Information Coding. Content

Size: px
Start display at page:

Download "Information Coding. Content"

Transcription

1 Information Coding Lionel Morel Computer Science and Information Technology - INSA Lyon Automne 2016 AC - Coding Automne / 35 Introduction Content 1 Introduction 2 Natural Numbers in base 2 3 Conversion 4 5 Notations and Other Interpretations AC - Coding Automne / 35

2 Introduction Where are we? AC - Coding Automne / 35 Introduction Where are we? Programmers usually manipulate numbers (Relative Numbers, Reals, etc) Machines only understand binary We need to make the link between the two. AC - Coding Automne / 35

3 Introduction Bit vectors Basic information: the bit {0, 1} (for binary digit) Example of word: We work with finite words! l is the number of bits: in practice l = 8 n n is the number of bytes (octets in french) When programming (on a 32 or 64 bits machine): n = 1 is called a byte n = 2 is called a short n = 4 is called an int (or float if it represents a pseudo-real number) n = 8 is called long long (or double for a pseudo-real) Beware, these are naming conventions only!!! So, always make sure you know what you are talking about! AC - Coding Automne / 35 Introduction (Parenthesis: good language design) 1 Consider the names chosen for the numeric types in C: char (the 8-bit integer) is an abbreviated noun (character) from typography unsigned char??? AB you can add two char int is an abbreviated noun (integer) from mathematics although = short and long are adjectives float is a verb, at least it is a computer term double means double what? long double is not even syntactically correct in english After so much nonsense, if you re lost, it is not your fault 1 courtesy of F. de Dinechin AC - Coding Automne / 35

4 Natural Numbers in base 2 Content 1 Introduction 2 Natural Numbers in base 2 3 Conversion 4 5 Notations and Other Interpretations AC - Coding Automne / 35 Natural Numbers in base 2 Natural numbers in base 2 (Unsigned integers) Let x be a vector of n bits: x n 1, x n 2,, x 1, x 0, with x i 0, 1 (in base 2). We interpret the value of x as a natural number: x = n 1 i=0 x i 2 i 2 n different values can be represented: : 0 x 2 n 1 see the poly for a generalization to base β > 1 AC - Coding Automne / 35

5 Natural Numbers in base 2 Blackboard examples AC - Coding Automne / 35 Natural Numbers in base 2 LSB: Least Significant Bit (Byte) LSBit is the bit position in a binary integer giving the units value, that is, determining whether the number is even or odd 2. LSByte is the byte in that position of a multi-byte number which has the least potential value. 2 AC - Coding Automne / 35

6 Natural Numbers in base 2 MSB: Most Significant Bit (Byte) MSBit is the bit position in a binary number having the greatest value 3. MSByte is the byte (or octet) in that position of a multi-byte number which has the greatest potential value. 3 AC - Coding Automne / 35 Natural Numbers in base 2 Some notations and convenient values We write: (x n 1, x n 2,..., x 1, x 0 ) β when writing x in base β. eg: (101) 2 = (5) 10 (1010) 2 = (10) 10 for n = 8: max: 2 n 1 = different values for n = 16: max: 2 n 1 = different values AC - Coding Automne / 35

7 Conversion Content 1 Introduction 2 Natural Numbers in base 2 3 Conversion 4 5 Notations and Other Interpretations AC - Coding Automne / 35 Conversion Binary Decimal Conversion Any number p N can be represented in a unique positional form in base 2, using n bits: (x n 1 x n 2 x 1 x 0 ) β := n 1 i=0 x i 2 i. NB: bits are numbered from 0 to n 1 AC - Coding Automne / 35

8 Conversion Blackboard examples AC - Coding Automne / 35 Conversion Binary Decimal Conversion The remainder of the euclidean division of x by 2 gives the right-most digit of its representation in base 2: x = x n 1 2 n 1 + x n 2 2 n x x x 0 = ( x n 1 2 n 2 + x p 2 2 n x ) + x x }{{}}{{} 0 quotient remainder so, x 0 = n mod 2. We get all the digits of the binary representation of a natural number n by applying euclidean divisions to the successive quotients until we reach 0 as a quotient. NB: This gives least-significant bits first! Again, see poly for a generalization to any base β > 1 AC - Coding Automne / 35

9 Conversion Binary Decimal Conversion - example To Convert n = (423) 10 to binary, we 423 = = = = = = = = = From this we deduce that: (423) 10 = ( ) 2 AC - Coding Automne / 35 Conversion Blackboard examples AC - Coding Automne / 35

10 Conversion Intermission AC - Coding Automne / 35 Content 1 Introduction 2 Natural Numbers in base 2 3 Conversion 4 5 Notations and Other Interpretations AC - Coding Automne / 35

11 2 ways of representing x : 1 bit for the sign, the rest for x x n 1 = { 0 if x 0, 1 if x < 0. and (x n 2, x n 3,..., x 1, x 0 ) = x Simple to understand 2 writings for 0 hardware implementation unsigned integers Two s complement Less easy to understand numbering and hardware implementation is unchanged Used in 99.9% of digital circuits AC - Coding Automne / 35 Two s complement - intuition AC - Coding Automne / 35

12 Two s Complement - intuition credit: Benoît Lopez AC - Coding Automne / 35 2 s Complement Let x be a vector of n bits: x n 1, x n 2,, x 1, x 0, with x i 0, 1 The value of x interpreted as a signed integer is: x = x n 1 2 n 1 + n 2 i=0 x i 2 i. AC - Coding Automne / 35

13 Blackboard examples AC - Coding Automne / 35 2 s Complement The complement of a bit a {0, 1} is: a = { 1, when a = 0 0, when a = 1 if x = x n 1, x n 2,, x 1, x 0 then x = (x n 1, x n 2,, x 1, x 0 ) + 1 AC - Coding Automne / 35

14 Blackboard examples AC - Coding Automne / 35 Sign Extension How do we assign a n-bits vector to an m-bits vector? n > m, truncate lose most significant bits n < m, requires a sign extension Consider (x n 1, x n 2,..., x 1, x 0 ). Let s write it as (y m 1, y m 2,..., yn, y n 1, y n 2,..., y 1, y 0 ). The value of x is preserved if we take: y m 1 = x n 1, y m 2 = x n 1,..., y n = x n 1, y n 1 = x n 1, y n 2 = x n 2,..., y 1 = x 1, y 0 = x 0 AC - Coding Automne / 35

15 Notations and Other Interpretations Content 1 Introduction 2 Natural Numbers in base 2 3 Conversion 4 5 Notations and Other Interpretations AC - Coding Automne / 35 Notations and Other Interpretations Useful notations Reading binary is a misery! In practice, we often use hexadecimal: binary hexa decimal binary hexa decimal A B C D E F 15 Max values: on 1 byte: FF on 2 bytes: FFFF on 3 bytes: FFFFFF on 4 bytes: FFFFFFFF Useful Notation: 0x... AC - Coding Automne / 35

16 Notations and Other Interpretations Other interpretation of bit vectors Bit fields, indicators, booleans,... Characters/symbols: encodings such as ASCII or ISO or UTF-8. Useful for writing human-readable messages Encoded/compressed data (bzip,... ), music (mp3, ogg,...), video (mpeg2, h264,...) Encrypted data Instructions = programs in their final form (that which is interpreted by HW). All this necessitates interpreting these bit vectors! AC - Coding Automne / 35 Notations and Other Interpretations Bit field AC - Coding Automne / 35

17 Notations and Other Interpretations Character encoding UTF-8 AC - Coding Automne / 35 Notations and Other Interpretations Program Instructions AC - Coding Automne / 35

18 Notations and Other Interpretations La prochaine fois (je ne vous le chanterai pas...) Combinatorial Logic and Circuits!! ie, how can we treat the information that we encode as bits. AC - Coding Automne / 35

Content. Information Coding. Where are we? Where are we? Bit vectors (aka Words )

Content. Information Coding. Where are we? Where are we? Bit vectors (aka Words ) Information Coding Lecturer: Guillaume Beslon Original Author: Lionel Morel Computer Science and Information Technology - INSA Lyon Fall 2018 1 / 36 2 / 36 Where are we? Where are we? Programmers......

More information

World Inside a Computer is Binary

World Inside a Computer is Binary C Programming 1 Representation of int data World Inside a Computer is Binary C Programming 2 Decimal Number System Basic symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Radix-10 positional number system. The radix

More information

Data Representation COE 301. Computer Organization Prof. Muhamed Mudawar

Data Representation COE 301. Computer Organization Prof. Muhamed Mudawar Data Representation COE 30 Computer Organization Prof. Muhamed Mudawar College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Presentation Outline Positional Number

More information

TOPICS. Other Number Systems. Other Number Systems 9/9/2017. Octal Hexadecimal Number conversion

TOPICS. Other Number Systems. Other Number Systems 9/9/2017. Octal Hexadecimal Number conversion Topic : Introduction To computers Faculty : Department of commerce and Management BY: Prof.Meeta R. Gujarathi E mail: meetargujarathi@gmail.com Octal Hexadecimal Number conversion TOPICS Other Number Systems

More information

MACHINE LEVEL REPRESENTATION OF DATA

MACHINE LEVEL REPRESENTATION OF DATA MACHINE LEVEL REPRESENTATION OF DATA CHAPTER 2 1 Objectives Understand how integers and fractional numbers are represented in binary Explore the relationship between decimal number system and number systems

More information

COMP2611: Computer Organization. Data Representation

COMP2611: Computer Organization. Data Representation COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How

More information

ECOM 2325 Computer Organization and Assembly Language. Instructor: Ruba A.Salamah INTRODUCTION

ECOM 2325 Computer Organization and Assembly Language. Instructor: Ruba A.Salamah INTRODUCTION ECOM 2325 Computer Organization and Assembly Language Instructor: Ruba A.Salamah INTRODUCTION Overview Welcome to ECOM 2325 Assembly-, Machine-, and High-Level Languages Assembly Language Programming Tools

More information

Number Systems. TA: Mamun. References: Lecture notes of Introduction to Information Technologies (ITEC 1011) by Dr Scott MacKenzie

Number Systems. TA: Mamun. References: Lecture notes of Introduction to Information Technologies (ITEC 1011) by Dr Scott MacKenzie Number Systems TA: Mamun References: Lecture notes of Introduction to Information Technologies (ITEC 1011) by Dr Scott MacKenzie Common Number Systems System Base Symbols Decimal 10 0, 1, 9 Binary 2 0,

More information

Number System. Introduction. Decimal Numbers

Number System. Introduction. Decimal Numbers Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

More information

Review of Data Representation & Binary Operations Dhananjai M. Rao CSA Department Miami University

Review of Data Representation & Binary Operations Dhananjai M. Rao CSA Department Miami University Review of Data Representation & Binary Operations Dhananjai M. Rao () CSA Department Miami University 1. Introduction In digital computers all data including numbers, characters, and strings are ultimately

More information

BINARY SYSTEM. Binary system is used in digital systems because it is:

BINARY SYSTEM. Binary system is used in digital systems because it is: CHAPTER 2 CHAPTER CONTENTS 2.1 Binary System 2.2 Binary Arithmetic Operation 2.3 Signed & Unsigned Numbers 2.4 Arithmetic Operations of Signed Numbers 2.5 Hexadecimal Number System 2.6 Octal Number System

More information

Computer Architecture and System Software Lecture 02: Overview of Computer Systems & Start of Chapter 2

Computer Architecture and System Software Lecture 02: Overview of Computer Systems & Start of Chapter 2 Computer Architecture and System Software Lecture 02: Overview of Computer Systems & Start of Chapter 2 Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Website is up

More information

Digital Logic. The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer.

Digital Logic. The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. Digital Logic 1 Data Representations 1.1 The Binary System The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. The system we

More information

Chapter 3. Fundamental Data Types

Chapter 3. Fundamental Data Types Chapter 3. Fundamental Data Types Byoung-Tak Zhang TA: Hanock Kwak Biointelligence Laboratory School of Computer Science and Engineering Seoul National Univertisy http://bi.snu.ac.kr Variable Declaration

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 22 121115 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Binary Number Representation Binary Arithmetic Combinatorial Logic

More information

DATA REPRESENTATION. By- Neha Tyagi PGT CS KV 5 Jaipur II Shift, Jaipur Region. Based on CBSE curriculum Class 11. Neha Tyagi, KV 5 Jaipur II Shift

DATA REPRESENTATION. By- Neha Tyagi PGT CS KV 5 Jaipur II Shift, Jaipur Region. Based on CBSE curriculum Class 11. Neha Tyagi, KV 5 Jaipur II Shift DATA REPRESENTATION Based on CBSE curriculum Class 11 By- Neha Tyagi PGT CS KV 5 Jaipur II Shift, Jaipur Region Neha Tyagi, KV 5 Jaipur II Shift Introduction As we know that computer system stores any

More information

Number Systems CHAPTER Positional Number Systems

Number Systems CHAPTER Positional Number Systems CHAPTER 2 Number Systems Inside computers, information is encoded as patterns of bits because it is easy to construct electronic circuits that exhibit the two alternative states, 0 and 1. The meaning of

More information

CIS 110: Introduction to Computer Programming

CIS 110: Introduction to Computer Programming CIS 110: Introduction to Computer Programming Lecture 3 Express Yourself ( 2.1) 9/16/2011 CIS 110 (11fa) - University of Pennsylvania 1 Outline 1. Data representation and types 2. Expressions 9/16/2011

More information

CMPE223/CMSE222 Digital Logic Design. Positional representation

CMPE223/CMSE222 Digital Logic Design. Positional representation CMPE223/CMSE222 Digital Logic Design Number Representation and Arithmetic Circuits: Number Representation and Unsigned Addition Positional representation First consider integers Begin with positive only

More information

1.1. INTRODUCTION 1.2. NUMBER SYSTEMS

1.1. INTRODUCTION 1.2. NUMBER SYSTEMS Chapter 1. 1.1. INTRODUCTION Digital computers have brought about the information age that we live in today. Computers are important tools because they can locate and process enormous amounts of information

More information

Outline. What Digit? => Number System. Decimal (base 10) Significant Digits. Lect 03 Number System, Gates, Boolean Algebra. CS221: Digital Design

Outline. What Digit? => Number System. Decimal (base 10) Significant Digits. Lect 03 Number System, Gates, Boolean Algebra. CS221: Digital Design Lect 3 Number System, Gates, Boolean Algebra CS22: Digital Design Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati Outline Number System Decimal, Binary, Octal, Hex Conversions

More information

UNIT 7A Data Representation: Numbers and Text. Digital Data

UNIT 7A Data Representation: Numbers and Text. Digital Data UNIT 7A Data Representation: Numbers and Text 1 Digital Data 10010101011110101010110101001110 What does this binary sequence represent? It could be: an integer a floating point number text encoded with

More information

Chapter 1. Data Storage Pearson Addison-Wesley. All rights reserved

Chapter 1. Data Storage Pearson Addison-Wesley. All rights reserved Chapter 1 Data Storage 2007 Pearson Addison-Wesley. All rights reserved Chapter 1: Data Storage 1.1 Bits and Their Storage 1.2 Main Memory 1.3 Mass Storage 1.4 Representing Information as Bit Patterns

More information

IT 1204 Section 2.0. Data Representation and Arithmetic. 2009, University of Colombo School of Computing 1

IT 1204 Section 2.0. Data Representation and Arithmetic. 2009, University of Colombo School of Computing 1 IT 1204 Section 2.0 Data Representation and Arithmetic 2009, University of Colombo School of Computing 1 What is Analog and Digital The interpretation of an analog signal would correspond to a signal whose

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 261: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed14 http://bu.edu.eg/staff/ahmedshalaby14# Slide 1 Slide 2 Slide 3 Digital Fundamentals CHAPTER

More information

Objectives. Connecting with Computer Science 2

Objectives. Connecting with Computer Science 2 Objectives Learn why numbering systems are important to understand Refresh your knowledge of powers of numbers Learn how numbering systems are used to count Understand the significance of positional value

More information

Introduction to Computers and Programming. Numeric Values

Introduction to Computers and Programming. Numeric Values Introduction to Computers and Programming Prof. I. K. Lundqvist Lecture 5 Reading: B pp. 47-71 Sept 1 003 Numeric Values Storing the value of 5 10 using ASCII: 00110010 00110101 Binary notation: 00000000

More information

COMP Overview of Tutorial #2

COMP Overview of Tutorial #2 COMP 1402 Winter 2008 Tutorial #2 Overview of Tutorial #2 Number representation basics Binary conversions Octal conversions Hexadecimal conversions Signed numbers (signed magnitude, one s and two s complement,

More information

Arithmetic Processing

Arithmetic Processing CS/EE 5830/6830 VLSI ARCHITECTURE Chapter 1 Basic Number Representations and Arithmetic Algorithms Arithmetic Processing AP = (operands, operation, results, conditions, singularities) Operands are: Set

More information

Positional notation Ch Conversions between Decimal and Binary. /continued. Binary to Decimal

Positional notation Ch Conversions between Decimal and Binary. /continued. Binary to Decimal Positional notation Ch.. /continued Conversions between Decimal and Binary Binary to Decimal - use the definition of a number in a positional number system with base - evaluate the definition formula using

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd Chapter 2 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved Decimal Numbers The position of each digit in a weighted

More information

Digital Logic Lecture 2 Number Systems

Digital Logic Lecture 2 Number Systems Digital Logic Lecture 2 Number Systems By Ghada Al-Mashaqbeh The Hashemite University Computer Engineering Department Outline Introduction. Basic definitions. Number systems types. Conversion between different

More information

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS Aleksandar Milenković The LaCASA Laboratory, ECE Department, The University of Alabama in Huntsville Email: milenka@uah.edu Web:

More information

Slide Set 1. for ENEL 339 Fall 2014 Lecture Section 02. Steve Norman, PhD, PEng

Slide Set 1. for ENEL 339 Fall 2014 Lecture Section 02. Steve Norman, PhD, PEng Slide Set 1 for ENEL 339 Fall 2014 Lecture Section 02 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 2014 ENEL 353 F14 Section

More information

Number representations

Number representations Number representations Number bases Three number bases are of interest: Binary, Octal and Hexadecimal. We look briefly at conversions among them and between each of them and decimal. Binary Base-two, or

More information

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS Aleksandar Milenković The LaCASA Laboratory, ECE Department, The University of Alabama in Huntsville Email: milenka@uah.edu Web:

More information

Bits, Words, and Integers

Bits, Words, and Integers Computer Science 52 Bits, Words, and Integers Spring Semester, 2017 In this document, we look at how bits are organized into meaningful data. In particular, we will see the details of how integers are

More information

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 1: Basic Concepts. Chapter Overview. Welcome to Assembly Language

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 1: Basic Concepts. Chapter Overview. Welcome to Assembly Language Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 1: Basic Concepts Slides prepared by Kip R. Irvine Revision date: 09/15/2002 Chapter corrections (Web) Printing a slide show

More information

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-1 CHAPTER V CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-2 NUMBER SYSTEMS RADIX-R REPRESENTATION Decimal number expansion 73625 10 = ( 7 10 4 ) + ( 3 10 3 ) + ( 6 10 2 ) + ( 2 10 1 ) +(

More information

Moodle WILLINGDON COLLEGE SANGLI. ELECTRONICS (B. Sc.-I) Introduction to Number System

Moodle WILLINGDON COLLEGE SANGLI. ELECTRONICS (B. Sc.-I) Introduction to Number System Moodle 1 WILLINGDON COLLEGE SANGLI ELECTRONICS (B. Sc.-I) Introduction to Number System E L E C T R O N I C S Introduction to Number System and Codes Moodle developed By Dr. S. R. Kumbhar Department of

More information

Decimal & Binary Representation Systems. Decimal & Binary Representation Systems

Decimal & Binary Representation Systems. Decimal & Binary Representation Systems Decimal & Binary Representation Systems Decimal & binary are positional representation systems each position has a value: d*base i for example: 321 10 = 3*10 2 + 2*10 1 + 1*10 0 for example: 101000001

More information

Chapter 3: Operators, Expressions and Type Conversion

Chapter 3: Operators, Expressions and Type Conversion 101 Chapter 3 Operators, Expressions and Type Conversion Chapter 3: Operators, Expressions and Type Conversion Objectives To use basic arithmetic operators. To use increment and decrement operators. To

More information

CS 31: Intro to Systems Binary Representation. Kevin Webb Swarthmore College January 27, 2015

CS 31: Intro to Systems Binary Representation. Kevin Webb Swarthmore College January 27, 2015 CS 3: Intro to Systems Binary Representation Kevin Webb Swarthmore College January 27, 25 Reading Quiz Abstraction User / Programmer Wants low complexity Applications Specific functionality Software library

More information

SIGNED AND UNSIGNED SYSTEMS

SIGNED AND UNSIGNED SYSTEMS EE 357 Unit 1 Fixed Point Systems and Arithmetic Learning Objectives Understand the size and systems used by the underlying HW when a variable is declared in a SW program Understand and be able to find

More information

Numbering systems. Dr Abu Arqoub

Numbering systems. Dr Abu Arqoub Numbering systems The decimal numbering system is widely used, because the people Accustomed (معتاد) to use the hand fingers in their counting. But with the development of the computer science another

More information

DRAM uses a single capacitor to store and a transistor to select. SRAM typically uses 6 transistors.

DRAM uses a single capacitor to store and a transistor to select. SRAM typically uses 6 transistors. Data Representation Data Representation Goal: Store numbers, characters, sets, database records in the computer. What we got: Circuit that stores 2 voltages, one for logic 0 (0 volts) and one for logic

More information

DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 1 DLD P VIDYA SAGAR

DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 1 DLD P VIDYA SAGAR UNIT I Digital Systems: Binary Numbers, Octal, Hexa Decimal and other base numbers, Number base conversions, complements, signed binary numbers, Floating point number representation, binary codes, error

More information

Goals for this Week. CSC 2400: Computer Systems. Bits, Bytes and Data Types. Binary number system. Finite representations of binary integers

Goals for this Week. CSC 2400: Computer Systems. Bits, Bytes and Data Types. Binary number system. Finite representations of binary integers CSC 2400: Computer Systems Bits, Bytes and Data Types 1 Goals for this Week Binary number system Why binary? Converting between decimal and binary and octal and hexadecimal number systems Finite representations

More information

Integers. N = sum (b i * 2 i ) where b i = 0 or 1. This is called unsigned binary representation. i = 31. i = 0

Integers. N = sum (b i * 2 i ) where b i = 0 or 1. This is called unsigned binary representation. i = 31. i = 0 Integers So far, we've seen how to convert numbers between bases. How do we represent particular kinds of data in a certain (32-bit) architecture? We will consider integers floating point characters What

More information

CS107, Lecture 3 Bits and Bytes; Bitwise Operators

CS107, Lecture 3 Bits and Bytes; Bitwise Operators CS107, Lecture 3 Bits and Bytes; Bitwise Operators reading: Bryant & O Hallaron, Ch. 2.1 This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution

More information

Bits, Bytes, and Integers Part 2

Bits, Bytes, and Integers Part 2 Bits, Bytes, and Integers Part 2 15-213: Introduction to Computer Systems 3 rd Lecture, Jan. 23, 2018 Instructors: Franz Franchetti, Seth Copen Goldstein, Brian Railing 1 First Assignment: Data Lab Due:

More information

MC1601 Computer Organization

MC1601 Computer Organization MC1601 Computer Organization Unit 1 : Digital Fundamentals Lesson1 : Number Systems and Conversions (KSB) (MCA) (2009-12/ODD) (2009-10/1 A&B) Coverage - Lesson1 Shows how various data types found in digital

More information

Basic operators, Arithmetic, Relational, Bitwise, Logical, Assignment, Conditional operators. JAVA Standard Edition

Basic operators, Arithmetic, Relational, Bitwise, Logical, Assignment, Conditional operators. JAVA Standard Edition Basic operators, Arithmetic, Relational, Bitwise, Logical, Assignment, Conditional operators JAVA Standard Edition Java - Basic Operators Java provides a rich set of operators to manipulate variables.

More information

Octal & Hexadecimal Number Systems. Digital Electronics

Octal & Hexadecimal Number Systems. Digital Electronics Octal & Hexadecimal Number Systems Digital Electronics What, More Number Systems? Why do we need more number systems? Humans understand decimal Check out my ten digits! Digital electronics (computers)

More information

Review for COSC 120 8/31/2017. Review for COSC 120 Computer Systems. Review for COSC 120 Computer Structure

Review for COSC 120 8/31/2017. Review for COSC 120 Computer Systems. Review for COSC 120 Computer Structure Computer Systems Computer System Computer Structure C++ Environment Imperative vs. object-oriented programming in C++ Input / Output Primitive data types Software Banking System Compiler Music Player Text

More information

Bits and Bit Patterns

Bits and Bit Patterns Bits and Bit Patterns Bit: Binary Digit (0 or 1) Bit Patterns are used to represent information. Numbers Text characters Images Sound And others 0-1 Boolean Operations Boolean Operation: An operation that

More information

Computer Sc. & IT. Digital Logic. Computer Sciencee & Information Technology. 20 Rank under AIR 100. Postal Correspondence

Computer Sc. & IT. Digital Logic. Computer Sciencee & Information Technology. 20 Rank under AIR 100. Postal Correspondence GATE Postal Correspondence Computer Sc. & IT 1 Digital Logic Computer Sciencee & Information Technology (CS) 20 Rank under AIR 100 Postal Correspondence Examination Oriented Theory, Practice Set Key concepts,

More information

M1 Computers and Data

M1 Computers and Data M1 Computers and Data Module Outline Architecture vs. Organization. Computer system and its submodules. Concept of frequency. Processor performance equation. Representation of information characters, signed

More information

Inf2C - Computer Systems Lecture 2 Data Representation

Inf2C - Computer Systems Lecture 2 Data Representation Inf2C - Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack

More information

Lecture 12 Integers. Computer and Network Security 19th of December Computer Science and Engineering Department

Lecture 12 Integers. Computer and Network Security 19th of December Computer Science and Engineering Department Lecture 12 Integers Computer and Network Security 19th of December 2016 Computer Science and Engineering Department CSE Dep, ACS, UPB Lecture 12, Integers 1/40 Outline Data Types Representation Conversions

More information

Exercise: Using Numbers

Exercise: Using Numbers Exercise: Using Numbers Problem: You are a spy going into an evil party to find the super-secret code phrase (made up of letters and spaces), which you will immediately send via text message to your team

More information

Survey. Motivation 29.5 / 40 class is required

Survey. Motivation 29.5 / 40 class is required Survey Motivation 29.5 / 40 class is required Concerns 6 / 40 not good at examination That s why we have 3 examinations 6 / 40 this class sounds difficult 8 / 40 understand the instructor Want class to

More information

Chapter 2. Data Representation in Computer Systems

Chapter 2. Data Representation in Computer Systems Chapter 2 Data Representation in Computer Systems Chapter 2 Objectives Understand the fundamentals of numerical data representation and manipulation in digital computers. Master the skill of converting

More information

COE 202- Digital Logic. Number Systems II. Dr. Abdulaziz Y. Barnawi COE Department KFUPM. January 23, Abdulaziz Barnawi. COE 202 Logic Design

COE 202- Digital Logic. Number Systems II. Dr. Abdulaziz Y. Barnawi COE Department KFUPM. January 23, Abdulaziz Barnawi. COE 202 Logic Design 1 COE 0- Digital Logic Number Systems II Dr. Abdulaziz Y. Barnawi COE Department KFUPM COE 0 Logic Design January 3, 016 Objectives Base Conversion Decimal to other bases Binary to Octal and Hexadecimal

More information

Number Systems and Conversions UNIT 1 NUMBER SYSTEMS & CONVERSIONS. Number Systems (2/2) Number Systems (1/2) Iris Hui-Ru Jiang Spring 2010

Number Systems and Conversions UNIT 1 NUMBER SYSTEMS & CONVERSIONS. Number Systems (2/2) Number Systems (1/2) Iris Hui-Ru Jiang Spring 2010 Contents Number systems and conversion Binary arithmetic Representation of negative numbers Addition of two s complement numbers Addition of one s complement numbers Binary s Readings Unit.~. UNIT NUMBER

More information

Final Labs and Tutors

Final Labs and Tutors ICT106 Fundamentals of Computer Systems - Topic 2 REPRESENTATION AND STORAGE OF INFORMATION Reading: Linux Assembly Programming Language, Ch 2.4-2.9 and 3.6-3.8 Final Labs and Tutors Venue and time South

More information

SISTEMI EMBEDDED. Basic Concepts about Computers. Federico Baronti Last version:

SISTEMI EMBEDDED. Basic Concepts about Computers. Federico Baronti Last version: SISTEMI EMBEDDED Basic Concepts about Computers Federico Baronti Last version: 20170307 Embedded System Block Diagram Embedded Computer Embedded System Input Memory Output Sensor Sensor Sensor SENSOR CONDITIONING

More information

2.1. Unit 2. Integer Operations (Arithmetic, Overflow, Bitwise Logic, Shifting)

2.1. Unit 2. Integer Operations (Arithmetic, Overflow, Bitwise Logic, Shifting) 2.1 Unit 2 Integer Operations (Arithmetic, Overflow, Bitwise Logic, Shifting) 2.2 Skills & Outcomes You should know and be able to apply the following skills with confidence Perform addition & subtraction

More information

10.1. Unit 10. Signed Representation Systems Binary Arithmetic

10.1. Unit 10. Signed Representation Systems Binary Arithmetic 0. Unit 0 Signed Representation Systems Binary Arithmetic 0.2 BINARY REPRESENTATION SYSTEMS REVIEW 0.3 Interpreting Binary Strings Given a string of s and 0 s, you need to know the representation system

More information

CHAPTER 2 Data Representation in Computer Systems

CHAPTER 2 Data Representation in Computer Systems CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 37 2.2 Positional Numbering Systems 38 2.3 Decimal to Binary Conversions 38 2.3.1 Converting Unsigned Whole Numbers 39 2.3.2 Converting

More information

CHAPTER 2 Data Representation in Computer Systems

CHAPTER 2 Data Representation in Computer Systems CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 37 2.2 Positional Numbering Systems 38 2.3 Decimal to Binary Conversions 38 2.3.1 Converting Unsigned Whole Numbers 39 2.3.2 Converting

More information

CS 261 Fall Binary Information (convert to hex) Mike Lam, Professor

CS 261 Fall Binary Information (convert to hex) Mike Lam, Professor CS 261 Fall 2018 Mike Lam, Professor 3735928559 (convert to hex) Binary Information Binary information Topics Base conversions (bin/dec/hex) Data sizes Byte ordering Character and program encodings Bitwise

More information

Binary Representations and Arithmetic

Binary Representations and Arithmetic Binary Representations and Arithmetic 9--26 Common number systems. Base : decimal Base 2: binary Base 6: hexadecimal (memory addresses) Base 8: octal (obsolete computer systems) Base 64 (email attachments,

More information

Module 1: Information Representation I -- Number Systems

Module 1: Information Representation I -- Number Systems Unit 1: Computer Systems, pages 1 of 7 - Department of Computer and Mathematical Sciences CS 1305 Intro to Computer Technology 1 Module 1: Information Representation I -- Number Systems Objectives: Learn

More information

Computer System and programming in C

Computer System and programming in C 1 Basic Data Types Integral Types Integers are stored in various sizes. They can be signed or unsigned. Example Suppose an integer is represented by a byte (8 bits). Leftmost bit is sign bit. If the sign

More information

Basic data types. Building blocks of computation

Basic data types. Building blocks of computation Basic data types Building blocks of computation Goals By the end of this lesson you will be able to: Understand the commonly used basic data types of C++ including Characters Integers Floating-point values

More information

CS107, Lecture 3 Bits and Bytes; Bitwise Operators

CS107, Lecture 3 Bits and Bytes; Bitwise Operators CS107, Lecture 3 Bits and Bytes; Bitwise Operators reading: Bryant & O Hallaron, Ch. 2.1 This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution

More information

a- As a special case, if there is only one symbol, no bits are required to specify it.

a- As a special case, if there is only one symbol, no bits are required to specify it. Codes A single bit is useful if exactly two answers to a question are possible. Examples include the result of a coin toss (heads or tails), Most situations in life are more complicated. This chapter concerns

More information

Numbers and Computers. Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras

Numbers and Computers. Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras Numbers and Computers Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras 1 Think of a number between 1 and 15 8 9 10 11 12 13 14 15 4 5 6 7 12 13 14 15 2 3 6 7 10 11 14 15

More information

Chapter 4: Computer Codes. In this chapter you will learn about:

Chapter 4: Computer Codes. In this chapter you will learn about: Ref. Page Slide 1/30 Learning Objectives In this chapter you will learn about: Computer data Computer codes: representation of data in binary Most commonly used computer codes Collating sequence Ref. Page

More information

Fundamentals of Programming Session 2

Fundamentals of Programming Session 2 Fundamentals of Programming Session 2 Instructor: Reza Entezari-Maleki Email: entezari@ce.sharif.edu 1 Fall 2013 Sharif University of Technology Outlines Programming Language Binary numbers Addition Subtraction

More information

Jianhui Zhang, Ph.D., Associate Prof. College of Computer Science and Technology, Hangzhou Dianzi Univ.

Jianhui Zhang, Ph.D., Associate Prof. College of Computer Science and Technology, Hangzhou Dianzi Univ. Jianhui Zhang, Ph.D., Associate Prof. College of Computer Science and Technology, Hangzhou Dianzi Univ. Email: jh_zhang@hdu.edu.cn Copyright 2015 Pearson Education, Inc. Chapter 1: Data Storage Computer

More information

1.1. Unit 1. Integer Representation

1.1. Unit 1. Integer Representation 1.1 Unit 1 Integer Representation 1.2 Skills & Outcomes You should know and be able to apply the following skills with confidence Convert an unsigned binary number to and from decimal Understand the finite

More information

l l l l l l l Base 2; each digit is 0 or 1 l Each bit in place i has value 2 i l Binary representation is used in computers

l l l l l l l Base 2; each digit is 0 or 1 l Each bit in place i has value 2 i l Binary representation is used in computers 198:211 Computer Architecture Topics: Lecture 8 (W5) Fall 2012 Data representation 2.1 and 2.2 of the book Floating point 2.4 of the book Computer Architecture What do computers do? Manipulate stored information

More information

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3 Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

More information

DIGITAL SYSTEM DESIGN

DIGITAL SYSTEM DESIGN DIGITAL SYSTEM DESIGN UNIT I: Introduction to Number Systems and Boolean Algebra Digital and Analog Basic Concepts, Some history of Digital Systems-Introduction to number systems, Binary numbers, Number

More information

CS 261 Fall Mike Lam, Professor Integer Encodings

CS 261 Fall Mike Lam, Professor   Integer Encodings CS 261 Fall 2018 Mike Lam, Professor https://xkcd.com/571/ Integer Encodings Integers Topics C integer data types Unsigned encoding Signed encodings Conversions Integer data types in C99 1 byte 2 bytes

More information

Chapter 3 DATA REPRESENTATION

Chapter 3 DATA REPRESENTATION Page1 Chapter 3 DATA REPRESENTATION Digital Number Systems In digital systems like computers, the quantities are represented by symbols called digits. Many number systems are in use in digital technology

More information

Number Systems. Both numbers are positive

Number Systems. Both numbers are positive Number Systems Range of Numbers and Overflow When arithmetic operation such as Addition, Subtraction, Multiplication and Division are performed on numbers the results generated may exceed the range of

More information

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1.1 Introduction Given that digital logic and memory devices are based on two electrical states (on and off), it is natural to use a number

More information

Princeton University Computer Science 217: Introduction to Programming Systems. Goals of this Lecture. Number Systems and Number Representation

Princeton University Computer Science 217: Introduction to Programming Systems. Goals of this Lecture. Number Systems and Number Representation Princeton University Computer Science 27: Introduction to Programming Systems Goals of this Lecture and Number Representation Help you learn (or refresh your memory) about: The binary, hexadecimal, and

More information

Arithmetic Operations

Arithmetic Operations Arithmetic Operations Arithmetic Operations addition subtraction multiplication division Each of these operations on the integer representations: unsigned two's complement 1 Addition One bit of binary

More information

Data Representation. DRAM uses a single capacitor to store and a transistor to select. SRAM typically uses 6 transistors.

Data Representation. DRAM uses a single capacitor to store and a transistor to select. SRAM typically uses 6 transistors. Data Representation Data Representation Goal: Store numbers, characters, sets, database records in the computer. What we got: Circuit that stores 2 voltages, one for logic ( volts) and one for logic (3.3

More information

Digital Systems COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals

Digital Systems COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Digital Systems COE 202 Digital Logic Design Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Welcome to COE 202 Course Webpage: http://faculty.kfupm.edu.sa/coe/mudawar/coe202/ Lecture

More information

Data Storage. Slides derived from those available on the web site of the book: Computer Science: An Overview, 11 th Edition, by J.

Data Storage. Slides derived from those available on the web site of the book: Computer Science: An Overview, 11 th Edition, by J. Data Storage Slides derived from those available on the web site of the book: Computer Science: An Overview, 11 th Edition, by J. Glenn Brookshear Copyright 2012 Pearson Education, Inc. Data Storage Bits

More information

Computer Organization

Computer Organization Computer Organization Register Transfer Logic Number System Department of Computer Science Missouri University of Science & Technology hurson@mst.edu 1 Decimal Numbers: Base 10 Digits: 0, 1, 2, 3, 4, 5,

More information

Representing numbers on the computer. Computer memory/processors consist of items that exist in one of two possible states (binary states).

Representing numbers on the computer. Computer memory/processors consist of items that exist in one of two possible states (binary states). Representing numbers on the computer. Computer memory/processors consist of items that exist in one of two possible states (binary states). These states are usually labeled 0 and 1. Each item in memory

More information

Number Systems Prof. Indranil Sen Gupta Dept. of Computer Science & Engg. Indian Institute of Technology Kharagpur Number Representation

Number Systems Prof. Indranil Sen Gupta Dept. of Computer Science & Engg. Indian Institute of Technology Kharagpur Number Representation Number Systems Prof. Indranil Sen Gupta Dept. of Computer Science & Engg. Indian Institute of Technology Kharagpur 1 Number Representation 2 1 Topics to be Discussed How are numeric data items actually

More information

Appendix. Bit Operators

Appendix. Bit Operators Appendix C Bit Operations C++ operates with data entities, such as character, integer, and double-precision constants and variables, that can be stored as 1 or more bytes. In addition, C++ provides for

More information

Bits. Binary Digits. 0 or 1

Bits. Binary Digits. 0 or 1 Data Representation Bits Binary Digits 0 or 1 Everything stored in a computer is stored as bits. Bits can mean different things depending on how the software or hardware interpret the bits Bits are usually

More information