7.8. Approximate Integration

Size: px
Start display at page:

Download "7.8. Approximate Integration"

Transcription

1 7.8. Approimate Integration Recall that when we originally defined the definite integral of a function interval, that we did so with the limit of a Riemann sum: on an where is the number of intervals that is divided into,,, and is between and, for all. If is continuous for all in, then the limit eists and is defined to be. An approimation to this integral can be found by choosing a large value of and appropriate values for. If we choose to be, for all, then the Left-Hand Rule is in use. If we choose to be, for all, then we are using the Right-Hand Rule. If the value of is large, then this sum can best be evaluated using a graphing calculator, or by Maple itself. Maple can not only evaluate these sums for us, it can also provide a graphical representation. Before we get to that, we provide a short description of how Maple treats functions. If you write f() = ^, then Maple will treat this like an equation. If you write f() := ^, then this assigns the value of to, but Maple cannot evaluate. The proper way to assign a function is to use the arrow notation, which indicates that has been transformed into : f := -> ^; f(3); 9 () () Before we continue, we need to load the student package: with (Student[Calculus]); with (plots);

2 (3) Now, let's define a more interesting function for : f := -> ep(sin(*)); (4) We want to approimate the integral of this function from to. The Maple command to approimate an integral is ApproimateInt. It needs the function to integrate, a range for, the approimation technique, and the number of intervals to divide the interval into. If you want to look at the graph of and see what is actually being calculated, you can add the option output=plot. (If you leave it out, Maple will try to find an eact value for the answer.) ApproimateInt(f(), =..Pi, partition=8, method=left, output= plot);

3 An Approimation of the Integral of f() = ep(sin(*)) on the Interval [, Pi] Using a Left-endpoint Riemann Sum Area: Partitions: 8 f() Not surprisingly, if we want to use the Right-hand rule, we change the command to method=right. ApproimateInt(f(), =..Pi, partition=8, method=right, output= plot);

4 An Approimation of the Integral of f() = ep(sin(*)) on the Interval [, Pi] Using a Right-endpoint Riemann Sum Area: Partitions: 8 f() We could also choose, in which case we use method=midpoint. ApproimateInt(f(), =..Pi, partition=8, method=midpoint, output=plot);

5 An Approimation of the Integral of f() = ep(sin(*)) on the Interval [, Pi] Using a Midpoint Riemann Sum Area: Partitions: 8 f() The problem, though, is that there is no way to determine how accurate the estimates are, if the Left-Hand Rule or the Right-Hand Rule is used. The material in Section 7.7 deals with approimating integrals, and also providing bounds on the error. For instance, to evaluate to 6 decimal places, all that is needed is to choose an big enough, where determining what "big enough" is, is not too difficult. The two main approimation techniques are the Trapezoid Rule and Simpson's Rule. The Trapezoid Rule approimates using trapezoids, and the resulting formula is: To see where these trapezoids come from, use method=trapezoid. ApproimateInt(f(), =..Pi, partition=8, method=trapezoid,

6 output=plot); An Approimation of the Integral of f() = ep(sin(*)) on the Interval [, Pi] Using the Trapezoid Rule Area: Partitions: 8 f() Simpson's Rule requires that be even, and does the following: It takes the points,, and, and finds the parabola that all three of these points lie on. Then it approimates the area under the curve and between and by the area under the curve and between and. It then continues with the points,, and and does the same thing, etc. The formula which is obtained from this is: To use Simpson's Rule, we use the option method=simpson, and to see the parabolas which approimate can be seen by also including output=plot. ApproimateInt(f(), =..Pi, partition=8, method=simpson, output=plot);

7 An Approimation of the Integral of f() = ep(sin(*)) on the Interval [, Pi] Using Simpson's Rule Area: Partitions: 8 f() Now, I will go around the room and give you a value of. Substitute this value for N in the epression below. I will ask for the approimations that you get. ApproimateInt(f(), =..Pi, partition=n, method=simpson, output=plot); The approimations seem to converge, and we could probably guess the actual value, but our guess would only be a guess. There are actual error bounds for the Midpoint Rule, the Trapezoid Rule, and Simpson's Rule: If for all between and, then the errors in approimation by using the Trapezoid Rule and the Midpoint Rule are: and If for all between and, then the error in approimation by using

8 Simpson's Rule is: We will use these error bounds to approimate our integral to 6 places by using the Trapezoid Rule and Simpson's Rule, by finding bounds on the second and fourth derivatives of, then choosing big enough so thatthe error is at most, which will guarantee that we have 6 decimal places accurate. I will show you how to do this below. First, we will graph the second derivative of and see where its second derivative is the largest in absolute value. plot ((D@@)(f)(), =..Pi); 4 From the graph, it appears that for all between and, so we can let Since we want to have an error of at most, we want to have

9 . We can use Maple to find for us: solve (.8*(Pi-)^3/(4 * n^) = ^(-6), n); (5) This means we need many trapezoids:. to be at least Now we use the Trapezoid Rule with this ApproimateInt(f(), =..Pi, partition=3736, method=trapezoid, output=plot); An Approimation of the Integral of f() = ep(sin(*)) on the Interval [, Pi] Using the Trapezoid Rule Area: Partitions: 3736 f() So our integral is approimately Now we use Simpson's Rule. First, we need to find how large the fourth derivative of gets in absolute value. Again, we will plot the function: plot ((D@@4)(f)(), =..Pi);

10 5 5 It appears that we can let or so. Now we want to find out when solve ((Pi-)^5 / n^4 = ^(-6), n); evalf (%); (6) (7) using Simpson's Rule, n must be even; so we will let n=34 and get the approimation: ApproimateInt(f(), =..Pi, partition=34, method=simpson, output=plot);

11 An Approimation of the Integral of f() = ep(sin(*)) on the Interval [, Pi] Using Simpson's Rule Area: Partitions: 34 f() which matches what we got earlier.

Double Integrals. Integrals of Functions of One Variable.

Double Integrals. Integrals of Functions of One Variable. > restart:with(plots):with(plottools): > setoptions3d(aes=normal,labels=["","y","z"],orientation=[,7]); For this worksheet we need the Student package. > with(student); Calculus, LinearAlgebra, MultivariateCalculus,

More information

(ii) Use Simpson s rule with two strips to find an approximation to Use your answers to parts (i) and (ii) to show that ln 2.

(ii) Use Simpson s rule with two strips to find an approximation to Use your answers to parts (i) and (ii) to show that ln 2. C umerical Methods. June 00 qu. 6 (i) Show by calculation that the equation tan = 0, where is measured in radians, has a root between.0 and.. [] Use the iteration formula n+ = tan + n with a suitable starting

More information

Critical Numbers, Maximums, & Minimum

Critical Numbers, Maximums, & Minimum Critical Numbers, Maximums, & Minimum Caleb Adams October 23, 2014 Critical Numbers of Rational Functions Recall, to find a critical number, we first found the derivative of a function, then examined where

More information

Section 6.1 Estimating With Finite Sums

Section 6.1 Estimating With Finite Sums Suppose that a jet takes off, becomes airborne at a velocity of 180 mph and climbs to its cruising altitude. The following table gives the velocity every hour for the first 5 hours, a time during which

More information

The Limit Concept. Introduction to Limits. Definition of Limit. Example 1. Example 2. Example 3 4/7/2015

The Limit Concept. Introduction to Limits. Definition of Limit. Example 1. Example 2. Example 3 4/7/2015 4/7/015 The Limit Concept Introduction to Limits Precalculus 1.1 The notion of a it is a fundamental concept of calculus. We will learn how to evaluate its and how they are used in the two basic problems

More information

AP Calculus AB. a.) Midpoint rule with 4 subintervals b.) Trapezoid rule with 4 subintervals

AP Calculus AB. a.) Midpoint rule with 4 subintervals b.) Trapezoid rule with 4 subintervals AP Calculus AB Unit 6 Review Name: Date: Block: Section : RAM and TRAP.) Evaluate using Riemann Sums L 4, R 4 for the following on the interval 8 with four subintervals. 4.) Approimate ( )d using a.) Midpoint

More information

An Introduction to Maple This lab is adapted from a lab created by Bob Milnikel.

An Introduction to Maple This lab is adapted from a lab created by Bob Milnikel. Some quick tips for getting started with Maple: An Introduction to Maple This lab is adapted from a lab created by Bob Milnikel. [Even before we start, take note of the distinction between Tet mode and

More information

Lesson 3: Solving Equations; Floating-point Computation

Lesson 3: Solving Equations; Floating-point Computation Lesson 3: Solving Equations; Floating-point Computation restart; A hard equation Last time we were looking at this equation. eq := * sin() = Pi/2; (1.1) Maple didn't know the solutions. solve(eq,,allsolutions);

More information

4.7 Approximate Integration

4.7 Approximate Integration 4.7 Approximate Integration Some anti-derivatives are difficult to impossible to find. For example, 1 0 e x2 dx or 1 1 1 + x3 dx We came across this situation back in calculus I when we introduced the

More information

The Fundamental Theorem of Calculus Using the Rule of Three

The Fundamental Theorem of Calculus Using the Rule of Three The Fundamental Theorem of Calculus Using the Rule of Three A. Approimations with Riemann sums. The area under a curve can be approimated through the use of Riemann (or rectangular) sums: n Area f ( k

More information

C3 Integration 1. June 2010 qu. 4

C3 Integration 1. June 2010 qu. 4 C Integration. June qu. 4 k The diagram shows part of the curve y =, where k is a positive constant. The points A and B on the curve have -coordinates and 6 respectively. Lines through A and B parallel

More information

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1 PRACTICE FINAL - MATH 2, Spring 22 The Final will have more material from Chapter 4 than other chapters. To study for chapters -3 you should review the old practice eams IN ADDITION TO what appears here.

More information

4.2 and 4.6 filled in notes.notebook. December 08, Integration. Copyright Cengage Learning. All rights reserved.

4.2 and 4.6 filled in notes.notebook. December 08, Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 1 4.2 Area Copyright Cengage Learning. All rights reserved. 2 Objectives Use sigma notation to write and evaluate a sum. Understand the concept

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION The volume of a sphere is the limit of sums of volumes of approimating clinders. In this chapter we eplore some of the applications of the definite integral b using it to

More information

0.1 Numerical Integration Rules Using Maple

0.1 Numerical Integration Rules Using Maple > restart; Numerical Integration Note: While reading this worksheet make sure that you re-execute each command by placing the cursor on the command line and pressing Enter. You should do this with every

More information

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions 76 CHAPTER Graphs and Functions Find the equation of each line. Write the equation in the form = a, = b, or = m + b. For Eercises through 7, write the equation in the form f = m + b.. Through (, 6) and

More information

7.3 Simplifying Radical Expressions

7.3 Simplifying Radical Expressions 6 CHAPTER 7 Rational Eponents, Radicals, and Comple Numbers 11. = /5 -/5 1. y = -/ y/, or y Use a calculator to write a four-decimal-place approimation of each number. 1. 8 1/ 1. 0 1/5 15. 18 /5 16. 76

More information

Integrals, Partial Fractions, and Integration by Parts

Integrals, Partial Fractions, and Integration by Parts using an assignment statement. restart; f:=/(^-); We can use the eval command to evaluate f at =, for instance. eval(f,=); 6 We indicate the integral by using the Int command. This is the inert form of

More information

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows)

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows) The Bisection Method versus (Classic Version for Windows) Author: Barbara Forrest Contact: baforres@uwaterloo.ca Copyrighted/NOT FOR RESALE version 1.1 Contents 1 Objectives for this Lab i 2 Approximate

More information

EXAMPLE A {(1, 2), (2, 4), (3, 6), (4, 8)}

EXAMPLE A {(1, 2), (2, 4), (3, 6), (4, 8)} Name class date Understanding Relations and Functions A relation shows how one set of things is related to, or corresponds to, another set. For instance, the equation A 5 s shows how the area of a square

More information

0.7 Graphing Features: Value (Eval), Zoom, Trace, Maximum/Minimum, Intersect

0.7 Graphing Features: Value (Eval), Zoom, Trace, Maximum/Minimum, Intersect 0.7 Graphing Features: Value (Eval), Zoom, Trace, Maximum/Minimum, Intersect Value (TI-83 and TI-89), Eval (TI-86) The Value or Eval feature allows us to enter a specific x coordinate and the cursor moves

More information

AP Calculus BC Course Description

AP Calculus BC Course Description AP Calculus BC Course Description COURSE OUTLINE: The following topics define the AP Calculus BC course as it is taught over three trimesters, each consisting of twelve week grading periods. Limits and

More information

1) Complete problems 1-65 on pages You are encouraged to use the space provided.

1) Complete problems 1-65 on pages You are encouraged to use the space provided. Dear Accelerated Pre-Calculus Student (017-018), I am excited to have you enrolled in our class for next year! We will learn a lot of material and do so in a fairly short amount of time. This class will

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technolog c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

MACM 204 Makeup Assignment - Practice Final.

MACM 204 Makeup Assignment - Practice Final. MACM 204 Makeup Assignment - Practice Final. Fall 2017 Michael Monagan. You do not have to do this assignment. It is meant to be a practice assignment, a warm up for the final exam. However, if you got

More information

But a vertex has two coordinates, an x and a y coordinate. So how would you find the corresponding y-value?

But a vertex has two coordinates, an x and a y coordinate. So how would you find the corresponding y-value? We will work with the vertex, orientation, and x- and y-intercepts of these functions. Intermediate algebra Class notes More Graphs of Quadratic Functions (section 11.6) In the previous section, we investigated

More information

Instructor: Virginia Davis Course: Foundations for College Math (1)

Instructor: Virginia Davis Course: Foundations for College Math (1) 5/19/01 Final Eam Review Ch 10,11-Virginia Davis Student: Date: Instructor: Virginia Davis Course: Foundations for College Math (1) Assignment: Final Eam Review Ch 10,11 1. Simplif b factoring. Assume

More information

Beecher J.A, Penna J.A., Bittinger M.L. Algebra and Trigonometry (3ed, Addison Wesley, 2007) 58 Chapter 1 Graphs, Functions, and Models

Beecher J.A, Penna J.A., Bittinger M.L. Algebra and Trigonometry (3ed, Addison Wesley, 2007) 58 Chapter 1 Graphs, Functions, and Models Beecher J.A, Penna J.A., Bittinger M.L. Algebra and Trigonometr (ed, Addison Wesle, 007) 8 Chapter Graphs, Functions, and Models.. Introduction Polnomial to Functions Graphing and Modeling Plot points.

More information

Lesson/Unit Plan Name: Comparing Linear and Quadratic Functions. Timeframe: 50 minutes + up to 60 minute assessment/extension activity

Lesson/Unit Plan Name: Comparing Linear and Quadratic Functions. Timeframe: 50 minutes + up to 60 minute assessment/extension activity Grade Level/Course: Algebra 1 Lesson/Unit Plan Name: Comparing Linear and Quadratic Functions Rationale/Lesson Abstract: This lesson will enable students to compare the properties of linear and quadratic

More information

Section 1.1 The Distance and Midpoint Formulas; Graphing Utilities; Introduction to Graphing Equations

Section 1.1 The Distance and Midpoint Formulas; Graphing Utilities; Introduction to Graphing Equations Section 1.1 The Distance and Midpoint Formulas; Graphing Utilities; Introduction to Graphing Equations origin (x, y) Ordered pair (x-coordinate, y-coordinate) (abscissa, ordinate) x axis Rectangular or

More information

COMPUTING AND DATA ANALYSIS WITH EXCEL. Numerical integration techniques

COMPUTING AND DATA ANALYSIS WITH EXCEL. Numerical integration techniques COMPUTING AND DATA ANALYSIS WITH EXCEL Numerical integration techniques Outline 1 Quadrature in one dimension Mid-point method Trapezium method Simpson s methods Uniform random number generation in Excel,

More information

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral 1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral Show your working and give your answer correct to three decimal places. 2 2.5 3 3.5 4 When When When When When

More information

Laboratory One Distance and Time

Laboratory One Distance and Time Laboratory One Distance and Time Student Laboratory Description Distance and Time I. Background When an object is propelled upwards, its distance above the ground as a function of time is described by

More information

Chapter 7 curve. 3. x=y-y 2, x=0, about the y axis. 6. y=x, y= x,about y=1

Chapter 7 curve. 3. x=y-y 2, x=0, about the y axis. 6. y=x, y= x,about y=1 Chapter 7 curve Find the volume of the solid obtained by rotating the region bounded by the given cures about the specified line. Sketch the region, the solid, and a typical disk or washer.. y-/, =, =;

More information

Answer Key: Three-Dimensional Cross Sections

Answer Key: Three-Dimensional Cross Sections Geometry A Unit Answer Key: Three-Dimensional Cross Sections Name Date Objectives In this lesson, you will: visualize three-dimensional objects from different perspectives be able to create a projection

More information

MATH 115: Review for Chapter 1

MATH 115: Review for Chapter 1 MATH 115: Review for Chapter 1 Can you use the Distance Formula to find the distance between two points? (1) Find the distance d P, P between the points P and 1 1, 6 P 10,9. () Find the length of the line

More information

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Guided Practice Example 1 Find the y-intercept and vertex of the function f(x) = 2x 2 + x + 3. Determine whether the vertex is a minimum or maximum point on the graph. 1. Determine the y-intercept. The

More information

Precalculus 2 Section 10.6 Parametric Equations

Precalculus 2 Section 10.6 Parametric Equations Precalculus 2 Section 10.6 Parametric Equations Parametric Equations Write parametric equations. Graph parametric equations. Determine an equivalent rectangular equation for parametric equations. Determine

More information

UNIT 4 MODELING AND ANALYZING EXPONENTIAL FUNCTIONS Lesson 1: Creating Exponential Equations

UNIT 4 MODELING AND ANALYZING EXPONENTIAL FUNCTIONS Lesson 1: Creating Exponential Equations Guided Practice Eample 1 If a pendulum swings to 9% of its previous height on each swing and starts out at a height of 6 cm, what is the equation that models this scenario? What is its graph? 1. Read the

More information

Exploring AP Calculus With Colorful Calculator Investigations Deedee Stanfield

Exploring AP Calculus With Colorful Calculator Investigations Deedee Stanfield Eploring AP Calculus With Colorful Calculator Investigations Deedee Stanfield dstanfield.oh@oford.k12.al.us Eplore Limits, Derivatives, and Integration through hands-on activities that involve color-enhanced

More information

3 Applications of Di erentiation

3 Applications of Di erentiation 9 Applications of Di erentiation This chapter is intended to illustrate some of the applications of di erentiation. The activities of Section. illustrate the relationship between the values of rst and

More information

Section 1.6: Graphs of Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative

Section 1.6: Graphs of Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Section.6: Graphs of Functions, from College Algebra: Corrected Edition b Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license.

More information

Technology Assignment: Limits at Infinity

Technology Assignment: Limits at Infinity The goal of this technology assignment is to find the location of the horizontal asymptote for your model from Technology Assignment: Rational Model. You will produce a graph similar to the one below.

More information

College Algebra Review for Test 4

College Algebra Review for Test 4 College Algebra Review for Test Evaluate the epression b hand. ) a) /2 b) 27/3 c) 32/ d) 8-/3 Use positive rational eponents to rewrite the epression. 2) 2 Use radical notation to rewrite. 3) a-/2b/7 Solve

More information

Dependent Independent Input Discrete. X Y Output Continuous

Dependent Independent Input Discrete. X Y Output Continuous Domain and Range Review Vocabulary Words Dependent Independent Input Discrete X Y Output Continuous Domain is all the values. It is the variable. It is also the of the function. Range is all the values.

More information

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous.

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous. Module 8 : Applications of Integration - II Lecture 22 : Arc Length of a Plane Curve [Section 221] Objectives In this section you will learn the following : How to find the length of a plane curve 221

More information

C3 Numerical methods

C3 Numerical methods Verulam School C3 Numerical methods 138 min 108 marks 1. (a) The diagram shows the curve y =. The region R, shaded in the diagram, is bounded by the curve and by the lines x = 1, x = 5 and y = 0. The region

More information

In this chapter, we will investigate what have become the standard applications of the integral:

In this chapter, we will investigate what have become the standard applications of the integral: Chapter 8 Overview: Applications of Integrals Calculus, like most mathematical fields, began with trying to solve everyday problems. The theory and operations were formalized later. As early as 70 BC,

More information

and F is an antiderivative of f

and F is an antiderivative of f THE EVALUATION OF DEFINITE INTEGRALS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions Comments to ingrid.stewart@csn.edu. Thank you! We have finally reached a point,

More information

x=2 26. y 3x Use calculus to find the area of the triangle with the given vertices. y sin x cos 2x dx 31. y sx 2 x dx

x=2 26. y 3x Use calculus to find the area of the triangle with the given vertices. y sin x cos 2x dx 31. y sx 2 x dx 4 CHAPTER 6 APPLICATIONS OF INTEGRATION 6. EXERCISES 4 Find the area of the shaded region.. =5-. (4, 4) =. 4. = - = (_, ) = -4 =œ + = + =.,. sin,. cos, sin,, 4. cos, cos, 5., 6., 7.,, 4, 8., 8, 4 4, =_

More information

The listing says y(1) = How did the computer know this?

The listing says y(1) = How did the computer know this? 18.03 Class 2, Feb 3, 2010 Numerical Methods [1] How do you know the value of e? [2] Euler's method [3] Sources of error [4] Higher order methods [1] The study of differential equations has three parts:.

More information

Numerical Integration

Numerical Integration Numerical Integration Numerical Integration is the process of computing the value of a definite integral, when the values of the integrand function, are given at some tabular points. As in the case of

More information

Mat and 05, Prof. Salane, November 13, The use of Maple to Compute Taylor Series Approximations to Functions

Mat and 05, Prof. Salane, November 13, The use of Maple to Compute Taylor Series Approximations to Functions Mat 1-0 and 05, Prof. Salane, November 13, 008 The use of Maple to Compute Talor Series Approimations to Functions The following shows the use of the Maple function talor(...) to compute a Talor series

More information

(ii) Explain how the trapezium rule could be used to obtain a more accurate estimate of the area. [1]

(ii) Explain how the trapezium rule could be used to obtain a more accurate estimate of the area. [1] C Integration. June 00 qu. Use the trapezium rule, with strips each of width, to estimate the area of the region bounded by the curve y = 7 +, the -ais, and the lines = and = 0. Give your answer correct

More information

AP Calculus AB Summer Assignment 2018

AP Calculus AB Summer Assignment 2018 AP Calculus AB Summer Assignment 2018 Welcome to AP Calculus. In order to accomplish our goals this year, we will need to begin a little in the summer. Your Algebra skills are important in Calculus. Things

More information

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012 Problem # Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 490 Mark Sparks 01 Finding Anti-derivatives of Polynomial-Type Functions If you had to explain to someone how to find

More information

These are square roots, cube roots, etc. Intermediate algebra Class notes Radicals and Radical Functions (section 10.1)

These are square roots, cube roots, etc. Intermediate algebra Class notes Radicals and Radical Functions (section 10.1) Intermediate algebra Class notes Radicals and Radical Functions (section 10.1) These are square roots, cube roots, etc. Worksheet: Graphing Calculator Basics: This will go over basic home screen and graphing

More information

NUMERICAL INTEGRATION

NUMERICAL INTEGRATION NUMERICAL INTEGRATION f(x) MISN-0-349 NUMERICAL INTEGRATION by Robert Ehrlich George Mason University 1. Numerical Integration Algorithms a. Introduction.............................................1 b.

More information

Notice that the height of each rectangle is and the width of each rectangle is.

Notice that the height of each rectangle is and the width of each rectangle is. Math 1410 Worksheet #40: Section 6.3 Name: In some cases, computing the volume of a solid of revolution with cross-sections can be difficult or even impossible. Is there another way to compute volumes

More information

Lesson 4: Numerical Computations; Newton's method

Lesson 4: Numerical Computations; Newton's method Lesson 4: Numerical Computations; Newton's method restart; Catastrophic cancellation in the quadratic formula One case where roundoff error can be severe is if you subtract two numbers that are very close

More information

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS Big IDEAS: 1) Writing equations of conic sections ) Graphing equations of conic sections 3) Solving quadratic systems Section: Essential Question 8-1 Apply

More information

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method.

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. Reals 1 13 Reals Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. 13.1 Floating-point numbers Real numbers, those declared to be

More information

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31 CHAPTER Quadratic Functions Arches are used to support the weight of walls and ceilings in buildings. Arches were first used in architecture by the Mesopotamians over 4000 years ago. Later, the Romans

More information

Math 165 Guided Activity to study ahead some concepts from sections 1.1 and 1.2 Name Section Distance and Midpoint Formula

Math 165 Guided Activity to study ahead some concepts from sections 1.1 and 1.2 Name Section Distance and Midpoint Formula Math 165 Guided Activity to study ahead some concepts from sections 1.1 and 1. Name Section 1.1 - Distance and Midpoint Formula Use the power point presentation for sections 1.1 and 1. to answer the following

More information

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P.

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P. Lecture 7, Part I: Section 1.1 Rectangular Coordinates Rectangular or Cartesian coordinate system Pythagorean theorem Distance formula Midpoint formula Lecture 7, Part II: Section 1.2 Graph of Equations

More information

Conic Sections. College Algebra

Conic Sections. College Algebra Conic Sections College Algebra Conic Sections A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle at which the plane intersects the cone determines

More information

x 16 d( x) 16 n( x) 36 d( x) zeros: x 2 36 = 0 x 2 = 36 x = ±6 Section Yes. Since 1 is a polynomial (of degree 0), P(x) =

x 16 d( x) 16 n( x) 36 d( x) zeros: x 2 36 = 0 x 2 = 36 x = ±6 Section Yes. Since 1 is a polynomial (of degree 0), P(x) = 9 CHAPTER POLYNOMIAL AND RATIONAL FUNCTIONS Section -. Yes. Since is a polynomial (of degree 0), P() P( ) is a rational function if P() is a polynomial.. A vertical asymptote is a vertical line a that

More information

Student Exploration: Translating and Scaling Functions

Student Exploration: Translating and Scaling Functions Name: Date: Student Exploration: Translating and Scaling Functions Vocabulary: amplitude, parent function, periodic function, scale (a function), transform (a function), translate (a function) Prior Knowledge

More information

An Introduction to Maple and Maplets for Calculus

An Introduction to Maple and Maplets for Calculus An Introduction to Maple and Maplets for Calculus Douglas B. Meade Department of Mathematics University of South Carolina Columbia, SC 29208 USA URL: www.math.sc.edu/~meade e-mail: meade@math.sc.edu Philip

More information

Introduction to Sequences in Maple (Classic Version for Windows)

Introduction to Sequences in Maple (Classic Version for Windows) Introduction to Sequences in Maple (Classic Version for Windows) Author: Barbara Forrest Contact: baforres@uwaterloo.ca Copyrighted/NOT FOR RESALE version 1.1 Contents 1 Objectives for this Lab ii 2 Helpful

More information

Exam 2 Review. 2. What the difference is between an equation and an expression?

Exam 2 Review. 2. What the difference is between an equation and an expression? Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? 2. What the difference is between an equation and an expression? 3. How to tell if an equation is linear? 4. How

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 6: Analyzing Quadratic Functions Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 6: Analyzing Quadratic Functions Instruction Prerequisite Skills This lesson requires the use of the following skills: factoring quadratic expressions finding the vertex of a quadratic function Introduction We have studied the key features of the

More information

8.2 Graph and Write Equations of Parabolas

8.2 Graph and Write Equations of Parabolas 8.2 Graph and Write Equations of Parabolas Where is the focus and directrix compared to the vertex? How do you know what direction a parabola opens? How do you write the equation of a parabola given the

More information

C1M0 Introduction to Maple Assignment Format C1M1 C1M1 Midn John Doe Section 1234 Beginning Maple Syntax any

C1M0 Introduction to Maple Assignment Format C1M1 C1M1 Midn John Doe Section 1234 Beginning Maple Syntax any CM0 Introduction to Maple Our discussion will focus on Maple 6, which was developed by Waterloo Maple Inc. in Waterloo, Ontario, Canada. Quoting from the Maple 6 Learning Guide, Maple is a Symbolic Computation

More information

HSC Mathematics integration 5.3 numerical methods

HSC Mathematics integration 5.3 numerical methods MD53a HSC Mathematics integration 5.3 numerical methods student name....................... Monday, 3 May 6 number о number о 3 6 3 3 4 4 5 5 6 6 7 7 8 8 9 9 3 3 4 4 5 5 6 6 7 7 8 a 8 b 9 9 a b a 3 b 4

More information

GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS

GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS 1.1 DIFFERENT TYPES AND SHAPES OF GRAPHS: A graph can be drawn to represent are equation connecting two variables. There are different tpes of equations which

More information

Algebra II Quadratic Functions

Algebra II Quadratic Functions 1 Algebra II Quadratic Functions 2014-10-14 www.njctl.org 2 Ta b le o f C o n te n t Key Terms click on the topic to go to that section Explain Characteristics of Quadratic Functions Combining Transformations

More information

Lecture 34: Curves defined by Parametric equations

Lecture 34: Curves defined by Parametric equations Curves defined by Parametric equations When the path of a particle moving in the plane is not the graph of a function, we cannot describe it using a formula that express y directly in terms of x, or x

More information

Section 1.2 The Slope of a Tangent

Section 1.2 The Slope of a Tangent Section 1.2 Te Slope of a Tangent You are familiar wit te concept of a tangent to a curve. Wat geometric interpretation can be given to a tangent to te grap of a function at a point? A tangent is te straigt

More information

ACTIVITY 8. The Bouncing Ball. You ll Need. Name. Date. 1 CBR unit 1 TI-83 or TI-82 Graphing Calculator Ball (a racquet ball works well)

ACTIVITY 8. The Bouncing Ball. You ll Need. Name. Date. 1 CBR unit 1 TI-83 or TI-82 Graphing Calculator Ball (a racquet ball works well) . Name Date ACTIVITY 8 The Bouncing Ball If a ball is dropped from a given height, what does a Height- Time graph look like? How does the velocity change as the ball rises and falls? What affects the shape

More information

Finite difference methods

Finite difference methods Finite difference methods Siltanen/Railo/Kaarnioja Spring 8 Applications of matrix computations Applications of matrix computations Finite difference methods Spring 8 / Introduction Finite difference methods

More information

Lesson 12: The Graph of the Equation y = f(x)

Lesson 12: The Graph of the Equation y = f(x) Classwork In Module 1, you graphed equations such as 4x + y = 10 by plotting the points on the Cartesian coordinate plane that corresponded to all of the ordered pairs of numbers (x, y) that were in the

More information

3x 4y 2. 3y 4. Math 65 Weekly Activity 1 (50 points) Name: Simplify the following expressions. Make sure to use the = symbol appropriately.

3x 4y 2. 3y 4. Math 65 Weekly Activity 1 (50 points) Name: Simplify the following expressions. Make sure to use the = symbol appropriately. Math 65 Weekl Activit 1 (50 points) Name: Simplif the following epressions. Make sure to use the = smbol appropriatel. Due (1) (a) - 4 (b) ( - ) 4 () 8 + 5 6 () 1 5 5 Evaluate the epressions when = - and

More information

Math 382: Scientific Computing 1. Intro to Maple

Math 382: Scientific Computing 1. Intro to Maple Math 382: Scientific Computing 1 Intro to Maple Preliminaries Start Maple from the Start button -> Programs -> Math -> Maple 11.0 -> Maple 11. Go to the Tools menu and select Options. A dialog window will

More information

Calculus II - Problem Solving Drill 23: Graphing Utilities in Calculus

Calculus II - Problem Solving Drill 23: Graphing Utilities in Calculus Calculus II - Problem Solving Drill 3: Graphing Utilities in Calculus Question No. 1 of 10 Question 1. Find the approximate maximum point of y = x + 5x + 9. Give your answer correct to two decimals. Question

More information

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics:

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics: Chapter Summar Ke Terms standard form of a quadratic function (.1) factored form of a quadratic function (.1) verte form of a quadratic function (.1) concavit of a parabola (.1) reference points (.) transformation

More information

Module 3 Graphing and Optimization

Module 3 Graphing and Optimization Module 3 Graphing and Optimization One of the most important applications of calculus to real-world problems is in the area of optimization. We will utilize the knowledge gained in the previous chapter,

More information

Common Core Vocabulary and Representations

Common Core Vocabulary and Representations Vocabulary Description Representation 2-Column Table A two-column table shows the relationship between two values. 5 Group Columns 5 group columns represent 5 more or 5 less. a ten represented as a 5-group

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 666/0 Edecel GCE Core Mathematics C Bronze Level B Time: hour 0 minutes Materials required for eamination Mathematical Formulae (Green) Items included with question papers Nil Candidates

More information

Study Guide for Test 2

Study Guide for Test 2 Study Guide for Test Math 6: Calculus October, 7. Overview Non-graphing calculators will be allowed. You will need to know the following:. Set Pieces 9 4.. Trigonometric Substitutions (Section 7.).. Partial

More information

Lesson 8.1 Exercises, pages

Lesson 8.1 Exercises, pages Lesson 8.1 Eercises, pages 1 9 A. Complete each table of values. a) -3 - -1 1 3 3 11 8 5-1 - -7 3 11 8 5 1 7 To complete the table for 3, take the absolute value of each value of 3. b) - -3 - -1 1 3 3

More information

DOWNLOAD PDF BIG IDEAS MATH VERTICAL SHRINK OF A PARABOLA

DOWNLOAD PDF BIG IDEAS MATH VERTICAL SHRINK OF A PARABOLA Chapter 1 : BioMath: Transformation of Graphs Use the results in part (a) to identify the vertex of the parabola. c. Find a vertical line on your graph paper so that when you fold the paper, the left portion

More information

Here are some of the more basic curves that we ll need to know how to do as well as limits on the parameter if they are required.

Here are some of the more basic curves that we ll need to know how to do as well as limits on the parameter if they are required. 1 of 10 23/07/2016 05:15 Paul's Online Math Notes Calculus III (Notes) / Line Integrals / Line Integrals - Part I Problems] [Notes] [Practice Problems] [Assignment Calculus III - Notes Line Integrals Part

More information

Unit 6 Quadratic Functions

Unit 6 Quadratic Functions Unit 6 Quadratic Functions 12.1 & 12.2 Introduction to Quadratic Functions What is A Quadratic Function? How do I tell if a Function is Quadratic? From a Graph The shape of a quadratic function is called

More information

A Pedi for the Lady... And Other Area/Volume Activities

A Pedi for the Lady... And Other Area/Volume Activities A Pedi for the Lady... And Other Area/Volume Activities Investigations that provide a foundation for Calculus Deedee Henderson Oxford, Alabama dhenderson.oh@oxford.k12.al.us Did you know that D=RxT is

More information

Math 126 Final Examination Autumn CHECK that your exam contains 9 problems on 10 pages.

Math 126 Final Examination Autumn CHECK that your exam contains 9 problems on 10 pages. Math 126 Final Examination Autumn 2016 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name CHECK that your exam contains 9 problems on 10 pages. This exam is closed book. You

More information

Answers. Investigation 4. ACE Assignment Choices. Applications

Answers. Investigation 4. ACE Assignment Choices. Applications Answers Investigation ACE Assignment Choices Problem. Core Other Connections, ; Etensions ; unassigned choices from previous problems Problem. Core, 7 Other Applications, ; Connections ; Etensions ; unassigned

More information

1 of 21 8/6/2018, 8:17 AM

1 of 21 8/6/2018, 8:17 AM 1 of 1 8/6/018, 8:17 AM Student: Date: Instructor: Alfredo Alvarez Course: Math 1314 Summer 018 Assignment: math 131437 Free Response with Help 51 1. Solve the equation by factoring. 9x + 1x 8 = 0 The

More information

A point is pictured by a dot. While a dot must have some size, the point it represents has no size. Points are named by capital letters..

A point is pictured by a dot. While a dot must have some size, the point it represents has no size. Points are named by capital letters.. Chapter 1 Points, Lines & Planes s we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My guess that you might already be pretty familiar with many

More information

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Fall 2018 Instructor: Dr. Sateesh Mane

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Fall 2018 Instructor: Dr. Sateesh Mane Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 36 / 76 Fall 28 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 28 6 Homework lecture 6: numerical integration If you write the

More information