Assignments. Computer Networks LECTURE 7 Network Layer: Routing and Addressing. Network Layer Function. Internet Architecture

Size: px
Start display at page:

Download "Assignments. Computer Networks LECTURE 7 Network Layer: Routing and Addressing. Network Layer Function. Internet Architecture"

Transcription

1 ompter Netorks LETURE Netork Laer: Roting and ddressing ssignments Project : Web Pro Serer DUE OT Sandha Darkadas Department of ompter Science Uniersit of Rochester Internet rchitectre Bottom-p: phsical: electromagnetic signals on the ire link: data transfer beteen neighboring netork elements encoding, framing, error correction, access control for shared links netork: host-to-host connectiit roting, addressing transport: host-host data transport reliable data transport, congestion control, flo control application: anthing o ant to do on compter netorks application transport netork link phsical transport packet sending to receiing hosts roting: determine a path sorce to dest and rote packets along the path addressing: niqel identif each node in the netork netork connecting deices called roters participate in netork protocols links connect adjacent hosts, roters Netork Laer Fnction 9//06 S / - Fall 0 9//06 S / - Fall 0

2 Roting Principles ROUTING PROTOOLS Roting protocol Goal: determine good path (seqence of roters) thr netork sorce to dest. Graph abstraction for roting algorithms: graph nodes are hosts or roters graph edges are links link cost: dela, $ cost, or congestion leel B D good path: E F tpicall means minimm cost path 9//06 6 Roting lgorithm lassification Global information: all roters hae complete topolog, link cost info link state algorithm Decentralied: roter knos connected neighbors, link costs to neighbors echange of info ith neighbors to learn remote parts of the netork, ma take man learning ronds distance ector algorithm 9//06 link-state roting algorithm Dijkstra s algorithm net topolog, link costs knon to all nodes accomplished ia link state broadcast all nodes hae same info comptes least cost paths one node ( sorce ) to all other nodes gies forarding for that node iteratie: after k iterations, kno least cost path to k dest. s notation: c(,): link cost node to ; = if not direct neighbors D(): crrent ale of cost of path sorce to dest. p(): predecessor node along path sorce to N': set of nodes hose least cost path definitiel knon Netork Laer: ontrol Plane -8

3 Dijsktra s algorithm Initialiation: N' = {} for all nodes if adjacent to then D() = c(,) 6 else D() = 8 Loop 9 find not in N' sch that D() is a minimm 0 add to N' pdate D() for all adjacent to and not in N' : D() = min( D(), D() + c(,) ) /* ne is either old or knon shortest path pls cost to */ ntil all nodes in N' Dijkstra s algorithm: eample D() D() D() D() D() Step N' p() p() p() p() p() 0,,, 6,,, 6,,, 0,,, notes: constrct shortest path tree b tracing predecessor nodes ties can eist (can be broken arbitraril) 8 9 Netork Laer: ontrol Plane -9 Netork Laer: ontrol Plane Netork Laer - Netork Laer -

4 Dijkstra s algorithm: another eample Dijkstra s algorithm: eample () Step 0 N' D(),p(),,, D(),p(),,,, D(),p(), D(),p(), D(),p(),,, reslting shortest-path tree : reslting forarding in : * heck ot the online interactie eercises for more eamples: Netork Laer: ontrol Plane - destination link (,) (,) (,) (,) (,) Netork Laer: ontrol Plane - Dijkstra s lgorithm: ompleit Dijkstra s lgorithm: Stabilit lgorithm compleit: n nodes, e links Each iteration: need to check all nodes,, not in N n*(n-)/ checks: O(n ) Update -more-hop paths: O(e) Total: O(n +e), or O(n ) Using Fibonacci heap to find minimm distance node O(nlogn + e) 9//06 Oscillations possible: e.g., link cost = amont of carried traffic +e D B e e initiall +e 0 0 +e D +e B D B e Soltions: asnchronos (at different time) adjstments across roters s cost metric (independent of roting polic) +e 0 D +e B 0 0 recompte roting recompte recompte 9//06 6

5 Link state roting: Netork Roting Dijkstra s algorithm efficient approach to calclate least cost rotes all roters need complete topolog, link cost info costl (or impossible) to acqire sch information in large netorks Decentralied roting: distribted, asnchronos, iteratie roter onl needs to kno phsicall-connected neighbors, link costs to neighbors learn more b info echanges beteen neighbor roters Distance Vector Roting B D Roting (at each host): the net hop for each destination in the netork Distance ector roting: roting can be deried the distance ector at each node distance ectors can be maintained in a decentralied fashion E F 9//06 S / - Fall 0 9//06 S / - Fall 0 8 Distance ector algorithm Bellman-Ford eqation let d () := cost of least-cost path to then d () = min {c(,) + d () } cost neighbor to destination neighbor min taken oer all neighbors of Bellman-Ford eample clearl, d () =, d () =, d () = B-F eqation sas: d () = min { c(,) + d (), c(,) + d (), c(,) + d () } = min { +, +, + } = node achieing minimm is net hop in shortest path, sed in forarding Netork Laer: ontrol Plane -9 Netork Laer: ontrol Plane -0

6 Distance ector algorithm D () = estimate of least cost to maintains distance ector D = [D (): є N ] node : knos each neighbor : c(,) maintains its neighbors distance ectors. For each neighbor, maintains D = [D (): є N ] Distance ector algorithm ke idea: time-to-time, each node sends its on distance ector estimate to neighbors hen receies ne DV estimate neighbor, it pdates its on DV sing B-F eqation: D () min {c(,) + D ()} for each node N nder minor, natral conditions, the estimate D () conerge to the actal least cost d () Netork Laer: ontrol Plane - Netork Laer: ontrol Plane - Distance ector algorithm iteratie, asnchronos: each local iteration cased b: local link cost change DV pdate message neighbor distribted: each node notifies neighbors onl hen its DV changes neighbors then notif their neighbors if necessar each node: ait for (change in local link cost or msg neighbor) recompte estimates if DV to an dest has changed, notif neighbors Netork Laer: ontrol Plane - node node node D () = min{c(,) + D (), c(,) + D ()} = min{+0, +} = time D () = min{c(,) + D (), c(,) + D ()} = min{+, +0} = Netork Laer: ontrol Plane - 6

7 node node node D () = min{c(,) + D (), c(,) + D ()} = min{+0, +} = time D () = min{c(,) + D (), c(,) + D ()} = min{+, +0} = Netork Laer: ontrol Plane - Distance ector: link cost changes link cost changes: node detects local link cost change pdates roting info, recalclates distance ector if DV changes, notif neighbors good nes traels fast 0 t 0 : detects link-cost change, pdates its DV, informs its neighbors. t : receies pdate, pdates its, comptes ne least, sends its neighbors its DV. t : receies s pdate, pdates its distance. s least costs do not change, so does not send a message to. * heck ot the online interactie eercises for more eamples: Netork Laer: ontrol Plane -6 Distance Vector to Roting Table destination ia E D () B D B B Otgoing link to se, cost, D, D, Link cost changes: Distance Vector: Link ost hanges node detects local link cost change recompte pdates local distance ector if cost change in least cost path, notif neighbors X Y Z 0 algorithm terminates D D D, Distance ector Roting 8

8 Distance Vector: Link ost hanges Distance ector: link cost changes pathological case: recrsie distance ector pdates applies onl to link cost increase bad nes settles slol 60 X Y 0 Z algorithm contines on! link cost changes: node detects local link cost change bad nes traels slo - cont to infinit problem! iterations before algorithm stabilies: see tet poisoned reerse: 60 0 If Z rotes throgh Y to get to X : Z tells Y its (Z s) distance to X is infinite (so Y on t rote to X ia Z) ill this completel sole cont to infinit problem? 9 Netork Laer: ontrol Plane -0 Distance Vector: Link ost hanges Roting Loops If Z rotes throgh Y to get to X : Z tells Y its (Z s) distance to X is infinit (so Y on t rote to X ia Z) Will this completel sole the problem of recrsie distance ector pdates? 60 X 0. Y Z 0 U 0. algorithm terminates In packet sitching netorks, each node comptes its on roting independentl What if? Y s net hop to X is Z; and Z s net hop to X is Y. Y X Z Roting loops dring recrsie distance ector pdates roting mis-behaiors 8

9 omparison of LS and DV algorithms The Internet Netork Laer message compleit LS: ith n nodes, E links, O(nE) msgs sent DV: echange beteen neighbors onl conergence time aries speed of conergence LS: O(n ) algorithm reqires O(nE) msgs ma hae oscillations DV: conergence time aries ma be roting loops cont-to-infinit problem robstness: hat happens if roter malfnctions? LS: node can adertise incorrect link cost each node comptes onl its on DV: DV node can adertise incorrect path cost each node s sed b others error propagate thr netork Netork Laer: ontrol Plane - Netork laer Roting protocols RIP, OSPF, BGP Transport laer: TP, UDP The rest of the IP protocol addressing conentions packet format packet handling conentions Link laer IMP protocol error reporting roter signaling phsical laer IP ddressing: Introdction IP address: -bit identifier for each host, roter interface DDRESSING Interface: connecting point into each data link roter tpicall has mltiple interfaces host often has single interface = //06 6 9

10 IP Netork and Hierarchical ddressing IP ddresses: Original Standard What s an IP netork? can phsicall reach each other ithot interening roter (interening sitches?) IP address: netork part (high order bits); host part (lo order bits) deices ith same netork part of IP address are in the same IP netork IP netork netork consisting of IP netorks Gien notion of netork, let s re-eamine IP addresses: class -based addressing: class B D 0netork host 0 netork host 0 netork host 0 mlticast address bits to to to to //06 9//06 8 IP ddressing: IDR IP ddress Depletion (DHP) lass -based addressing: inefficient se of address space, address space ehastion e.g., class B netork allocated enogh addresses for 6K hosts, een if onl K hosts in that netork IDR: classless addressing netork portion of address of arbitrar length address format: a.b.c.d/, here is # bits in netork portion netork part / host part ddress depletion -bit address space soon to be sed p. Obseration: not eer host is online at a gien time. DHP: allo host to dnamicall obtain its IP address netork serer hen it joins netork can rene its lease on address in se allos rese of addresses (onl hold address hile connected) 9//06 9 9//06 0 0

11 IP ddress Depletion (NT) IP ddress Depletion (NT) Obserations: lot of traffic is local lthogh IP addresses are fe, possible (IPaddr, port) tples are more abndant and the can identif commnication end point rest of Internet local netork (e.g., home netork) / ll IP packets leaing local Packets ith sorce or netork hae same single sorce NT IP destination in this netork address: , hae / addresses for different sorce port nmbers sorce, destination Problem: inbond connection not alloed! 9//06 9//06 Disclaimer Parts of the lectre slides are adapted and coprighted b James Krose and Keith Ross and those b Prof. Kai Shen. The slides are intended for the sole prpose of instrction of compter netorks at the Uniersit of Rochester. ll coprighted materials belong to their original oner(s).

Network layer. Two Key Network-Layer Functions. Datagram Forwarding table. IP datagram format. IP Addressing: introduction

Network layer. Two Key Network-Layer Functions. Datagram Forwarding table. IP datagram format. IP Addressing: introduction Netork laer transport segment sending to receiing host on sending side encapslates segments into grams on rcing side, deliers segments to transport laer laer protocols in eer host, roter roter eamines

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Introdction (forarding and roting) Reie of qeeing theor Roting algorithms Link state, Distance Vector Roter design and operation IP: Internet Protocol IP4 (datagram format, addressing, ICMP,

More information

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP Chapter 4: outline 4. introduction 4. irtual circuit and datagram networks 4. what s inside a router 4.4 IP: Internet Protocol datagram format IP4 addressing ICMP IP6 4.5 routing algorithms link state

More information

Chapter 4: Network Layer. TDTS06 Computer networks. Chapter 4: Network Layer. Network layer. Two Key Network-Layer Functions

Chapter 4: Network Layer. TDTS06 Computer networks. Chapter 4: Network Layer. Network layer. Two Key Network-Layer Functions Chapter : Netork Laer TDTS06 Compter s Lectre : Netork laer II Roting algorithms Jose M. Peña, jospe@ida.li.se ID/DIT, LiU 009-09- Chapter goals: nderstand principles behind laer serices: laer serice models

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 56: Adanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 0 Fall 06 A-term Some slides are originall from the course materials of the tetbook Computer

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 56: Adanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 0 Fall 07 A-term Some slides are originall the course materials of the tetbook Computer Networking:

More information

Flooding. Routing: Outlook. Flooding Algorithms. Spanning Tree. Flooding

Flooding. Routing: Outlook. Flooding Algorithms. Spanning Tree. Flooding Roting: Otlook Flooding Flooding Link-State: complete, global knoledge Distance-Vector: iteratie, distribted calclation Goal: To distribte a packet in the hole netork (i.e. to realie a netork-ide broadcast)

More information

Computer Networking. Rou1ng Algorithms. Rou1ng Algorithms. Interplay between rou1ng, forwarding. routing algorithm

Computer Networking. Rou1ng Algorithms. Rou1ng Algorithms. Interplay between rou1ng, forwarding. routing algorithm Computer Networking Interpla between roung, forwarding routing algorithm local forwarding table header alue output link 000 00 0 00 alue in arriing packet s header 0 Graph abstracon Graph: G = (N,E) u

More information

Interplay between routing, forwarding

Interplay between routing, forwarding Chapter 4: outline 4. introduction 4. virtual circuit and datagram networks 4. what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link state

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Laer 4. Introduction 4. Virtual circuit and datagram networks 4. What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4. Routing algorithms Link

More information

Step N' D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z) 0 u 7,u 3,u 5,u. N (uw) update D(v), D(x), D(y), D(z)

Step N' D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z) 0 u 7,u 3,u 5,u. N (uw) update D(v), D(x), D(y), D(z) Dijsktra s lgorithm Initialiation: N' = {s} for all nodes n If n adjacent to s then D(n) = c(s,n) 6 else D(n) = 8 Loop 9 Find m not in N' sch that D(m) is a minimm 0 dd m to N' pdate D(m) for all n adjacent

More information

Routing Algorithm Classification. A Link-State Routing Algorithm

Routing Algorithm Classification. A Link-State Routing Algorithm Routing Algorithm lassification Global or decentralied information? Global: All routers have complete topolog, link cost info Link state algorithms Decentralied: Router knows phsicallconnected neighbors,

More information

More on Network Routing and Internet Protocol

More on Network Routing and Internet Protocol omputer Networks //03 More on Network Routing and Internet Protocol Kai Shen Network Routing Link state routing: ijkstra s algorithm efficient approach to calculate least cost routes all routers need complete

More information

Chapter IV: Network Layer

Chapter IV: Network Layer Chapter IV: Network Laer UG3 Computer Communications & Networks (COMN) Mungjin Lee mungjin.lee@ed.ac.uk Slides copright of Kurose and Ross IP addresses: how to get one? Q: How does a host get IP address?

More information

Network Layer: Routing

Network Layer: Routing Network Laer: Routing Instructor: Anirban Mahanti Office: ICT 74 Email: mahanti@cpsc.ucalgar.ca Class Location: ICT Lectures: MWF :00 :0 hours Notes derived Computer Networking: A Top Down Approach Featuring

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14 1 Two notes on routing algorithm Do not believe ou can understand an routing protocol, e.g.,

More information

Chapter 5 Network Layer

Chapter 5 Network Layer Chapter Network Layer Network layer Physical layer: moe bit seqence between two adjacent nodes Data link: reliable transmission between two adjacent nodes Network: gides packets from the sorce to destination,

More information

Agenda. distance-vector (what you invented last Friday) hierarchical routing routing in the Internet. v DNS assignment Q&A v Routing Algorithms

Agenda. distance-vector (what you invented last Friday) hierarchical routing routing in the Internet. v DNS assignment Q&A v Routing Algorithms Agenda v DNS assignment Q&A v Routing Algorithms distance-vector (what ou invented last Frida) hierarchical routing routing in the Internet Network Laer 4- Chapter 4 Network Laer A note on the use of these

More information

Initialization: Loop until all nodes in N

Initialization: Loop until all nodes in N Routing Routing lgorithm classification Routing protocol Goal: determine good path (sequence of routers) thru netork from source to dest. Graph abstraction for routing s: graph nodes are routers graph

More information

Internet Technology. 08. Routing. Paul Krzyzanowski. Rutgers University. Spring CS Paul Krzyzanowski

Internet Technology. 08. Routing. Paul Krzyzanowski. Rutgers University. Spring CS Paul Krzyzanowski Internet Technolog 08. Routing Paul Kranoski Rutgers Universit Spring 06 March, 06 CS 0-06 Paul Kranoski Routing algorithm goal st hop router = source router last hop router = destination router router

More information

Computer Networks. Instructor: Niklas Carlsson

Computer Networks. Instructor: Niklas Carlsson Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Notes derived Computer Networking: A Top Down Approach, b Jim Kurose and Keith Ross, Addison-Wesle. The slides are adapted and

More information

Network Layer: Control Plane 5-2

Network Layer: Control Plane 5-2 Network Laer: Control Plane EECS34 8-03-05 4- Chapter 5: network laer control plane chapter goals: understand principles behind network control plane traditional routing algorithms SDN controlllers Internet

More information

Network service model. Network service model. Network Layer (part 1) Virtual circuits. By the end of this lecture, you should be able to.

Network service model. Network service model. Network Layer (part 1) Virtual circuits. By the end of this lecture, you should be able to. Netork Layer (part ) y the end of this lecture, you should be able to. xplain the operation of distance vector routing algorithm xplain shortest path routing algorithm escribe the major points of RIP and

More information

Routing. 9: Intro to Routing Algorithms. Routing. Roadmap. Routing Algorithm classification: Static or Dynamic?

Routing. 9: Intro to Routing Algorithms. Routing. Roadmap. Routing Algorithm classification: Static or Dynamic? Routing 9: Intro to Routing lgorithms Last Modified: // :: PM : Netork Layer a- IP Routing each router is supposed to send each IP datagram one step closer to its Ho do they do that? Static Routing Hierarchical

More information

An Extended Fault-Tolerant Link-State Routing Protocol in the Internet

An Extended Fault-Tolerant Link-State Routing Protocol in the Internet An Extended Falt-Tolerant Link-State Roting Protocol in the Internet Jie W, Xiaola Lin, Jiannong Cao z, and Weijia Jia x Department of Compter Science and Engineering Florida Atlantic Uniersit Boca Raton,

More information

Internet Architecture. Network Layer Overview. Fundamental Network Layer Function. Protocol Layering and Data. Computer Networks 9/23/2009

Internet Architecture. Network Layer Overview. Fundamental Network Layer Function. Protocol Layering and Data. Computer Networks 9/23/2009 omputer Networks 9//9 Network Layer Overview Kai Shen Internet rchitecture ottom-up: : electromagnetic signals on the wire : data transfer between neighboring elements encoding, framing, error correction,

More information

Chapter 4: Network Layer: Part II

Chapter 4: Network Layer: Part II 4: Network Laer Chapter 4: Network Laer: Part II (last revision 9/04/05. v3) 4. Introduction 4. Virtual circuit and datagram networks 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format

More information

Announcements. CS 5565 Network Architecture and Protocols. Count-To-Infinity. Poisoned Reverse. Distance Vector: Link Cost Changes.

Announcements. CS 5565 Network Architecture and Protocols. Count-To-Infinity. Poisoned Reverse. Distance Vector: Link Cost Changes. Announcements CS 6 Network Architecture and Protocols Lecture 20 Project 2B Part/ due Wed Apr 27 :9pm Part/2 due Wed Ma :9pm Current reading assignment: Chapter.6.7, Chapter Final Ma 0, 3:2pm, MCB 26 Godmar

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 40 Data and Computer Communications Networks Network Layer NAT, Routing, Link State, Distance Vector Prof. Lina Battestilli Fall 07 Chapter 4 Outline Network Layer: Data Plane 4. Overview of Network

More information

Interplay tra routing e forwarding

Interplay tra routing e forwarding Interpla tra routing e forwarding routing algorithm local forwarding table header value output link 000 00 0 00 value in arriving packet s header 0 Network Laer 4- Grafi Grafo: G = (N,E) u v w N = insieme

More information

Chapter 4: Network Layer

Chapter 4: Network Layer hapter 4: Network Layer hapter goals: understand principles behind layer services: routing (path selection) dealing with scale how a router works advanced topics: IPv6, multicast instantiation and implementation

More information

Chapter 4 Network Layer. Network Layer 4-1

Chapter 4 Network Layer. Network Layer 4-1 Chapter 4 Network Layer Network Layer 4- Chapter 4: Network Layer 4. Introduction 4. Virtual circuit and datagram networks 4. What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing

More information

EE 122: Intra-domain routing

EE 122: Intra-domain routing EE : Intra-domain routing Ion Stoica September 0, 00 (* this presentation is based on the on-line slides of J. Kurose & K. Rose) Internet Routing Internet organized as a two level hierarchy First level

More information

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms Announcements CS 6 Network Architecture and Protocols Lecture 8 Godmar Back Project A due Apr 8 (toda) Project B due in parts: Apr 9 and Ma 6 See link to NY Times article on RFC Project B Project B Highlevel

More information

Intra-AS Routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

Intra-AS Routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley. Intra-AS Routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesle http://xkcd.com/85/ Some materials copright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

More information

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: IPv6 Initial motivation: 3-bit address space soon to be completel allocated. Additional motivation: Header format helps speed processing/forwarding Header changes to facilitate QoS (service classes) Reduction

More information

Summary Chapter 4. Smith College, CSC 249 March 2, q IP Addressing. q DHCP dynamic addressing

Summary Chapter 4. Smith College, CSC 249 March 2, q IP Addressing. q DHCP dynamic addressing Smith College, CSC 49 March, 08 Summary Chapter 4 q IP Addressing Network prefixes and Subnets IP datagram format q DHCP dynamic addressing Obtain: own IP address Subnet mask, DNS serer & first-hop router

More information

Protocoles et Interconnexions

Protocoles et Interconnexions Protocoles et Interconneions Course Overview and Introduction Dario Vieira Department of Computer Science EFREI Routing Protocol BGP TCP Computer Networking Preliminaries Transport Laer Network Laer Introduction

More information

CSC 4900 Computer Networks: Routing Algorithms

CSC 4900 Computer Networks: Routing Algorithms CSC 4900 Computer Networks: Routing Algorithms Professor Henry Carter Fall 2017 Last Time Subnets provide granularity for address assignment and ease management. What is 192.168.8.0? 192.168.32.0? 192.168.8.0:

More information

4.5 Routing Algorithms

4.5 Routing Algorithms 4.5 ROUTING ALGORITHMS 363 to hosts enjo the securit services provided b IPsec. On the sending side, the transport laer passes a segment to IPsec. IPsec then encrpts the segment, appends additional securit

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Laer A note on the use of these ppt slides: The notes used in this course are substantiall based on powerpoint slides developed and coprighted b J.F. Kurose and K.W. Ross, 1996-2007 Computer

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book & Slides: Computer Networking, A Top-Down Approach By: Kurose, Ross Introduction Course Overview Basics of Computer Networks

More information

11/13/2017 Network Layer (SSL) Network-layer functions. Recall the two network-layer functions:

11/13/2017 Network Layer (SSL) Network-layer functions. Recall the two network-layer functions: Chapter 5: outline 5. introduction 5.2 routing protocols link state distance vector 5.3 intra-as routing in the Internet 5.4 inter-as routing: BGP 5.5 The SDN control 5.6 ICMP: The Internet Control Message

More information

Network layer. Network Layer 4-1. application transport network data link physical. network data link physical. network data link physical

Network layer. Network Layer 4-1. application transport network data link physical. network data link physical. network data link physical Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on receiving side, delivers segments to transport layer network layer protocols in every

More information

Internet Technology 3/21/2016

Internet Technology 3/21/2016 Intrnt Tchnolog //6 Roting algorithm goal st hop rotr = sorc rotr last hop rotr = dstination rotr rotr Intrnt Tchnolog 8. Roting sitch rotr LAN Pal Kranoski Rtgrs Unirsit Spring 6 LAN Roting algorithm:

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer IV Dmitri Loguinov Texas A&M University April 12, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information

Graph abstraction: costs. Graph abstraction 10/26/2018. Interplay between routing and forwarding

Graph abstraction: costs. Graph abstraction 10/26/2018. Interplay between routing and forwarding 0/6/08 Interpla between routing and forwarding Routing Algorithms Link State Distance Vector BGP routing routing algorithm local forwarding table header value output link 000 00 0 00 value in arriving

More information

Chapter 4: Network Layer, partb

Chapter 4: Network Layer, partb Chapter 4: Network Layer, partb The slides are adaptations of the slides available by the main textbook authors, Kurose&Ross Network Layer 4-1 Interplay between routing, forwarding routing algorithm local

More information

Chapter 5: Network Layer Control Plane. understand principles behind network control plane : traditional routing algorithms

Chapter 5: Network Layer Control Plane. understand principles behind network control plane : traditional routing algorithms Introduction to Computer Networking Gu Leduc Chapter 5 Network Laer: The Control Plane Computer Networking: A Top Down Approach, 7 th edition. Jim Kurose, Keith Ross Addison-Wesle, April 06. From Computer

More information

CS 557 Lecture IX. Drexel University Dept. of Computer Science

CS 557 Lecture IX. Drexel University Dept. of Computer Science CS 7 Lectre IX Dreel Uniersity Dept. of Compter Science Fall 00 Shortest Paths Finding the Shortest Paths in a graph arises in many different application: Transportation Problems: Finding the cheapest

More information

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016 9/9/6 S 7 Networking and the Internet Fall 06 Shortest-Path Problem Given: network topology with link costs c(x,y): link cost from node x to node y Infinity if x and y are not direct neighbors ompute:

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer CPSC 335 Data Communication Systems Readings: 4.4.3, 4.4.4, 4.5, 4.5.1 David Nguyen Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones proided by the textbook authors. Network

More information

Announcement. Project 2 extended to 2/20 midnight Project 3 available this weekend Homework 3 available today, will put it online

Announcement. Project 2 extended to 2/20 midnight Project 3 available this weekend Homework 3 available today, will put it online Announcement Project 2 extended to 2/20 midnight Project 3 available this weekend Homework 3 available today, will put it online Outline Introduction and Network Service Models Routing Principles Link

More information

CS 43: Computer Networks. 23: Routing Algorithms November 14, 2018

CS 43: Computer Networks. 23: Routing Algorithms November 14, 2018 S 3: omputer Networks 3: Routing lgorithms November, 08 Last class NT: Network ddress Translators: NT is mostly bad, but in some cases, it s a necessary evil. IPv6: Simpler, faster, better Tunneling: IPv6

More information

4.5.2 The Distance-Vector (DV) Routing Algorithm

4.5.2 The Distance-Vector (DV) Routing Algorithm 4.5 ROUTING ALGORITHMS 371 highl congested (for eample, high-dela) links. Another solution is to ensure that not all routers run the LS algorithm at the same time. This seems a more reasonable solution,

More information

COMP 3331/9331: Computer Networks and Applications

COMP 3331/9331: Computer Networks and Applications OMP /9: omputer Networks and pplications Week 9 Network Layer: Routing Reading Guide: hapter 4: Sections 4.5 Network Layer nnouncements v Labs Lab 4 ongestion ontrol Lab 5 Simple Router (start up for ssignment,

More information

Chapter 5 Network Layer: The Control Plane

Chapter 5 Network Layer: The Control Plane Chapter 5 Network Layer: The Control Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you

More information

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network Layer. Chapter goals:

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network Layer. Chapter goals: Chapter 4 Network Laer A note on the use of these ppt slides: The notes used in this course are substantiall based on powerpoint slides developed and coprighted b J.F. Kurose and K.W. Ross, 996-7 Computer

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13 CMPE 50/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 3 Lab3 online Due March 4 th. Introduction -2 IP addresses: how to get one? Q: how does network

More information

Internet Protocol: Routing Algorithms. Srinidhi Varadarajan

Internet Protocol: Routing Algorithms. Srinidhi Varadarajan Internet Protocol: Routing Algorithms Srinidhi Varadarajan Routing Routing protocol Goal: determine good path (sequence of routers) thru network from source to dest. Graph abstraction for routing algorithms:

More information

Lecture 10: Addressing

Lecture 10: Addressing Lectre 10: Addressing CSE 123: Compter Networks Alex C. Snoeren HW 2 de NEXT FRIDAY Lectre 10 Overview ICMP The other network-layer protocol IP Addresses Class-based addressing Sbnetting Classless addressing

More information

Net Ne w t ork y La e y r Net Ne w t ork y La e y r Initial motivation: Net Ne w t ork y La e y r Net Ne w t ork y La e y r Net Ne w t ork

Net Ne w t ork y La e y r Net Ne w t ork y La e y r Initial motivation: Net Ne w t ork y La e y r Net Ne w t ork y La e y r Net Ne w t ork None lef! 0.0.04 IP6 Iniial moiaion: -bi address space soon o be compleel allocaed. Vin Cerf 67 ddiional moiaion: header forma helps speed processing/forarding header changes o faciliae QoS IP6 gram forma:

More information

Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley

Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Intra- AS Rou-ng h0p://kcd.com/85/ Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesle Some materials copright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Layer Chapter goals: understand principles behind layer services: routing (path selection) dealing with scale how a router works advanced topics: IPv6, mobility instantiation and implementation

More information

CS 457 Networking and the Internet. What is Routing. Forwarding versus Routing 9/27/16. Fall 2016 Indrajit Ray. A famous quotation from RFC 791

CS 457 Networking and the Internet. What is Routing. Forwarding versus Routing 9/27/16. Fall 2016 Indrajit Ray. A famous quotation from RFC 791 CS 457 Networking and the Internet Fall 2016 Indrajit Ray What is Routing A famous quotation from RFC 791 A name indicates what we seek An address indicates where it is A route indicates how we get there

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

Lecture 9. Network Layer (cont d) Network Layer 1-1

Lecture 9. Network Layer (cont d) Network Layer 1-1 Lecture 9 Network Layer (cont d) Network Layer 1-1 Agenda Routing Tables Unicast and Multicast Routing Protocols Routing Algorithms Link State and Distance Vector Routing Information and Open Shortest

More information

What is Routing? EE 122: Shortest Path Routing. Example. Internet Routing. Ion Stoica TAs: Junda Liu, DK Moon, David Zats

What is Routing? EE 122: Shortest Path Routing. Example. Internet Routing. Ion Stoica TAs: Junda Liu, DK Moon, David Zats What is Routing? Routing implements the core function of a network: : Shortest Path Routing Ion Stoica Ts: Junda Liu, K Moon, avid Zats http://inst.eecs.berkeley.edu/~ee/fa9 (Materials with thanks to Vern

More information

Ethernet Basics Learning Switches. based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers

Ethernet Basics Learning Switches. based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers Ethernet Basics Learning Sitches based on Chapter 4 of CompTIA Netork+ Eam Guide, 4 th ed., Mike Meers Sitch Forarding A sitch forards frames based on destination MAC address Ho does the sitch kno hich

More information

Network layer: Overview. Network layer functions Routing IP Forwarding

Network layer: Overview. Network layer functions Routing IP Forwarding Network layer: Overview Network layer functions Routing IP Forwarding Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every host, router application

More information

Lecture 11: IPv6. CSE 123: Computer Networks Alex C. Snoeren. HW 2 due FRIDAY

Lecture 11: IPv6. CSE 123: Computer Networks Alex C. Snoeren. HW 2 due FRIDAY Lectre 11: IPv6 CSE 123: Compter Networks Alex C. Snoeren HW 2 de FRIDAY IP Address Problem (1991) Address space depletion In danger of rnning ot of classes A and B Why? Class C too small for most organizations

More information

CSCD 330 Network Programming Spring 2018

CSCD 330 Network Programming Spring 2018 CSCD 330 Network Programming Spring 018 Lecture 16 Network Layer Routing Protocols Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 017 1 Network

More information

Lecture 4. The Network Layer (cont d)

Lecture 4. The Network Layer (cont d) Lecture 4 The Network Layer (cont d) Agenda Routing Tables Unicast and Multicast Routing Protocols Routing Algorithms Link State and Distance Vector Routing Information and Open Shortest Path First Protocols

More information

CSCD 330 Network Programming Spring 2017

CSCD 330 Network Programming Spring 2017 CSCD 330 Network Programming Spring 017 Lecture 16 Network Layer Routing Protocols Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-007

More information

Mobility Control and Its Applications in Mobile Ad Hoc Networks

Mobility Control and Its Applications in Mobile Ad Hoc Networks Mobility Control and Its Applications in Mobile Ad Hoc Netorks Jie W and Fei Dai Department of Compter Science and Engineering Florida Atlantic Uniersity Boca Raton, FL 3331 Abstract Most existing localized

More information

Internet rou)ng. V. Arun CS491G: Computer Networking Lab University of MassachuseFs Amherst

Internet rou)ng. V. Arun CS491G: Computer Networking Lab University of MassachuseFs Amherst Internet rou)ng V. Arun CS491G: Computer Networking Lab University of MassachuseFs Amherst Slide material copyright 1996-2013 J.F Kurose and K.W. Ross, All Rights Reserved Graph abstraction 5 graph: G

More information

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm Last time Transitioning to IPv6 Tunneling Gateways Routing Graph abstraction Link-state routing Dijkstra's Algorithm Distance-vector routing Bellman-Ford Equation 10-1 This time Distance vector link cost

More information

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First)

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) Computer Networking Intra-Domain Routing RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) IP Forwarding The Story So Far IP addresses are structured to reflect Internet structure IP

More information

Lecture 13: Traffic Engineering

Lecture 13: Traffic Engineering Lectre 13: Traffic Engineering CSE 222A: Compter Commnication Networks Alex C. Snoeren Thanks: Mike Freedman, Nick Feamster, and Ming Zhang Lectre 13 Overview Dealing with mltiple paths Mltihoming Entact

More information

CSc 450/550 Computer Networks Internet Routing

CSc 450/550 Computer Networks Internet Routing CSc 450/550 Computer Networks Internet Routing Jianping Pan Summer 2007 7/12/07 CSc 450/550 1 Review Internet Protocol (IP) IP header addressing class-based, classless, hierarchical, NAT routing algorithms

More information

Lecture 4 The Network Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 4 The Network Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 4 The Network Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Network layer functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

COMP/ELEC 429/556 Introduction to Computer Networks

COMP/ELEC 429/556 Introduction to Computer Networks OMP/ELE 49/6 Introduction to omputer Networks Intra-domain routing Some slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang T. S. Eugene Ng eugeneng at cs.rice.edu

More information

Network Routing. Packet Routing, Routing Algorithms, Routers, Router Architecture

Network Routing. Packet Routing, Routing Algorithms, Routers, Router Architecture Network Routing Packet Routing, Routing Algorithms, Routers, Router Architecture Routing Routing protocol Goal: determine good path (sequence of routers) thru network from source to dest. Graph abstraction

More information

Queries. Inf 2B: Ranking Queries on the WWW. Suppose we have an Inverted Index for a set of webpages. Disclaimer. Kyriakos Kalorkoti

Queries. Inf 2B: Ranking Queries on the WWW. Suppose we have an Inverted Index for a set of webpages. Disclaimer. Kyriakos Kalorkoti Qeries Inf B: Ranking Qeries on the WWW Kyriakos Kalorkoti School of Informatics Uniersity of Edinbrgh Sppose e hae an Inerted Index for a set of ebpages. Disclaimer I Not really the scenario of Lectre.

More information

Mobility Control and Its Applications in Mobile Ad Hoc Networks

Mobility Control and Its Applications in Mobile Ad Hoc Networks Mobility Control and Its Applications in Mobile Ad Hoc Netorks Jie W and Fei Dai, Florida Atlantic Uniersity Abstract Most eisting localized protocols in mobile ad hoc netorks, sch as data commnication

More information

The final datapath. M u x. Add. 4 Add. Shift left 2. PCSrc. RegWrite. MemToR. MemWrite. Read data 1 I [25-21] Instruction. Read. register 1 Read.

The final datapath. M u x. Add. 4 Add. Shift left 2. PCSrc. RegWrite. MemToR. MemWrite. Read data 1 I [25-21] Instruction. Read. register 1 Read. The final path PC 4 Add Reg Shift left 2 Add PCSrc Instrction [3-] Instrction I [25-2] I [2-6] I [5 - ] register register 2 register 2 Registers ALU Zero Reslt ALUOp em Data emtor RegDst ALUSrc em I [5

More information

Routing Algorithms. Daniel Zappala. CS 460 Computer Networking Brigham Young University

Routing Algorithms. Daniel Zappala. CS 460 Computer Networking Brigham Young University Routing Algorithms Daniel Zappala CS 460 Computer Networking Brigham Young University Routing 2/20 How does the Internet determine which path to use from the source to the destination? Challenges need

More information

Chapter 4: Network Layer. TDTS06 Computer networks. Subnets. Subnets. Subnets. IP Addressing: introduction

Chapter 4: Network Layer. TDTS06 Computer networks. Subnets. Subnets. Subnets. IP Addressing: introduction hapter 4: Network Layer TDTS06 omputer s Lecture 6: Network layer III Routing in the Internet Jose M. Peña, jospe@ida.liu.se ID/DIT, LiU 2009-09-16 4. 1 Introduction 4.2 Virtual circuit and datagram s

More information

Redes de Computadores. Shortest Paths in Networks

Redes de Computadores. Shortest Paths in Networks Redes de Computadores Shortest Paths in Networks Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto » What is a graph?» What is a spanning tree?» What is a shortest path tree?» How are

More information

Lecture 5 The Network Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 5 The Network Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 5 The Network Layer part II Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it IP datagram format IP protocol version number header length (bytes) type of data max number remaining

More information

What s a protocol? CE80N Introduction to Networks & The Internet. Communication Protocol. Protocol Layers. Dr. Chane L. Fullmer UCSC Winter 2002

What s a protocol? CE80N Introduction to Networks & The Internet. Communication Protocol. Protocol Layers. Dr. Chane L. Fullmer UCSC Winter 2002 E80N Introduction to Networks & The Internet Reading hapter 15 IP: Software To reate A Virtual Network Dr. hane L. Fullmer US Winter 2002 January 22 2002 E80N -- Lecture #6 1 January 22 2002 E80N -- Lecture

More information

Object Pose from a Single Image

Object Pose from a Single Image Object Pose from a Single Image How Do We See Objects in Depth? Stereo Use differences between images in or left and right eye How mch is this difference for a car at 00 m? Moe or head sideways Or, the

More information

CSCE 463/612 Networks and Distributed Processing Spring 2017

CSCE 463/612 Networks and Distributed Processing Spring 2017 CSCE 46/6 Networks and Distributed Processing Spring 07 Network Layer III Dmitri Loguinov Texas A&M University April, 07 Original slides copyright 996-004 J.F Kurose and K.W. Ross Homework #4 Grading Default

More information

Network Layer: Routing. Routing. Routing protocol. Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links

Network Layer: Routing. Routing. Routing protocol. Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links Network Layer: Routing A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

The single-cycle design from last time

The single-cycle design from last time lticycle path Last time we saw a single-cycle path and control nit for or simple IPS-based instrction set. A mlticycle processor fies some shortcomings in the single-cycle CPU. Faster instrctions are not

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 01 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Homework #4 Due Thursday, Nov 1 st Project # Due Tuesday, Nov 6 th Later this semester: Homework #5 Due Thursday,

More information

CEN445 Network Protocols and Algorithms. Chapter 2. Routing Algorithms. Dr. Ridha Ouni

CEN445 Network Protocols and Algorithms. Chapter 2. Routing Algorithms. Dr. Ridha Ouni 3/4/04 EN44 Network Protocols and lgorithms hapter Routing lgorithms Dr. Ridha Ouni Department of omputer Engineering ollege of omputer and Information Sciences King Saud University References Some slides

More information

CMPE 80N: Introduction to Networking and the Internet. Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 20

CMPE 80N: Introduction to Networking and the Internet. Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 20 CMPE 80N: Introduction to Networking and the Internet Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 0 Announcements Final exam: June 7 th at 4pm. Comprehensive. Photo id required.

More information

COM-208: Computer Networks - Homework 6

COM-208: Computer Networks - Homework 6 COM-208: Computer Networks - Homework 6. (P22) Suppose you are interested in detecting the number of hosts behind a NAT. You observe that the IP layer stamps an identification number sequentially on each

More information