New Approaches for EEG Source Localization and Dipole Moment Estimation. Shun Chi Wu, Yuchen Yao, A. Lee Swindlehurst University of California Irvine

Size: px
Start display at page:

Download "New Approaches for EEG Source Localization and Dipole Moment Estimation. Shun Chi Wu, Yuchen Yao, A. Lee Swindlehurst University of California Irvine"

Transcription

1 New Approaches for EEG Source Localization and Dipole Moment Estimation Shun Chi Wu, Yuchen Yao, A. Lee Swindlehurst University of California Irvine

2 Outline Motivation why EEG? Mathematical Model equivalent current dipoles w/ multiple sensors Prior Approaches maximum likelihood, MUSIC, beamforming, ICA Interference Suppression control (pre stimulus) and task (post stimulus) Our Contributions: spatial interference nulling noise subspace fitting Simulation Results Conclusions & Future Work

3 Motivation EEG provides direct measurement of neuronal activity w/ best temporal resolution, key to diagnosing many neurological impairments since measurements can be taken with behavioral activities in process, great interest in combining EEG with new measurement modalities (e.g., functional MRI) EEG signals are weak: must rely on measurements from multiple electrodes to more precisely localize and extract signal Classical approaches based on finding electrode with strongest signal, but they are too widely spaced, and this approach only provides position projected on brain surface sub cortical activity cannot be distinguished. Modern alternative: use data from multiple electrodes & detailed head models to calibrate electrode array for full 3D set of possible locations. Techniques borrowed from radar & communications statistical signal processing. Our contribution: apply new signal processing techniques for improved robustness and performance, especially for difficult applications involving highly correlated signals and strong interference.

4 Mathematical Model cortical neuron can be modeled as a current dipole key parameters of interest: dipole location, orientation, current waveform difficulty: brain is constantly buzzing with activity; how to single out sources of interest from the background direct measurement of energy from electrodes does not provide sufficient resolution Image courtesy of

5 Mathematical Model (cont.) stack outputs from electrode array into a vector using detailed head model and array calibration, determine array response to unit amplitude source ( lead field vector, LFV) LFV is broken down into its dipole moments output of electrode array for a superposition of multiple sources: goal is to determine high dimensional inverse problem

6 Prior Approaches Maximum Likelihood (ML): assume interference with known pdf (Gaussian) for temporally & spatially white noise, boils down to non linear least squares problem can handle highly correlated sources waveform can be separated from minimization still requires multi dimensional search for 6d parameters

7 Prior Approaches (cont.) MUSIC (MUltiple SIgnal Classification): technique borrowed from radar literature estimate signal and noise subspaces from eigendecomposition of spatial covariance matrix idea: locate EEG sources as those whose LFV is most orthogonal to noise subspace. Results in 3 dim generalized eigenvalue search: low dimensional search, provides visual EEG map, but cannot handle highly correlated sources

8 Prior Approaches (cont.) Constrained Beamforming (LCMV): also borrowed from radar/sonar community step through beams formed by providing unit gain at each possible source position and minimizing array output power from all other locations solution ends up being very similar to MUSIC: low dimensional search, provides visual EEG map, but cannot handle highly correlated sources also very sensitive to imprecise LFV model

9 Prior Approaches (cont.) Independent Components Analysis (ICA): statistical technique relying on assumption of sources with independent current waveforms first step: array data is factored into product of spatial and temporal principal components: second step: extract location/orientation information from provides waveforms without relying on LFV model unable to provide accurate location/orientation information for highly correlated sources

10 Interference Suppression None of the previous techniques provide good results without some attempt at interference cancellation Simulation example: 3 strong sources with 25 weak interferers strong sources move along tracks shown below

11 Interference Suppression None of the previous techniques provide good results without some attempt at interference cancellation

12 Interference Suppression (cont.) None of the previous techniques provide good results without some attempt at interference cancellation Common approach: measure quiescent brain activity during control state (pre stimulus), followed by measurement of brain activity during task state (post stimulus) Use control state measurements to learn statistical properties of the background interference, then try to cancel such components in task state data Most common implementation: control state data used to estimate spatial covariance of the interference, then algorithms are implemented using Pre Whitened (PW) data Requires assumption of spatial and temporal stationarity

13 Drawbacks of Existing Approaches Optimal methods (ML) cannot decouple estimation of location and dipole orientation, and require assumptions about interference distribution and covariance structure Methods that employ pre whitening require assumptions of both temporal and spatial stationarity, and estimation of covariance matrices, which takes large data sets Good performance for highly correlated sources requires use of expensive ML technique Our contributions: spatial interference nulling eliminates interference without estimation of covariance matrices, and without assumption of temporal stationarity noise subspace fitting achieves near optimal performance while allowing for decoupled location/orientation estimation, and good performance for highly correlated sources

14 Spatial Interference Nulling Use singular value decomposition (SVD) of control state data to find spatial signal subspace of background interference Instead of pre whitening, simply project out from task state data: Implement algorithms with clean task state data Allows statistical properties of interference waveforms to change from control to task state without performance penalty Following examples illustrate benefit of interference nulling (NP) over PW for MUSIC and LCMV. First example uses 3 uncorrelated sources, second involves 2 highly correlated sources

15 Spatial Interference Nulling Results

16 Spatial Interference Nulling Results (cont.)

17 Spatial Interference Nulling Results (cont.)

18 Spatial Interference Nulling Results (cont.)

19 Noise Subspace Fitting We show that ML criterion can be asymptotically approximated by a simpler function in the vicinity of the solution: NSF criterion depends quadratically on orientation parameters, which allows them to be decoupled from the estimation Thus, search is only over the 3d location parameters (for which prior information may be available) Choice of optimal weighting matrix is critical: requires initial estimation stage in which consistent parameter estimates can be obtained Performance of NSF is superior to MUSIC, LCMV for highly correlated sources

20 Noise Subspace Fitting Results

21 Noise Subspace Fitting Results (cont.)

22 Noise Subspace Fitting Results (cont.)

23 Noise Subspace Fitting Results (cont.)

24 Future Work Looking for partner for help with experimental aspects: head models, live data (while simulations used real data, they were not real experiments) Developing alternative near ML cost functions that allow for more flexible noise model Developing methods that are robust to imprecise LFV models How to exploit prior information? Estimating of sources which move rapidly or whose dipole moment is time varying Connections with MEG models, function MRI, etc.

Optimum Array Processing

Optimum Array Processing Optimum Array Processing Part IV of Detection, Estimation, and Modulation Theory Harry L. Van Trees WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface xix 1 Introduction 1 1.1 Array Processing

More information

Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques

Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques Sea Chen Department of Biomedical Engineering Advisors: Dr. Charles A. Bouman and Dr. Mark J. Lowe S. Chen Final Exam October

More information

The Artifact Subspace Reconstruction method. Christian A Kothe SCCN / INC / UCSD January 2013

The Artifact Subspace Reconstruction method. Christian A Kothe SCCN / INC / UCSD January 2013 The Artifact Subspace Reconstruction method Christian A Kothe SCCN / INC / UCSD January 2013 Artifact Subspace Reconstruction New algorithm to remove non-stationary highvariance signals from EEG Reconstructs

More information

Linear Methods for Regression and Shrinkage Methods

Linear Methods for Regression and Shrinkage Methods Linear Methods for Regression and Shrinkage Methods Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Linear Regression Models Least Squares Input vectors

More information

FMRI data: Independent Component Analysis (GIFT) & Connectivity Analysis (FNC)

FMRI data: Independent Component Analysis (GIFT) & Connectivity Analysis (FNC) FMRI data: Independent Component Analysis (GIFT) & Connectivity Analysis (FNC) Software: Matlab Toolbox: GIFT & FNC Yingying Wang, Ph.D. in Biomedical Engineering 10 16 th, 2014 PI: Dr. Nadine Gaab Outline

More information

Workshop - Model Calibration and Uncertainty Analysis Using PEST

Workshop - Model Calibration and Uncertainty Analysis Using PEST About PEST PEST (Parameter ESTimation) is a general-purpose, model-independent, parameter estimation and model predictive uncertainty analysis package developed by Dr. John Doherty. PEST is the most advanced

More information

On the Minimum l p. 193 On the Strong Uniqueness of Highly Sparse Representations from Redundant Dictionaries

On the Minimum l p. 193 On the Strong Uniqueness of Highly Sparse Representations from Redundant Dictionaries Theory and Fundamentals A FastICA Algorithm for Non-negative Independent Component Analysis p. 1 Blind Source Separation by Adaptive Estimation of Score Function Difference p. 9 Exploiting Spatiotemporal

More information

Array Shape Tracking Using Active Sonar Reverberation

Array Shape Tracking Using Active Sonar Reverberation Lincoln Laboratory ASAP-2003 Worshop Array Shape Tracing Using Active Sonar Reverberation Vijay Varadarajan and Jeffrey Kroli Due University Department of Electrical and Computer Engineering Durham, NC

More information

BESA Research. CE certified software package for comprehensive, fast, and user-friendly analysis of EEG and MEG

BESA Research. CE certified software package for comprehensive, fast, and user-friendly analysis of EEG and MEG BESA Research CE certified software package for comprehensive, fast, and user-friendly analysis of EEG and MEG BESA Research choose the best analysis tool for your EEG and MEG data BESA Research is the

More information

Feature selection. Term 2011/2012 LSI - FIB. Javier Béjar cbea (LSI - FIB) Feature selection Term 2011/ / 22

Feature selection. Term 2011/2012 LSI - FIB. Javier Béjar cbea (LSI - FIB) Feature selection Term 2011/ / 22 Feature selection Javier Béjar cbea LSI - FIB Term 2011/2012 Javier Béjar cbea (LSI - FIB) Feature selection Term 2011/2012 1 / 22 Outline 1 Dimensionality reduction 2 Projections 3 Attribute selection

More information

SIGNAL SEPARATION USING CIRCULAR ARRAYS. I. Jouny

SIGNAL SEPARATION USING CIRCULAR ARRAYS. I. Jouny SIGNAL SEPARATION USING CIRCULAR ARRAYS I Jouny Department of Electrical Engineering Lafayette College Easton, PA 18042 ABSTRACT Signal separation algorithms can be utilized to improve channel capacity

More information

INDEPENDENT COMPONENT ANALYSIS APPLIED TO fmri DATA: A GENERATIVE MODEL FOR VALIDATING RESULTS

INDEPENDENT COMPONENT ANALYSIS APPLIED TO fmri DATA: A GENERATIVE MODEL FOR VALIDATING RESULTS INDEPENDENT COMPONENT ANALYSIS APPLIED TO fmri DATA: A GENERATIVE MODEL FOR VALIDATING RESULTS V. Calhoun 1,2, T. Adali, 2 and G. Pearlson 1 1 Johns Hopkins University Division of Psychiatric Neuro-Imaging,

More information

Recognition, SVD, and PCA

Recognition, SVD, and PCA Recognition, SVD, and PCA Recognition Suppose you want to find a face in an image One possibility: look for something that looks sort of like a face (oval, dark band near top, dark band near bottom) Another

More information

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude A. Migukin *, V. atkovnik and J. Astola Department of Signal Processing, Tampere University of Technology,

More information

Three-Dimensional Sensors Lecture 6: Point-Cloud Registration

Three-Dimensional Sensors Lecture 6: Point-Cloud Registration Three-Dimensional Sensors Lecture 6: Point-Cloud Registration Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inria.fr http://perception.inrialpes.fr/ Point-Cloud Registration Methods Fuse data

More information

Face Recognition by Independent Component Analysis

Face Recognition by Independent Component Analysis 1450 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002 Face Recognition by Independent Component Analysis Marian Stewart Bartlett, Member, IEEE, Javier R. Movellan, Member, IEEE, and

More information

- Graphical editing of user montages for convenient data review - Import of user-defined file formats using generic reader

- Graphical editing of user montages for convenient data review - Import of user-defined file formats using generic reader Data review and processing Source montages and 3D whole-head mapping Onset of epileptic seizure with 3D whole-head maps and hemispheric comparison of density spectral arrays (DSA) Graphical display of

More information

I How does the formulation (5) serve the purpose of the composite parameterization

I How does the formulation (5) serve the purpose of the composite parameterization Supplemental Material to Identifying Alzheimer s Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis I How does the formulation (5)

More information

10701 Machine Learning. Clustering

10701 Machine Learning. Clustering 171 Machine Learning Clustering What is Clustering? Organizing data into clusters such that there is high intra-cluster similarity low inter-cluster similarity Informally, finding natural groupings among

More information

Estimating Noise and Dimensionality in BCI Data Sets: Towards Illiteracy Comprehension

Estimating Noise and Dimensionality in BCI Data Sets: Towards Illiteracy Comprehension Estimating Noise and Dimensionality in BCI Data Sets: Towards Illiteracy Comprehension Claudia Sannelli, Mikio Braun, Michael Tangermann, Klaus-Robert Müller, Machine Learning Laboratory, Dept. Computer

More information

Intrinsic Dimensionality Estimation for Data Sets

Intrinsic Dimensionality Estimation for Data Sets Intrinsic Dimensionality Estimation for Data Sets Yoon-Mo Jung, Jason Lee, Anna V. Little, Mauro Maggioni Department of Mathematics, Duke University Lorenzo Rosasco Center for Biological and Computational

More information

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12 Contents 1 Introduction 10 1.1 Motivation and Aims....... 10 1.1.1 Functional Imaging.... 10 1.1.2 Computational Neuroanatomy... 12 1.2 Overview of Chapters... 14 2 Rigid Body Registration 18 2.1 Introduction.....

More information

Improving the Interpretability of All-to-All Pairwise Source Connectivity Analysis in MEG With Nonhomogeneous Smoothing

Improving the Interpretability of All-to-All Pairwise Source Connectivity Analysis in MEG With Nonhomogeneous Smoothing r Human Brain Mapping 32:426 437 (2011) r Improving the Interpretability of All-to-All Pairwise Source Connectivity Analysis in MEG With Nonhomogeneous Smoothing Jan-Mathijs Schoffelen* and Joachim Gross

More information

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015 Statistical Analysis of Neuroimaging Data Phebe Kemmer BIOS 516 Sept 24, 2015 Review from last time Structural Imaging modalities MRI, CAT, DTI (diffusion tensor imaging) Functional Imaging modalities

More information

Segmentation of MR Images of a Beating Heart

Segmentation of MR Images of a Beating Heart Segmentation of MR Images of a Beating Heart Avinash Ravichandran Abstract Heart Arrhythmia is currently treated using invasive procedures. In order use to non invasive procedures accurate imaging modalities

More information

Image Analysis, Classification and Change Detection in Remote Sensing

Image Analysis, Classification and Change Detection in Remote Sensing Image Analysis, Classification and Change Detection in Remote Sensing WITH ALGORITHMS FOR ENVI/IDL Morton J. Canty Taylor &. Francis Taylor & Francis Group Boca Raton London New York CRC is an imprint

More information

Sparse & Functional Principal Components Analysis

Sparse & Functional Principal Components Analysis Sparse & Functional Principal Components Analysis Genevera I. Allen Department of Statistics and Electrical and Computer Engineering, Rice University, Department of Pediatrics-Neurology, Baylor College

More information

EE613 Machine Learning for Engineers LINEAR REGRESSION. Sylvain Calinon Robot Learning & Interaction Group Idiap Research Institute Nov.

EE613 Machine Learning for Engineers LINEAR REGRESSION. Sylvain Calinon Robot Learning & Interaction Group Idiap Research Institute Nov. EE613 Machine Learning for Engineers LINEAR REGRESSION Sylvain Calinon Robot Learning & Interaction Group Idiap Research Institute Nov. 9, 2017 1 Outline Multivariate ordinary least squares Matlab code:

More information

Dimension reduction : PCA and Clustering

Dimension reduction : PCA and Clustering Dimension reduction : PCA and Clustering By Hanne Jarmer Slides by Christopher Workman Center for Biological Sequence Analysis DTU The DNA Array Analysis Pipeline Array design Probe design Question Experimental

More information

Design and Implementation of Small Microphone Arrays

Design and Implementation of Small Microphone Arrays Design and Implementation of Small Microphone Arrays for Acoustic and Speech Signal Processing Jingdong Chen and Jacob Benesty Northwestern Polytechnical University 127 Youyi West Road, Xi an, China jingdongchen@ieee.org

More information

Regularized Tensor Factorizations & Higher-Order Principal Components Analysis

Regularized Tensor Factorizations & Higher-Order Principal Components Analysis Regularized Tensor Factorizations & Higher-Order Principal Components Analysis Genevera I. Allen Department of Statistics, Rice University, Department of Pediatrics-Neurology, Baylor College of Medicine,

More information

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones What is machine learning? Data interpretation describing relationship between predictors and responses

More information

B degrees of freedom are known as partially adaptive arrays

B degrees of freedom are known as partially adaptive arrays IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 36. NO. 3. MARCH 1988 357 Eigenstructure Based Partially Adaptive Array Design Abstract-A procedure is presented for designing partially adaptive arrays

More information

Spatial-temporal Source Reconstruction for Magnetoencephalography

Spatial-temporal Source Reconstruction for Magnetoencephalography Spatial-temporal Source Reconstruction for Magnetoencephalography Jing Kan Submitted for the degree of Doctor of Philosophy University of York Department of Computer Science March. 2011 Abstract Magnetoencephalography

More information

Adapting to Non-Stationarity in EEG using a Mixture of Multiple ICA Models

Adapting to Non-Stationarity in EEG using a Mixture of Multiple ICA Models Adapting to Non-Stationarity in EEG using a Mixture of Multiple ICA Models Jason A. Palmer 1 Scott Makeig 1 Julie Onton 1 Zeynep Akalin-Acar 1 Ken Kreutz-Delgado 2 Bhaskar D. Rao 2 1 Swartz Center for

More information

MEG Laboratory Reference Manual for research use

MEG Laboratory Reference Manual for research use MEG Laboratory Reference Manual for research use for Ver. 1R007B Manual version 20040224 Index 1. File... 11 1.1 New... 11 1.2 Open... 11 1.3 Transfer...... 11 1.4 Suspended File List... 12 1.5 Save...

More information

Representational similarity analysis. Dr Ian Charest,

Representational similarity analysis. Dr Ian Charest, Representational similarity analysis Dr Ian Charest, Edinburgh, April 219 A space for neuroimaging studies Pattern across subjects Cross-subject correlation studies (e.g. social neuroscience) Raizada et

More information

PCA vs. ICA Decomposition of High Resolution SAR Images: Application to Urban Structures Recognition

PCA vs. ICA Decomposition of High Resolution SAR Images: Application to Urban Structures Recognition PCA vs. ICA Decomposition of High Resolution SAR Images: Application to Urban Structures Recognition Houda Chaabouni-Chouayakh a and Mihai Datcu a,b a German Aerospace Center (DLR), Oberpfaffenhofen D-82234

More information

MODERN FACTOR ANALYSIS

MODERN FACTOR ANALYSIS MODERN FACTOR ANALYSIS Harry H. Harman «ö THE pigj UNIVERSITY OF CHICAGO PRESS Contents LIST OF ILLUSTRATIONS GUIDE TO NOTATION xv xvi Parti Foundations of Factor Analysis 1. INTRODUCTION 3 1.1. Brief

More information

Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung

Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for Telecommunications and High-Frequency Techniques Department of Communications

More information

Statistical Methods in functional MRI. False Discovery Rate. Issues with FWER. Lecture 7.2: Multiple Comparisons ( ) 04/25/13

Statistical Methods in functional MRI. False Discovery Rate. Issues with FWER. Lecture 7.2: Multiple Comparisons ( ) 04/25/13 Statistical Methods in functional MRI Lecture 7.2: Multiple Comparisons 04/25/13 Martin Lindquist Department of iostatistics Johns Hopkins University Issues with FWER Methods that control the FWER (onferroni,

More information

FAULT DETECTION AND ISOLATION USING SPECTRAL ANALYSIS. Eugen Iancu

FAULT DETECTION AND ISOLATION USING SPECTRAL ANALYSIS. Eugen Iancu FAULT DETECTION AND ISOLATION USING SPECTRAL ANALYSIS Eugen Iancu Automation and Mechatronics Department University of Craiova Eugen.Iancu@automation.ucv.ro Abstract: In this work, spectral signal analyses

More information

Joint Domain Localized Adaptive Processing with Zero Forcing for Multi-Cell CDMA Systems

Joint Domain Localized Adaptive Processing with Zero Forcing for Multi-Cell CDMA Systems Joint Domain Localized Adaptive Processing with Zero Forcing for Multi-Cell CDMA Systems Rebecca Y. M. Wong, Raviraj Adve Dept. of Electrical and Computer Engineering, University of Toronto 10 King s College

More information

Facial Expression Recognition Using Non-negative Matrix Factorization

Facial Expression Recognition Using Non-negative Matrix Factorization Facial Expression Recognition Using Non-negative Matrix Factorization Symeon Nikitidis, Anastasios Tefas and Ioannis Pitas Artificial Intelligence & Information Analysis Lab Department of Informatics Aristotle,

More information

CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING. domain. In spatial domain the watermark bits directly added to the pixels of the cover

CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING. domain. In spatial domain the watermark bits directly added to the pixels of the cover 38 CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING Digital image watermarking can be done in both spatial domain and transform domain. In spatial domain the watermark bits directly added to the pixels of the

More information

Local singular value decomposition for signal enhancement of seismic data

Local singular value decomposition for signal enhancement of seismic data GEOPHYSICS, VOL. 72, NO. 2 MARCH-APRIL 27 ; P. V59 V65, 8 FIGS..9/.2435967 Local singular value decomposition for signal enhancement of seismic data Maïza Bekara and Mirko Van der Baan ABSTRACT Singular

More information

EE613 Machine Learning for Engineers LINEAR REGRESSION. Sylvain Calinon Robot Learning & Interaction Group Idiap Research Institute Nov.

EE613 Machine Learning for Engineers LINEAR REGRESSION. Sylvain Calinon Robot Learning & Interaction Group Idiap Research Institute Nov. EE613 Machine Learning for Engineers LINEAR REGRESSION Sylvain Calinon Robot Learning & Interaction Group Idiap Research Institute Nov. 4, 2015 1 Outline Multivariate ordinary least squares Singular value

More information

Neurocomputing 108 (2013) Contents lists available at SciVerse ScienceDirect. Neurocomputing. journal homepage:

Neurocomputing 108 (2013) Contents lists available at SciVerse ScienceDirect. Neurocomputing. journal homepage: Neurocomputing 108 (2013) 69 78 Contents lists available at SciVerse ScienceDirect Neurocomputing journal homepage: www.elsevier.com/locate/neucom Greedy solutions for the construction of sparse spatial

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

ENHANCED RADAR IMAGING VIA SPARSITY REGULARIZED 2D LINEAR PREDICTION

ENHANCED RADAR IMAGING VIA SPARSITY REGULARIZED 2D LINEAR PREDICTION ENHANCED RADAR IMAGING VIA SPARSITY REGULARIZED 2D LINEAR PREDICTION I.Erer 1, K. Sarikaya 1,2, H.Bozkurt 1 1 Department of Electronics and Telecommunications Engineering Electrics and Electronics Faculty,

More information

Dynamic Texture with Fourier Descriptors

Dynamic Texture with Fourier Descriptors B. Abraham, O. Camps and M. Sznaier: Dynamic texture with Fourier descriptors. In Texture 2005: Proceedings of the 4th International Workshop on Texture Analysis and Synthesis, pp. 53 58, 2005. Dynamic

More information

Why Normalizing v? Why did we normalize v on the right side? Because we want the length of the left side to be the eigenvalue

Why Normalizing v? Why did we normalize v on the right side? Because we want the length of the left side to be the eigenvalue Why Normalizing v? Why did we normalize v on the right side? Because we want the length of the left side to be the eigenvalue 1 CCI PCA Algorithm (1) 2 CCI PCA Algorithm (2) 3 PCA from the FERET Face Image

More information

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface , 2 nd Edition Preface ix 1 Introduction 1 1.1 Overview 1 1.2 Human and Computer Vision 1 1.3 The Human Vision System 3 1.3.1 The Eye 4 1.3.2 The Neural System 7 1.3.3 Processing 7 1.4 Computer Vision

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

INFRARED AUTONOMOUS ACQUISITION AND TRACKING

INFRARED AUTONOMOUS ACQUISITION AND TRACKING INFRARED AUTONOMOUS ACQUISITION AND TRACKING Teresa L.P. Olson and Harry C. Lee Teresa.Lolson@lmco.com (407) 356-7109 Harrv.c.lee@lmco.com (407) 356-6997 Lockheed Martin Missiles and Fire Control - Orlando

More information

Extracting Coactivated Features from Multiple Data Sets

Extracting Coactivated Features from Multiple Data Sets Extracting Coactivated Features from Multiple Data Sets Michael U. Gutmann University of Helsinki michael.gutmann@helsinki.fi Aapo Hyvärinen University of Helsinki aapo.hyvarinen@helsinki.fi Michael U.

More information

Face Modeling by Information Maximization 1

Face Modeling by Information Maximization 1 Face Modeling by Information Maximization 1 Marian Stewart Bartlett Javier R. Movellan Terrence J. Sejnowski UC San Diego UC San Diego UC San Diego; Salk marni@salk.edu movellan@mplab.ucsd.edu Howard Hughes

More information

Unsupervised learning in Vision

Unsupervised learning in Vision Chapter 7 Unsupervised learning in Vision The fields of Computer Vision and Machine Learning complement each other in a very natural way: the aim of the former is to extract useful information from visual

More information

Collaborative Filtering for Netflix

Collaborative Filtering for Netflix Collaborative Filtering for Netflix Michael Percy Dec 10, 2009 Abstract The Netflix movie-recommendation problem was investigated and the incremental Singular Value Decomposition (SVD) algorithm was implemented

More information

Efficient Visual Coding: From Retina To V2

Efficient Visual Coding: From Retina To V2 Efficient Visual Coding: From Retina To V Honghao Shan Garrison Cottrell Computer Science and Engineering UCSD La Jolla, CA 9093-0404 shanhonghao@gmail.com, gary@ucsd.edu Abstract The human visual system

More information

Analyze EEG Signals with Convolutional Neural Network Based on Power Spectrum Feature Selection

Analyze EEG Signals with Convolutional Neural Network Based on Power Spectrum Feature Selection Analyze EEG Signals with Convolutional Neural Network Based on Power Spectrum Feature Selection 1 Brain Cognitive Computing Lab, School of Information Engineering, Minzu University of China Beijing, 100081,

More information

Introductory Concepts for Voxel-Based Statistical Analysis

Introductory Concepts for Voxel-Based Statistical Analysis Introductory Concepts for Voxel-Based Statistical Analysis John Kornak University of California, San Francisco Department of Radiology and Biomedical Imaging Department of Epidemiology and Biostatistics

More information

FACE RECOGNITION BASED ON GENDER USING A MODIFIED METHOD OF 2D-LINEAR DISCRIMINANT ANALYSIS

FACE RECOGNITION BASED ON GENDER USING A MODIFIED METHOD OF 2D-LINEAR DISCRIMINANT ANALYSIS FACE RECOGNITION BASED ON GENDER USING A MODIFIED METHOD OF 2D-LINEAR DISCRIMINANT ANALYSIS 1 Fitri Damayanti, 2 Wahyudi Setiawan, 3 Sri Herawati, 4 Aeri Rachmad 1,2,3,4 Faculty of Engineering, University

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,900 116,000 120M Open access books available International authors and editors Downloads Our

More information

A Novel Image Super-resolution Reconstruction Algorithm based on Modified Sparse Representation

A Novel Image Super-resolution Reconstruction Algorithm based on Modified Sparse Representation , pp.162-167 http://dx.doi.org/10.14257/astl.2016.138.33 A Novel Image Super-resolution Reconstruction Algorithm based on Modified Sparse Representation Liqiang Hu, Chaofeng He Shijiazhuang Tiedao University,

More information

A comparison of minimum norm and MUSIC for a combined MEG/EEG sensor array

A comparison of minimum norm and MUSIC for a combined MEG/EEG sensor array Adv. Radio Sci., 10, 99 104, 2012 doi:10.5194/ars-10-99-2012 Author(s) 2012. CC Attribution 3.0 License. Advances in Radio Science A comparison of minimum norm and MUSIC for a combined MEG/EEG sensor array

More information

NOVEL TECHNIQUES AND ARCHITECTURES FOR ADAPTIVE BEAMFORMING

NOVEL TECHNIQUES AND ARCHITECTURES FOR ADAPTIVE BEAMFORMING NOVEL TECHNIQUES AND ARCHITECTURES FOR ADAPTIVE BEAMFORMING By THUA VAN HO, B.A.Sc, M.A.Sc A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree

More information

Matlab project Independent component analysis

Matlab project Independent component analysis Matlab project Independent component analysis Michel Journée Dept. of Electrical Engineering and Computer Science University of Liège, Belgium m.journee@ulg.ac.be September 2008 What is Independent Component

More information

Extracting Coactivated Features from Multiple Data Sets

Extracting Coactivated Features from Multiple Data Sets Extracting Coactivated Features from Multiple Data Sets Michael U. Gutmann and Aapo Hyvärinen Dept. of Computer Science and HIIT Dept. of Mathematics and Statistics P.O. Box 68, FIN-4 University of Helsinki,

More information

COMPUTER AND ROBOT VISION

COMPUTER AND ROBOT VISION VOLUME COMPUTER AND ROBOT VISION Robert M. Haralick University of Washington Linda G. Shapiro University of Washington A^ ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California

More information

Theory: modeling, localization and imaging

Theory: modeling, localization and imaging Electromagnetic Brain Mapping with MEG/EEG Theory: modeling, localization and imaging Sylvain Baillet Imaging Group Cognitive Neuroscience & Brain Imaging Lab. Hôpital de la Salpêtrière CNRS UPR640 - LENA

More information

Direct Matrix Factorization and Alignment Refinement: Application to Defect Detection

Direct Matrix Factorization and Alignment Refinement: Application to Defect Detection Direct Matrix Factorization and Alignment Refinement: Application to Defect Detection Zhen Qin (University of California, Riverside) Peter van Beek & Xu Chen (SHARP Labs of America, Camas, WA) 2015/8/30

More information

Biomagnetic inverse problems:

Biomagnetic inverse problems: Biomagnetic inverse problems: Magnetic resonance electrical property tomography (MREPT) and magnetoencephalography (MEG) 2018 Aug. 16 The University of Tokyo Takaaki Nara 1 Contents Measurement What is

More information

Image Processing. Image Features

Image Processing. Image Features Image Processing Image Features Preliminaries 2 What are Image Features? Anything. What they are used for? Some statements about image fragments (patches) recognition Search for similar patches matching

More information

Chapter 4 Face Recognition Using Orthogonal Transforms

Chapter 4 Face Recognition Using Orthogonal Transforms Chapter 4 Face Recognition Using Orthogonal Transforms Face recognition as a means of identification and authentication is becoming more reasonable with frequent research contributions in the area. In

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Structure Computation Lecture 18 March 22, 2005 2 3D Reconstruction The goal of 3D reconstruction

More information

Nested Arrays: A Novel Approach to Array Processing with Enhanced Degrees of Freedom

Nested Arrays: A Novel Approach to Array Processing with Enhanced Degrees of Freedom Nested Arrays: A Novel Approach to Array Processing with Enhanced Degrees of Freedom Xiangfeng Wang OSPAC May 7, 2013 Reference Reference Pal Piya, and P. P. Vaidyanathan. Nested arrays: a novel approach

More information

Theoretical Concepts of Machine Learning

Theoretical Concepts of Machine Learning Theoretical Concepts of Machine Learning Part 2 Institute of Bioinformatics Johannes Kepler University, Linz, Austria Outline 1 Introduction 2 Generalization Error 3 Maximum Likelihood 4 Noise Models 5

More information

Source Reconstruction in MEG & EEG

Source Reconstruction in MEG & EEG Source Reconstruction in MEG & EEG ~ From Brain-Waves to Neural Sources ~ Workshop Karolinska Institutet June 16 th 2017 Program for today Intro Overview of a source reconstruction pipeline Overview of

More information

CSC 411 Lecture 18: Matrix Factorizations

CSC 411 Lecture 18: Matrix Factorizations CSC 411 Lecture 18: Matrix Factorizations Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 18-Matrix Factorizations 1 / 27 Overview Recall PCA: project data

More information

An Efficient Jacobi-Like Deflationary ICA Algorithm: Application to EEG Denoising

An Efficient Jacobi-Like Deflationary ICA Algorithm: Application to EEG Denoising 1198 IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 8, AUGUST 2015 An Efficient Jacobi-Like Deflationary ICA Algorithm: Application to EEG Denoising Sepideh Hajipour Sardouie, Student Member, IEEE, Laurent

More information

Estimating the wavelength composition of scene illumination from image data is an

Estimating the wavelength composition of scene illumination from image data is an Chapter 3 The Principle and Improvement for AWB in DSC 3.1 Introduction Estimating the wavelength composition of scene illumination from image data is an important topics in color engineering. Solutions

More information

Adaptive radar sensing strategies

Adaptive radar sensing strategies Adaptive radar sensing strategies A.Hero Univ. of Michigan Ann Arbor 1st Year Review, AFRL, 09/07 AFOSR MURI Integrated fusion, performance prediction, and sensor management for ATE (PI: R. Moses) Outline

More information

Last time... Coryn Bailer-Jones. check and if appropriate remove outliers, errors etc. linear regression

Last time... Coryn Bailer-Jones. check and if appropriate remove outliers, errors etc. linear regression Machine learning, pattern recognition and statistical data modelling Lecture 3. Linear Methods (part 1) Coryn Bailer-Jones Last time... curse of dimensionality local methods quickly become nonlocal as

More information

CALCULATING RANKS, NULL SPACES AND PSEUDOINVERSE SOLUTIONS FOR SPARSE MATRICES USING SPQR

CALCULATING RANKS, NULL SPACES AND PSEUDOINVERSE SOLUTIONS FOR SPARSE MATRICES USING SPQR CALCULATING RANKS, NULL SPACES AND PSEUDOINVERSE SOLUTIONS FOR SPARSE MATRICES USING SPQR Leslie Foster Department of Mathematics, San Jose State University October 28, 2009, SIAM LA 09 DEPARTMENT OF MATHEMATICS,

More information

Convolution Product. Change of wave shape as a result of passing through a linear filter

Convolution Product. Change of wave shape as a result of passing through a linear filter Convolution Product Change of wave shape as a result of passing through a linear filter e(t): entry signal (source signal) r(t): impulse response (reflectivity of medium) (a) The spikes are sufficiently

More information

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING SECOND EDITION IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING ith Algorithms for ENVI/IDL Morton J. Canty с*' Q\ CRC Press Taylor &. Francis Group Boca Raton London New York CRC

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

A low rank based seismic data interpolation via frequencypatches transform and low rank space projection

A low rank based seismic data interpolation via frequencypatches transform and low rank space projection A low rank based seismic data interpolation via frequencypatches transform and low rank space projection Zhengsheng Yao, Mike Galbraith and Randy Kolesar Schlumberger Summary We propose a new algorithm

More information

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos Machine Learning for Computer Vision 1 22 October, 2012 MVA ENS Cachan Lecture 5: Introduction to generative models Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Center for Visual Computing Ecole Centrale Paris

More information

Applied Neuroscience. Columbia Science Honors Program Fall Machine Learning and Neural Networks

Applied Neuroscience. Columbia Science Honors Program Fall Machine Learning and Neural Networks Applied Neuroscience Columbia Science Honors Program Fall 2016 Machine Learning and Neural Networks Machine Learning and Neural Networks Objective: Introduction to Machine Learning Agenda: 1. JavaScript

More information

Factorization with Missing and Noisy Data

Factorization with Missing and Noisy Data Factorization with Missing and Noisy Data Carme Julià, Angel Sappa, Felipe Lumbreras, Joan Serrat, and Antonio López Computer Vision Center and Computer Science Department, Universitat Autònoma de Barcelona,

More information

Learning-based Neuroimage Registration

Learning-based Neuroimage Registration Learning-based Neuroimage Registration Leonid Teverovskiy and Yanxi Liu 1 October 2004 CMU-CALD-04-108, CMU-RI-TR-04-59 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract

More information

On Sparse Bayesian Learning (SBL) and Iterative Adaptive Approach (IAA)

On Sparse Bayesian Learning (SBL) and Iterative Adaptive Approach (IAA) On Sparse Bayesian Learning (SBL) and Iterative Adaptive Approach (IAA) Jian Li and Xing Tan Dept. of Electrical and Computer Eng. University of Florida Gainesville, Florida 32611 1 Outline Sparse Signal

More information

Multiple comparisons problem and solutions

Multiple comparisons problem and solutions Multiple comparisons problem and solutions James M. Kilner http://sites.google.com/site/kilnerlab/home What is the multiple comparisons problem How can it be avoided Ways to correct for the multiple comparisons

More information

TERM PAPER ON The Compressive Sensing Based on Biorthogonal Wavelet Basis

TERM PAPER ON The Compressive Sensing Based on Biorthogonal Wavelet Basis TERM PAPER ON The Compressive Sensing Based on Biorthogonal Wavelet Basis Submitted By: Amrita Mishra 11104163 Manoj C 11104059 Under the Guidance of Dr. Sumana Gupta Professor Department of Electrical

More information

3.5 Filtering with the 2D Fourier Transform Basic Low Pass and High Pass Filtering using 2D DFT Other Low Pass Filters

3.5 Filtering with the 2D Fourier Transform Basic Low Pass and High Pass Filtering using 2D DFT Other Low Pass Filters Contents Part I Decomposition and Recovery. Images 1 Filter Banks... 3 1.1 Introduction... 3 1.2 Filter Banks and Multirate Systems... 4 1.2.1 Discrete Fourier Transforms... 5 1.2.2 Modulated Filter Banks...

More information

WEIGHTED L1 AND L2 NORMS FOR IMAGE RECONSTRUCTION: FIRST CLINICAL RESULTS OF EIT LUNG VENTILATION DATA

WEIGHTED L1 AND L2 NORMS FOR IMAGE RECONSTRUCTION: FIRST CLINICAL RESULTS OF EIT LUNG VENTILATION DATA WEIGHTED L1 AND L2 NORMS FOR IMAGE RECONSTRUCTION: FIRST CLINICAL RESULTS OF EIT LUNG VENTILATION DATA PRESENTER: PEYMAN RAHMATI, PHD CANDIDATE, Biomedical Eng., Dept. of Systems and Computer Eng., Carleton

More information

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Lincoln Laboratory ASAP-2001 Workshop Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Shawn Kraut and Jeffrey Krolik Duke University Department of Electrical and Computer

More information

Wavelet Applications. Texture analysis&synthesis. Gloria Menegaz 1

Wavelet Applications. Texture analysis&synthesis. Gloria Menegaz 1 Wavelet Applications Texture analysis&synthesis Gloria Menegaz 1 Wavelet based IP Compression and Coding The good approximation properties of wavelets allow to represent reasonably smooth signals with

More information