 0, p =.9e 0 r =.9e 0, p =.6e 0 r =.e 0, p = 9.e 0 Noise Dimension var logf r =.8e 0, p = 6.e r =.0e 0, p =.0e r =.60e 0, p =.e 0 kernel width smoothness logf csp offline error Figure : Correlation between and CSP online performance. Setting: calib-power-selch. predicted well from the features over all whole range of possible scales. Finally, some subjects, not included in the illiterate group, exhibit a not so high noise, relative high ension and kernel width would probably benefit from more training examples. 6 Conclusion This study was motivated by the necessity to find new features that can predict the BCI performance of a subject with focus on an early illiteracy detection. For this reason, the algorithm has been applied on EEG data for the first time. The results show how can be used on labeled data to understand the structure of the information contained in the data. In particular, can be used to easily recognize illiterate subjects. It has been shown that the interaction among the three parameters is valuable in order to understand whether a poor BCI classification performance is due to the intrinsic noise present in the data or due to a lack of training examples. Finally, the hypothesis of too high ensionality of BCI illiterate data sets has been rejected. Acknowledgements: this study was supported by the DFG (Deutsche Forschungsgemeinschaft) MU 98/-. References [] M. Braun, J. Buchmann, and K-R. Müller. Denoising and ension reduction in feature space. Advances in Neural Inf. Proc. Systems 9 (NIPS 006), pages 8 9, 00. [] B. Blankertz, G. Curio, and K-R. Müller. Classifying single trial EEG: Towards brain computer interfacing. : 6, 00. [] B. Blankertz, G. Dornhege, M. Krauledat, K-R. Müller, and G. Curio. The non-invasive Berlin Brain- Computer Interface: Fast acquisition of effective performance in untrained subjects. neuroimage, :9 0, 00. [] H. Ramoser, J. Müller-Gerking, and G. Pfurtsheller. Optimal spatial filtering of single trial eeg during imagined hand movement. IEEE Trans. Rehab. Eng., 8(): 6, 000. [] G. Wahba. Spline models for observational data. Society for Ind. and App. Mathematics,

On optimal channel configurations for SMR based brain computer interfaces

On optimal channel configurations for SMR based brain computer interfaces On optimal channel configurations for SMR based brain computer interfaces Claudia Sannelli a, Thorsten Dickhaus a, Sebastian Halder c, Eva Maria Hammer c, Klaus Robert Müller a, Benjamin Blankertz a,b

More information

A Simple Generative Model for Single-Trial EEG Classification

A Simple Generative Model for Single-Trial EEG Classification A Simple Generative Model for Single-Trial EEG Classification Jens Kohlmorgen and Benjamin Blankertz Fraunhofer FIRST.IDA Kekuléstr. 7, 12489 Berlin, Germany {jek, blanker}@first.fraunhofer.de http://ida.first.fraunhofer.de

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques

Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques Sea Chen Department of Biomedical Engineering Advisors: Dr. Charles A. Bouman and Dr. Mark J. Lowe S. Chen Final Exam October

More information

Neurocomputing 108 (2013) Contents lists available at SciVerse ScienceDirect. Neurocomputing. journal homepage:

Neurocomputing 108 (2013) Contents lists available at SciVerse ScienceDirect. Neurocomputing. journal homepage: Neurocomputing 108 (2013) 69 78 Contents lists available at SciVerse ScienceDirect Neurocomputing journal homepage: www.elsevier.com/locate/neucom Greedy solutions for the construction of sparse spatial

More information

Weka ( )

Weka (  ) Weka ( http://www.cs.waikato.ac.nz/ml/weka/ ) The phases in which classifier s design can be divided are reflected in WEKA s Explorer structure: Data pre-processing (filtering) and representation Supervised

More information

EEG Imaginary Body Kinematics Regression. Justin Kilmarx, David Saffo, and Lucien Ng

EEG Imaginary Body Kinematics Regression. Justin Kilmarx, David Saffo, and Lucien Ng EEG Imaginary Body Kinematics Regression Justin Kilmarx, David Saffo, and Lucien Ng Introduction Brain-Computer Interface (BCI) Applications: Manipulation of external devices (e.g. wheelchairs) For communication

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

Segmenting Lesions in Multiple Sclerosis Patients James Chen, Jason Su

Segmenting Lesions in Multiple Sclerosis Patients James Chen, Jason Su Segmenting Lesions in Multiple Sclerosis Patients James Chen, Jason Su Radiologists and researchers spend countless hours tediously segmenting white matter lesions to diagnose and study brain diseases.

More information

CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series

CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series Jingyuan Chen //Department of Electrical Engineering, cjy2010@stanford.edu//

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Mapping of Hierarchical Activation in the Visual Cortex Suman Chakravartula, Denise Jones, Guillaume Leseur CS229 Final Project Report. Autumn 2008.

Mapping of Hierarchical Activation in the Visual Cortex Suman Chakravartula, Denise Jones, Guillaume Leseur CS229 Final Project Report. Autumn 2008. Mapping of Hierarchical Activation in the Visual Cortex Suman Chakravartula, Denise Jones, Guillaume Leseur CS229 Final Project Report. Autumn 2008. Introduction There is much that is unknown regarding

More information

Introductory Concepts for Voxel-Based Statistical Analysis

Introductory Concepts for Voxel-Based Statistical Analysis Introductory Concepts for Voxel-Based Statistical Analysis John Kornak University of California, San Francisco Department of Radiology and Biomedical Imaging Department of Epidemiology and Biostatistics

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

A Distance-Based Classifier Using Dissimilarity Based on Class Conditional Probability and Within-Class Variation. Kwanyong Lee 1 and Hyeyoung Park 2

A Distance-Based Classifier Using Dissimilarity Based on Class Conditional Probability and Within-Class Variation. Kwanyong Lee 1 and Hyeyoung Park 2 A Distance-Based Classifier Using Dissimilarity Based on Class Conditional Probability and Within-Class Variation Kwanyong Lee 1 and Hyeyoung Park 2 1. Department of Computer Science, Korea National Open

More information

Linear Discriminant Analysis in Ottoman Alphabet Character Recognition

Linear Discriminant Analysis in Ottoman Alphabet Character Recognition Linear Discriminant Analysis in Ottoman Alphabet Character Recognition ZEYNEB KURT, H. IREM TURKMEN, M. ELIF KARSLIGIL Department of Computer Engineering, Yildiz Technical University, 34349 Besiktas /

More information

Machine Learning for Pre-emptive Identification of Performance Problems in UNIX Servers Helen Cunningham

Machine Learning for Pre-emptive Identification of Performance Problems in UNIX Servers Helen Cunningham Final Report for cs229: Machine Learning for Pre-emptive Identification of Performance Problems in UNIX Servers Helen Cunningham Abstract. The goal of this work is to use machine learning to understand

More information

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy Sokratis K. Makrogiannis, PhD From post-doctoral research at SBIA lab, Department of Radiology,

More information

Chap.12 Kernel methods [Book, Chap.7]

Chap.12 Kernel methods [Book, Chap.7] Chap.12 Kernel methods [Book, Chap.7] Neural network methods became popular in the mid to late 1980s, but by the mid to late 1990s, kernel methods have also become popular in machine learning. The first

More information

Feature Selection for fmri Classification

Feature Selection for fmri Classification Feature Selection for fmri Classification Chuang Wu Program of Computational Biology Carnegie Mellon University Pittsburgh, PA 15213 chuangw@andrew.cmu.edu Abstract The functional Magnetic Resonance Imaging

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

Breaking it Down: The World as Legos Benjamin Savage, Eric Chu

Breaking it Down: The World as Legos Benjamin Savage, Eric Chu Breaking it Down: The World as Legos Benjamin Savage, Eric Chu To devise a general formalization for identifying objects via image processing, we suggest a two-pronged approach of identifying principal

More information

5 Learning hypothesis classes (16 points)

5 Learning hypothesis classes (16 points) 5 Learning hypothesis classes (16 points) Consider a classification problem with two real valued inputs. For each of the following algorithms, specify all of the separators below that it could have generated

More information

Data preprocessing Functional Programming and Intelligent Algorithms

Data preprocessing Functional Programming and Intelligent Algorithms Data preprocessing Functional Programming and Intelligent Algorithms Que Tran Høgskolen i Ålesund 20th March 2017 1 Why data preprocessing? Real-world data tend to be dirty incomplete: lacking attribute

More information

Applying the Q n Estimator Online

Applying the Q n Estimator Online Applying the Q n Estimator Online Robin Nunkesser 1, Karen Schettlinger 2, and Roland Fried 2 1 Department of Computer Science, Univ. Dortmund, 44221 Dortmund Robin.Nunkesser@udo.edu 2 Department of Statistics,

More information

3. Data Preprocessing. 3.1 Introduction

3. Data Preprocessing. 3.1 Introduction 3. Data Preprocessing Contents of this Chapter 3.1 Introduction 3.2 Data cleaning 3.3 Data integration 3.4 Data transformation 3.5 Data reduction SFU, CMPT 740, 03-3, Martin Ester 84 3.1 Introduction Motivation

More information

FACE RECOGNITION USING SUPPORT VECTOR MACHINES

FACE RECOGNITION USING SUPPORT VECTOR MACHINES FACE RECOGNITION USING SUPPORT VECTOR MACHINES Ashwin Swaminathan ashwins@umd.edu ENEE633: Statistical and Neural Pattern Recognition Instructor : Prof. Rama Chellappa Project 2, Part (b) 1. INTRODUCTION

More information

2. Data Preprocessing

2. Data Preprocessing 2. Data Preprocessing Contents of this Chapter 2.1 Introduction 2.2 Data cleaning 2.3 Data integration 2.4 Data transformation 2.5 Data reduction Reference: [Han and Kamber 2006, Chapter 2] SFU, CMPT 459

More information

Leave-One-Out Support Vector Machines

Leave-One-Out Support Vector Machines Leave-One-Out Support Vector Machines Jason Weston Department of Computer Science Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 OEX, UK. Abstract We present a new learning algorithm

More information

L1 Norm based common spatial patterns decomposition for scalp EEG BCI

L1 Norm based common spatial patterns decomposition for scalp EEG BCI Li et al. BioMedical Engineering OnLine 2013, 12:77 RESEARCH Open Access L1 Norm based common spatial patterns decomposition for scalp EEG BCI Peiyang Li, Peng Xu *, Rui Zhang, Lanjin Guo and Dezhong Yao

More information

CS229 Lecture notes. Raphael John Lamarre Townshend

CS229 Lecture notes. Raphael John Lamarre Townshend CS229 Lecture notes Raphael John Lamarre Townshend Decision Trees We now turn our attention to decision trees, a simple yet flexible class of algorithms. We will first consider the non-linear, region-based

More information

Discriminate Analysis

Discriminate Analysis Discriminate Analysis Outline Introduction Linear Discriminant Analysis Examples 1 Introduction What is Discriminant Analysis? Statistical technique to classify objects into mutually exclusive and exhaustive

More information

Neural Processing Letter 17:21-31, Kluwer. 1. Introduction

Neural Processing Letter 17:21-31, Kluwer. 1. Introduction Neural Processing Letter 17:21-31, 2003. Kluwer A Learning Algorithm for Evolving Cascade Neural Networks Vitaly Schetinin TheorieLabor, Friedrich-Schiller University of Jena Ernst-Abbe-Platz 4, 07740

More information

Modeling Multiple Rock Types with Distance Functions: Methodology and Software

Modeling Multiple Rock Types with Distance Functions: Methodology and Software Modeling Multiple Rock Types with Distance Functions: Methodology and Software Daniel A. Silva and Clayton V. Deutsch The sub division of the deposit into estimation domains that are internally consistent

More information

Classification by Nearest Shrunken Centroids and Support Vector Machines

Classification by Nearest Shrunken Centroids and Support Vector Machines Classification by Nearest Shrunken Centroids and Support Vector Machines Florian Markowetz florian.markowetz@molgen.mpg.de Max Planck Institute for Molecular Genetics, Computational Diagnostics Group,

More information

MINI-PAPER A Gentle Introduction to the Analysis of Sequential Data

MINI-PAPER A Gentle Introduction to the Analysis of Sequential Data MINI-PAPER by Rong Pan, Ph.D., Assistant Professor of Industrial Engineering, Arizona State University We, applied statisticians and manufacturing engineers, often need to deal with sequential data, which

More information

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Exploratory data analysis tasks Examine the data, in search of structures

More information

New Approaches for EEG Source Localization and Dipole Moment Estimation. Shun Chi Wu, Yuchen Yao, A. Lee Swindlehurst University of California Irvine

New Approaches for EEG Source Localization and Dipole Moment Estimation. Shun Chi Wu, Yuchen Yao, A. Lee Swindlehurst University of California Irvine New Approaches for EEG Source Localization and Dipole Moment Estimation Shun Chi Wu, Yuchen Yao, A. Lee Swindlehurst University of California Irvine Outline Motivation why EEG? Mathematical Model equivalent

More information

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging 1 CS 9 Final Project Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging Feiyu Chen Department of Electrical Engineering ABSTRACT Subject motion is a significant

More information

Principal Component Image Interpretation A Logical and Statistical Approach

Principal Component Image Interpretation A Logical and Statistical Approach Principal Component Image Interpretation A Logical and Statistical Approach Md Shahid Latif M.Tech Student, Department of Remote Sensing, Birla Institute of Technology, Mesra Ranchi, Jharkhand-835215 Abstract

More information

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used.

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used. 1 4.12 Generalization In back-propagation learning, as many training examples as possible are typically used. It is hoped that the network so designed generalizes well. A network generalizes well when

More information

A System to Automatically Index Genealogical Microfilm Titleboards Introduction Preprocessing Method Identification

A System to Automatically Index Genealogical Microfilm Titleboards Introduction Preprocessing Method Identification A System to Automatically Index Genealogical Microfilm Titleboards Samuel James Pinson, Mark Pinson and William Barrett Department of Computer Science Brigham Young University Introduction Millions of

More information

Flexible Lag Definition for Experimental Variogram Calculation

Flexible Lag Definition for Experimental Variogram Calculation Flexible Lag Definition for Experimental Variogram Calculation Yupeng Li and Miguel Cuba The inference of the experimental variogram in geostatistics commonly relies on the method of moments approach.

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

Supplementary Figure 1. Decoding results broken down for different ROIs

Supplementary Figure 1. Decoding results broken down for different ROIs Supplementary Figure 1 Decoding results broken down for different ROIs Decoding results for areas V1, V2, V3, and V1 V3 combined. (a) Decoded and presented orientations are strongly correlated in areas

More information

Software Documentation of the Potential Support Vector Machine

Software Documentation of the Potential Support Vector Machine Software Documentation of the Potential Support Vector Machine Tilman Knebel and Sepp Hochreiter Department of Electrical Engineering and Computer Science Technische Universität Berlin 10587 Berlin, Germany

More information

Distance-Constrained Orthogonal Latin Squares for Brain- Computer Interface

Distance-Constrained Orthogonal Latin Squares for Brain- Computer Interface Distance-Constrained Orthogonal Latin Squares for Brain- Computer Interface Gang Luo Wanli Min IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA {luog, wanlimin}@us.ibm.com Abstract

More information

Genetic algorithm and forward method for feature selection in EEG feature space

Genetic algorithm and forward method for feature selection in EEG feature space Journal of Theoretical and Applied Computer Science Vol. 7, No. 2, 2013, pp. 72-82 ISSN 2299-2634 (printed), 2300-5653 (online) http://www.jtacs.org Genetic algorithm and forward method for feature selection

More information

BCI Competition III: Dataset II - Ensemble of SVMs for BCI P300 Speller

BCI Competition III: Dataset II - Ensemble of SVMs for BCI P300 Speller BCI Competition III: Dataset II - Ensemble of SVMs for BCI P300 Speller Alain Rakotomamonjy and Vincent Guigue LITIS, EA 4108 INSA de Rouen 76801 Saint Etienne du Rouvray, France Email : alain.rakotomamonjy@insa-rouen.fr

More information

European Journal of Science and Engineering Vol. 1, Issue 1, 2013 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM IDENTIFICATION OF AN INDUCTION MOTOR

European Journal of Science and Engineering Vol. 1, Issue 1, 2013 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM IDENTIFICATION OF AN INDUCTION MOTOR ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM IDENTIFICATION OF AN INDUCTION MOTOR Ahmed A. M. Emam College of Engineering Karrary University SUDAN ahmedimam1965@yahoo.co.in Eisa Bashier M. Tayeb College of Engineering

More information

Translating Thoughts Into Actions by Finding Patterns in Brainwaves

Translating Thoughts Into Actions by Finding Patterns in Brainwaves Translating Thoughts Into Actions by Finding Patterns in Brainwaves Charles W. Anderson and Jeshua A. Bratman Department of Computer Science Colorado State University, Fort Collins, CO 80523 anderson@cs.colostate.edu

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2017 Assignment 3: 2 late days to hand in tonight. Admin Assignment 4: Due Friday of next week. Last Time: MAP Estimation MAP

More information

OHBA M/EEG Analysis Workshop. Mark Woolrich Diego Vidaurre Andrew Quinn Romesh Abeysuriya Robert Becker

OHBA M/EEG Analysis Workshop. Mark Woolrich Diego Vidaurre Andrew Quinn Romesh Abeysuriya Robert Becker OHBA M/EEG Analysis Workshop Mark Woolrich Diego Vidaurre Andrew Quinn Romesh Abeysuriya Robert Becker Workshop Schedule Tuesday Session 1: Preprocessing, manual and automatic pipelines Session 2: Task

More information

Performing real-time BCI experiments

Performing real-time BCI experiments Performing real-time BCI experiments g.tec medical engineering GmbH Herbersteinstr. 60 8020 Graz, Austria www.gtec.at guger@gtec.at g.usbamp is a biosignal acquisition system for EEG, ECG, EMG, EOG and

More information

Smoothing of Spatial Filter by Graph Fourier Transform for EEG Signals

Smoothing of Spatial Filter by Graph Fourier Transform for EEG Signals Smoothing of Spatial Filter by Graph Fourier Transform for EEG Signals Hiroshi Higashi, Toshihisa Tanaka, and Yuichi Tanaka Toyohashi University of Technology, Aichi, Japan. E-mail: higashi@tut.jp Tel:

More information

CoE4TN4 Image Processing. Chapter 5 Image Restoration and Reconstruction

CoE4TN4 Image Processing. Chapter 5 Image Restoration and Reconstruction CoE4TN4 Image Processing Chapter 5 Image Restoration and Reconstruction Image Restoration Similar to image enhancement, the ultimate goal of restoration techniques is to improve an image Restoration: a

More information

Improved Non-Local Means Algorithm Based on Dimensionality Reduction

Improved Non-Local Means Algorithm Based on Dimensionality Reduction Improved Non-Local Means Algorithm Based on Dimensionality Reduction Golam M. Maruf and Mahmoud R. El-Sakka (&) Department of Computer Science, University of Western Ontario, London, Ontario, Canada {gmaruf,melsakka}@uwo.ca

More information

Automatic basis selection for RBF networks using Stein s unbiased risk estimator

Automatic basis selection for RBF networks using Stein s unbiased risk estimator Automatic basis selection for RBF networks using Stein s unbiased risk estimator Ali Ghodsi School of omputer Science University of Waterloo University Avenue West NL G anada Email: aghodsib@cs.uwaterloo.ca

More information

FEATURE SELECTION TECHNIQUES

FEATURE SELECTION TECHNIQUES CHAPTER-2 FEATURE SELECTION TECHNIQUES 2.1. INTRODUCTION Dimensionality reduction through the choice of an appropriate feature subset selection, results in multiple uses including performance upgrading,

More information

The Pre-Image Problem in Kernel Methods

The Pre-Image Problem in Kernel Methods The Pre-Image Problem in Kernel Methods James Kwok Ivor Tsang Department of Computer Science Hong Kong University of Science and Technology Hong Kong The Pre-Image Problem in Kernel Methods ICML-2003 1

More information

MR IMAGE SEGMENTATION

MR IMAGE SEGMENTATION MR IMAGE SEGMENTATION Prepared by : Monil Shah What is Segmentation? Partitioning a region or regions of interest in images such that each region corresponds to one or more anatomic structures Classification

More information

Classification of Mental Task for Brain Computer Interface Using Artificial Neural Network

Classification of Mental Task for Brain Computer Interface Using Artificial Neural Network Classification of Mental Task for Brain Computer Interface Using Artificial Neural Network Mohammad Naushad 1, Mohammad Waseem Khanooni 2, Nicky Ballani 3 1,2,3 Department of Electronics and Telecommunication

More information

3 Nonlinear Regression

3 Nonlinear Regression CSC 4 / CSC D / CSC C 3 Sometimes linear models are not sufficient to capture the real-world phenomena, and thus nonlinear models are necessary. In regression, all such models will have the same basic

More information

Brain-Computer Interface for Virtual Reality Control

Brain-Computer Interface for Virtual Reality Control Brain-Computer Interface for Virtual Reality Control C. Guger 1, C. Holzner 1, C. Grönegress 2, G. Edlinger 1, M. Slater 2 1 g.tec medical engineering GmbH, Guger Technologies OEG, Herbersteinstrasse 60,

More information

Quality Guided Image Denoising for Low-Cost Fundus Imaging

Quality Guided Image Denoising for Low-Cost Fundus Imaging Quality Guided Image Denoising for Low-Cost Fundus Imaging Thomas Köhler1,2, Joachim Hornegger1,2, Markus Mayer1,2, Georg Michelson2,3 20.03.2012 1 Pattern Recognition Lab, Ophthalmic Imaging Group 2 Erlangen

More information

Solution Sketches Midterm Exam COSC 6342 Machine Learning March 20, 2013

Solution Sketches Midterm Exam COSC 6342 Machine Learning March 20, 2013 Your Name: Your student id: Solution Sketches Midterm Exam COSC 6342 Machine Learning March 20, 2013 Problem 1 [5+?]: Hypothesis Classes Problem 2 [8]: Losses and Risks Problem 3 [11]: Model Generation

More information

Recent advances in Metamodel of Optimal Prognosis. Lectures. Thomas Most & Johannes Will

Recent advances in Metamodel of Optimal Prognosis. Lectures. Thomas Most & Johannes Will Lectures Recent advances in Metamodel of Optimal Prognosis Thomas Most & Johannes Will presented at the Weimar Optimization and Stochastic Days 2010 Source: www.dynardo.de/en/library Recent advances in

More information

Motivation. Technical Background

Motivation. Technical Background Handling Outliers through Agglomerative Clustering with Full Model Maximum Likelihood Estimation, with Application to Flow Cytometry Mark Gordon, Justin Li, Kevin Matzen, Bryce Wiedenbeck Motivation Clustering

More information

Textural Features for Image Database Retrieval

Textural Features for Image Database Retrieval Textural Features for Image Database Retrieval Selim Aksoy and Robert M. Haralick Intelligent Systems Laboratory Department of Electrical Engineering University of Washington Seattle, WA 98195-2500 {aksoy,haralick}@@isl.ee.washington.edu

More information

Lecture 7: Most Common Edge Detectors

Lecture 7: Most Common Edge Detectors #1 Lecture 7: Most Common Edge Detectors Saad Bedros sbedros@umn.edu Edge Detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the

More information

Image Analysis, Classification and Change Detection in Remote Sensing

Image Analysis, Classification and Change Detection in Remote Sensing Image Analysis, Classification and Change Detection in Remote Sensing WITH ALGORITHMS FOR ENVI/IDL Morton J. Canty Taylor &. Francis Taylor & Francis Group Boca Raton London New York CRC is an imprint

More information

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

The organization of the human cerebral cortex estimated by intrinsic functional connectivity 1 The organization of the human cerebral cortex estimated by intrinsic functional connectivity Journal: Journal of Neurophysiology Author: B. T. Thomas Yeo, et al Link: https://www.ncbi.nlm.nih.gov/pubmed/21653723

More information

A P300-speller based on event-related spectral perturbation (ERSP) Ming, D; An, X; Wan, B; Qi, H; Zhang, Z; Hu, Y

A P300-speller based on event-related spectral perturbation (ERSP) Ming, D; An, X; Wan, B; Qi, H; Zhang, Z; Hu, Y Title A P300-speller based on event-related spectral perturbation (ERSP) Author(s) Ming, D; An, X; Wan, B; Qi, H; Zhang, Z; Hu, Y Citation The 01 IEEE International Conference on Signal Processing, Communication

More information

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 2: Linear Regression Gradient Descent Non-linear basis functions LINEAR REGRESSION MOTIVATION Why Linear Regression? Simplest

More information

COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions

COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16 Lecture 2: Linear Regression Gradient Descent Non-linear basis functions LINEAR REGRESSION MOTIVATION Why Linear Regression? Regression

More information

INF 4300 Classification III Anne Solberg The agenda today:

INF 4300 Classification III Anne Solberg The agenda today: INF 4300 Classification III Anne Solberg 28.10.15 The agenda today: More on estimating classifier accuracy Curse of dimensionality and simple feature selection knn-classification K-means clustering 28.10.15

More information

Application of MPS Simulation with Multiple Training Image (MultiTI-MPS) to the Red Dog Deposit

Application of MPS Simulation with Multiple Training Image (MultiTI-MPS) to the Red Dog Deposit Application of MPS Simulation with Multiple Training Image (MultiTI-MPS) to the Red Dog Deposit Daniel A. Silva and Clayton V. Deutsch A Multiple Point Statistics simulation based on the mixing of two

More information

MIT Samberg Center Cambridge, MA, USA. May 30 th June 2 nd, by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA

MIT Samberg Center Cambridge, MA, USA. May 30 th June 2 nd, by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA Exploratory Machine Learning studies for disruption prediction on DIII-D by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA Presented at the 2 nd IAEA Technical Meeting on

More information

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Xavier Le Faucheur a, Brani Vidakovic b and Allen Tannenbaum a a School of Electrical and Computer Engineering, b Department of Biomedical

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Isabelle Guyon Notes written by: Johann Leithon. Introduction The process of Machine Learning consist of having a big training data base, which is the input to some learning

More information

3 Nonlinear Regression

3 Nonlinear Regression 3 Linear models are often insufficient to capture the real-world phenomena. That is, the relation between the inputs and the outputs we want to be able to predict are not linear. As a consequence, nonlinear

More information

Learning from Data Linear Parameter Models

Learning from Data Linear Parameter Models Learning from Data Linear Parameter Models Copyright David Barber 200-2004. Course lecturer: Amos Storkey a.storkey@ed.ac.uk Course page : http://www.anc.ed.ac.uk/ amos/lfd/ 2 chirps per sec 26 24 22 20

More information

Individualized Error Estimation for Classification and Regression Models

Individualized Error Estimation for Classification and Regression Models Individualized Error Estimation for Classification and Regression Models Krisztian Buza, Alexandros Nanopoulos, Lars Schmidt-Thieme Abstract Estimating the error of classification and regression models

More information

Available Online through

Available Online through Available Online through www.ijptonline.com ISSN: 0975-766X CODEN: IJPTFI Research Article ANALYSIS OF CT LIVER IMAGES FOR TUMOUR DIAGNOSIS BASED ON CLUSTERING TECHNIQUE AND TEXTURE FEATURES M.Krithika

More information

FACE DETECTION AND RECOGNITION OF DRAWN CHARACTERS HERMAN CHAU

FACE DETECTION AND RECOGNITION OF DRAWN CHARACTERS HERMAN CHAU FACE DETECTION AND RECOGNITION OF DRAWN CHARACTERS HERMAN CHAU 1. Introduction Face detection of human beings has garnered a lot of interest and research in recent years. There are quite a few relatively

More information

Common Spatial-Spectral Boosting Pattern for Brain-Computer Interface

Common Spatial-Spectral Boosting Pattern for Brain-Computer Interface ECAI 2014 T. Schaub et al. (Eds.) 2014 The Authors and IOS Press. This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial

More information

Learning to Recognize Faces in Realistic Conditions

Learning to Recognize Faces in Realistic Conditions 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

CS229 Final Project: Predicting Expected Response Times

CS229 Final Project: Predicting Expected  Response Times CS229 Final Project: Predicting Expected Email Response Times Laura Cruz-Albrecht (lcruzalb), Kevin Khieu (kkhieu) December 15, 2017 1 Introduction Each day, countless emails are sent out, yet the time

More information

The Automation of the Feature Selection Process. Ronen Meiri & Jacob Zahavi

The Automation of the Feature Selection Process. Ronen Meiri & Jacob Zahavi The Automation of the Feature Selection Process Ronen Meiri & Jacob Zahavi Automated Data Science http://www.kdnuggets.com/2016/03/automated-data-science.html Outline The feature selection problem Objective

More information

Facial Expression Detection Using Implemented (PCA) Algorithm

Facial Expression Detection Using Implemented (PCA) Algorithm Facial Expression Detection Using Implemented (PCA) Algorithm Dileep Gautam (M.Tech Cse) Iftm University Moradabad Up India Abstract: Facial expression plays very important role in the communication with

More information

Multi-voxel pattern analysis: Decoding Mental States from fmri Activity Patterns

Multi-voxel pattern analysis: Decoding Mental States from fmri Activity Patterns Multi-voxel pattern analysis: Decoding Mental States from fmri Activity Patterns Artwork by Leon Zernitsky Jesse Rissman NITP Summer Program 2012 Part 1 of 2 Goals of Multi-voxel Pattern Analysis Decoding

More information

Lecture 3: Linear Classification

Lecture 3: Linear Classification Lecture 3: Linear Classification Roger Grosse 1 Introduction Last week, we saw an example of a learning task called regression. There, the goal was to predict a scalar-valued target from a set of features.

More information

GENDER CLASSIFICATION USING SUPPORT VECTOR MACHINES

GENDER CLASSIFICATION USING SUPPORT VECTOR MACHINES GENDER CLASSIFICATION USING SUPPORT VECTOR MACHINES Ashwin Swaminathan ashwins@umd.edu ENEE633: Statistical and Neural Pattern Recognition Instructor : Prof. Rama Chellappa Project 2, Part (a) 1. INTRODUCTION

More information

Points Lines Connected points X-Y Scatter. X-Y Matrix Star Plot Histogram Box Plot. Bar Group Bar Stacked H-Bar Grouped H-Bar Stacked

Points Lines Connected points X-Y Scatter. X-Y Matrix Star Plot Histogram Box Plot. Bar Group Bar Stacked H-Bar Grouped H-Bar Stacked Plotting Menu: QCExpert Plotting Module graphs offers various tools for visualization of uni- and multivariate data. Settings and options in different types of graphs allow for modifications and customizations

More information

Louis Fourrier Fabien Gaie Thomas Rolf

Louis Fourrier Fabien Gaie Thomas Rolf CS 229 Stay Alert! The Ford Challenge Louis Fourrier Fabien Gaie Thomas Rolf Louis Fourrier Fabien Gaie Thomas Rolf 1. Problem description a. Goal Our final project is a recent Kaggle competition submitted

More information

AN IMAGE BASED SYSTEM TO AUTOMATICALLY

AN IMAGE BASED SYSTEM TO AUTOMATICALLY AN IMAGE BASED SYSTEM TO AUTOMATICALLY AND OBJECTIVELY SCORE THE DEGREE OF REDNESS AND SCALING IN PSORIASIS LESIONS. David Delgado Bjarne Ersb ll Jens Michael Carstensen Informatics and Mathematical Modelling,

More information

Tensor Sparse PCA and Face Recognition: A Novel Approach

Tensor Sparse PCA and Face Recognition: A Novel Approach Tensor Sparse PCA and Face Recognition: A Novel Approach Loc Tran Laboratoire CHArt EA4004 EPHE-PSL University, France tran0398@umn.edu Linh Tran Ho Chi Minh University of Technology, Vietnam linhtran.ut@gmail.com

More information

Cognitive States Detection in fmri Data Analysis using incremental PCA

Cognitive States Detection in fmri Data Analysis using incremental PCA Department of Computer Engineering Cognitive States Detection in fmri Data Analysis using incremental PCA Hoang Trong Minh Tuan, Yonggwan Won*, Hyung-Jeong Yang International Conference on Computational

More information

Image Processing. Image Features

Image Processing. Image Features Image Processing Image Features Preliminaries 2 What are Image Features? Anything. What they are used for? Some statements about image fragments (patches) recognition Search for similar patches matching

More information