Network layer. Two Key Network-Layer Functions. Datagram Forwarding table. IP datagram format. IP Addressing: introduction

Size: px
Start display at page:

Download "Network layer. Two Key Network-Layer Functions. Datagram Forwarding table. IP datagram format. IP Addressing: introduction"

Transcription

1 Netork laer transport segment sending to receiing host on sending side encapslates segments into grams on rcing side, deliers segments to transport laer laer protocols in eer host, roter roter eamines header fields in all IP grams passing throgh it application transport phsical phsical phsical phsical phsical phsical phsical phsical phsical phsical phsical phsical application transport phsical To Ke Netork-Laer Fnctions forarding: moe packets roter s inpt to appropriate roter otpt roting: determine rote taken b packets sorce to dest. roting algorithms analog: roting: process of planning trip sorce to dest forarding: process of getting throgh single interchange Netork Laer - Netork Laer - Datagram Forarding table roting algorithm local forarding table dest address otpt link address-range address-range address-range address-range IP destination address in arriing packet s header billion IP addresses, so rather than list indiidal destination address list range of addresses (aggregate table entries) Datagram Forarding table Destination ddress Range throgh throgh throgh otherise Link Interface 0 Netork Laer - Netork Laer - IP gram format IP protocol ersion nmber header length (btes) tpe of ma nmber remaining hops (decremented at each roter) pper laer protocol to delier paload to bits head. tpe of er length len serice fragment 6-bit identifier flgs offset time to pper header lie laer checksm bit sorce IP address bit destination IP address Options (if an) (ariable length, tpicall a TCP or UDP segment) total gram length (btes) for fragmentation/ reassembl IP ddressing: introdction IP address: -bit identifier for host, roter interface interface: connection beteen host/roter and phsical link roter s tpicall hae mltiple interfaces host tpicall has one interface IP addresses associated ith each interface = Netork Laer - Netork Laer -6

2 Sbnets Sbnets...0/...0/ IP address: sbnet part (high order bits) host part (lo order bits) What s a sbnet? deice interfaces ith same sbnet part of IP address can phsicall reach each other ithot interening roter sbnet... consisting of sbnets Recipe to determine the sbnets, detach each interface its host or roter, creating islands of isolated s each isolated is called a sbnet....0/ Sbnet mask: / Netork Laer - Netork Laer -8 IP addressing: CIDR CIDR: Classless InterDomain Roting sbnet portion of address of arbitrar length address format: a.b.c.d/, here is # bits in sbnet portion of address sbnet host part part / IP addresses: ho to get one? Q: Ho does a host get IP address? hard-coded b sstem admin in a file Windos: control-panel->->configration- >tcp/ip->properties UNIX: /etc/rc.config DHCP: Dnamic Host Configration Protocol: dnamicall get address as serer plg-and-pla Netork Laer -9 Netork Laer -0 IP addressing: the last ord... Q: Ho does an ISP get block of addresses? : ICNN: Internet Corporation for ssigned Names and Nmbers allocates addresses manages DNS assigns domain names, resoles disptes IP6 Initial motiation: -bit address space soon to be completel allocated. dditional motiation: header format helps speed processing/forarding header changes to facilitate QoS IP6 gram format: fied-length 0 bte header no fragmentation alloed Netork Laer - Netork Laer -

3 IP6 Header (Cont) Priorit: identif priorit among grams in flo Flo Label: identif grams in same flo. (concept of flo not ell defined). Net header: identif pper laer protocol for er pri flo label paload len net hdr hop limit sorce address (8 bits) destination address (8 bits) Other Changes IP Checksm: remoed entirel to redce processing time at each hop Options: alloed, bt otside of header, indicated b Net Header field ICMP6: ne ersion of ICMP additional message tpes, e.g. Packet Too Big mlticast grop management fnctions bits Netork Laer - Netork Laer - Transition From IP To IP6 Not all roters can be pgraded simltaneos no flag das Ho ill the operate ith mied IP and IP6 roters? Tnneling: IP6 carried as paload in IP gram among IP roters Tnneling Logical ie: Phsical ie: B E F tnnel IP6 IP6 IP6 IP6 B E F IP6 IP6 IP IP IP6 IP6 Netork Laer - Netork Laer -6 Tnneling Logical ie: Phsical ie: B E F tnnel IP6 IP6 IP6 IP6 B C D E F IP6 IP6 IP IP IP6 IP6 Flo: X Src: Src:B Dest: E Flo: X Src: Src:B Dest: E Flo: X Src: Flo: X Src: Rotingalgoritmer Hr skapas innehållet i rotingtabellerna?? -to-b: IP6 B-to-C: IP6 inside IP B-to-C: IP6 inside IP E-to-F: IP6 Netork Laer - Netork Laer -8

4 Graph abstraction Graph abstraction: costs Graph: G = (N,E) N = set of roters = {,,,,, } E = set of links ={ (,), (,), (,), (,), (,), (,), (,), (,), (,) } Remark: Graph abstraction is sefl in other contets Eample: PP, here N is set of peers and E is set of TCP connections c(, ) = cost of link (, ) - e.g., c(,) = cost cold alas be, or inersel related to bandidth, or inersel related to congestion Cost of path (,,,, p ) = c(, ) + c(, ) + + c( p-, p ) Qestion: What s the least-cost path beteen and? Roting algorithm: algorithm that finds least-cost path Netork Laer -9 Netork Laer -0 Roting lgorithm classification Link-State Roting lgorithm Global or decentralied information? Global: all roters hae complete topolog, link cost info link state algorithms Decentralied: roter knos phsicallconnected neighbors, link costs to neighbors iteratie process of comptation, echange of info ith neighbors distance ector algorithms Static or dnamic? Static: rotes change slol oer time Dnamic: rotes change more qickl periodic pdate in response to link cost changes Dijkstra s algorithm net topolog, link costs knon to all nodes accomplished ia link state broadcast all nodes hae same info comptes least cost paths one node ( sorce ) to all other nodes gies forarding table for that node iteratie: after k iterations, kno least cost path to k dest. s Notation: c(,): link cost node to ; = if not direct neighbors D(): crrent ale of cost of path sorce to dest. p(): predecessor node along path sorce to N': set of nodes hose least cost path definitiel knon Netork Laer - Netork Laer - Dijsktra s lgorithm Initialiation: N' = {} for all nodes if adjacent to then D() = c(,) 6 else D() = 8 Loop 9 find not in N' sch that D() is a minimm 0 add to N' pdate D() for all adjacent to and not in N' : D() = min( D(), D() + c(,) ) /* ne is either old or knon shortest path pls cost to */ ntil all nodes in N' Netork Laer - Dijkstra s algorithm: eample D() D() D() D() D() Step N' p() p() p() p() p() 0,,, 6,,, 6,,, 0,,, Notes: constrct shortest path tree b tracing predecessor nodes ties can eist (can be broken arbitraril) 8 9 Netork Laer -

5 Dijkstra s algorithm: another eample Dijkstra s algorithm: eample () Step 0 N' D(),p(),,, D(),p(),,,, D(),p(), D(),p(), D(),p(),,, Reslting shortest-path tree : Reslting forarding table in : destination link (,) (,) (,) (,) (,) Netork Laer - Netork Laer -6 Dijkstra s algorithm, discssion lgorithm compleit: n nodes each iteration: need to check all nodes,, not in N n(n+)/ comparisons: O(n ) more efficient implementations possible: O(nlogn) Oscillations possible: e.g., link cost = amont of carried traffic +e D B C e e initiall +e 0 D +e B 0 C 0 recompte roting 0 +e D 0 0 B C +e recompte +e 0 D +e B 0 C e recompte Netork Laer - Distance Vector lgorithm Bellman-Ford Eqation (dnamic programming) Define d () := cost of least-cost path to Then d () = min {c(,) + d () } here min is taken oer all neighbors of Netork Laer -8 Bellman-Ford eample Clearl, d () =, d () =, d () = B-F eqation sas: d () = min { c(,) + d (), c(,) + d (), c(,) + d () } = min { +, +, + } = Node that achiees minimm is net hop in shortest path forarding table Distance Vector lgorithm D () = estimate of least cost to maintains distance ector D = [D (): є N ] node : knos each neighbor : c(,) maintains its neighbors distance ectors. For each neighbor, maintains D = [D (): є N ] Netork Laer -9 Netork Laer -0

6 Distance ector algorithm () Distance Vector lgorithm () Basic idea: time-to-time, each node sends its on distance ector estimate to neighbors hen receies ne DV estimate neighbor, it pdates its on DV sing B-F eqation: D () min {c(,) + D ()} for each node N nder minor, natral conditions, the estimate D () conerge to the actal least cost d () Iteratie, asnchronos: each local iteration cased b: local link cost change DV pdate message neighbor Distribted: each node notifies neighbors onl hen its DV changes neighbors then notif their neighbors if necessar Each node: ait for (change in local link cost or msg neighbor) recompte estimates if DV to an dest has changed, notif neighbors Netork Laer - Netork Laer - D () = min{c(,) + D (), c(,) + D ()} = min{+0, +} = node table 0 node table node table D () = min{c(,) + D (), c(,) + D ()} = min{+, +0} = time Netork Laer - D () = min{c(,) + D (), c(,) + D ()} D () = min{c(,) + = min{+0, +} = D (), c(,) + D ()} node table = min{+, +0} = node table node table time Netork Laer - Distance Vector: link cost changes Distance Vector: link cost changes Link cost changes: node detects local link cost change pdates roting info, recalclates distance ector if DV changes, notif neighbors good nes traels fast 0 t 0 : detects link-cost change, pdates its DV, informs its neighbors. t : receies pdate, pdates its table, comptes ne least, sends its neighbors its DV. t : receies s pdate, pdates its distance table. s least costs do not change, so does not send a message to. Link cost changes: good nes traels fast bad nes traels slo - cont to infinit problem! iterations before algorithm stabilies: see tet Poisoned reerse: If Z rotes throgh Y to get to X : Z tells Y its (Z s) distance to X is infinite (so Y on t rote to X ia Z) ill this completel sole cont to infinit problem? 60 0 Netork Laer - Netork Laer -6 6

7 Comparison of LS and DV algorithms Message compleit LS: ith n nodes, E links, O(nE) msgs sent DV: echange beteen neighbors onl conergence time aries Speed of Conergence LS: O(n ) algorithm reqires O(nE) msgs ma hae oscillations DV: conergence time aries ma be roting loops cont-to-infinit problem Robstness: hat happens if roter malfnctions? LS: node can adertise incorrect link cost each node comptes onl its on table DV: DV node can adertise incorrect path cost each node s table sed b others error propagate thr Netork Laer -

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Introdction (forarding and roting) Reie of qeeing theor Roting algorithms Link state, Distance Vector Roter design and operation IP: Internet Protocol IP4 (datagram format, addressing, ICMP,

More information

Chapter 4: Network Layer. TDTS06 Computer networks. Chapter 4: Network Layer. Network layer. Two Key Network-Layer Functions

Chapter 4: Network Layer. TDTS06 Computer networks. Chapter 4: Network Layer. Network layer. Two Key Network-Layer Functions Chapter : Netork Laer TDTS06 Compter s Lectre : Netork laer II Roting algorithms Jose M. Peña, jospe@ida.li.se ID/DIT, LiU 009-09- Chapter goals: nderstand principles behind laer serices: laer serice models

More information

Assignments. Computer Networks LECTURE 7 Network Layer: Routing and Addressing. Network Layer Function. Internet Architecture

Assignments. Computer Networks LECTURE 7 Network Layer: Routing and Addressing. Network Layer Function. Internet Architecture ompter Netorks LETURE Netork Laer: Roting and ddressing ssignments Project : Web Pro Serer DUE OT Sandha Darkadas Department of ompter Science Uniersit of Rochester Internet rchitectre Bottom-p: phsical:

More information

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP Chapter 4: outline 4. introduction 4. irtual circuit and datagram networks 4. what s inside a router 4.4 IP: Internet Protocol datagram format IP4 addressing ICMP IP6 4.5 routing algorithms link state

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 56: Adanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 0 Fall 06 A-term Some slides are originall from the course materials of the tetbook Computer

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 56: Adanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 0 Fall 07 A-term Some slides are originall the course materials of the tetbook Computer Networking:

More information

Computer Networking. Rou1ng Algorithms. Rou1ng Algorithms. Interplay between rou1ng, forwarding. routing algorithm

Computer Networking. Rou1ng Algorithms. Rou1ng Algorithms. Interplay between rou1ng, forwarding. routing algorithm Computer Networking Interpla between roung, forwarding routing algorithm local forwarding table header alue output link 000 00 0 00 alue in arriing packet s header 0 Graph abstracon Graph: G = (N,E) u

More information

Chapter IV: Network Layer

Chapter IV: Network Layer Chapter IV: Network Laer UG3 Computer Communications & Networks (COMN) Mungjin Lee mungjin.lee@ed.ac.uk Slides copright of Kurose and Ross IP addresses: how to get one? Q: How does a host get IP address?

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Laer 4. Introduction 4. Virtual circuit and datagram networks 4. What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4. Routing algorithms Link

More information

Network layer. Network Layer 4-1. application transport network data link physical. network data link physical. network data link physical

Network layer. Network Layer 4-1. application transport network data link physical. network data link physical. network data link physical Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on receiving side, delivers segments to transport layer network layer protocols in every

More information

Interplay between routing, forwarding

Interplay between routing, forwarding Chapter 4: outline 4. introduction 4. virtual circuit and datagram networks 4. what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link state

More information

Step N' D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z) 0 u 7,u 3,u 5,u. N (uw) update D(v), D(x), D(y), D(z)

Step N' D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z) 0 u 7,u 3,u 5,u. N (uw) update D(v), D(x), D(y), D(z) Dijsktra s lgorithm Initialiation: N' = {s} for all nodes n If n adjacent to s then D(n) = c(s,n) 6 else D(n) = 8 Loop 9 Find m not in N' sch that D(m) is a minimm 0 dd m to N' pdate D(m) for all n adjacent

More information

Flooding. Routing: Outlook. Flooding Algorithms. Spanning Tree. Flooding

Flooding. Routing: Outlook. Flooding Algorithms. Spanning Tree. Flooding Roting: Otlook Flooding Flooding Link-State: complete, global knoledge Distance-Vector: iteratie, distribted calclation Goal: To distribte a packet in the hole netork (i.e. to realie a netork-ide broadcast)

More information

Announcements. CS 5565 Network Architecture and Protocols. Count-To-Infinity. Poisoned Reverse. Distance Vector: Link Cost Changes.

Announcements. CS 5565 Network Architecture and Protocols. Count-To-Infinity. Poisoned Reverse. Distance Vector: Link Cost Changes. Announcements CS 6 Network Architecture and Protocols Lecture 20 Project 2B Part/ due Wed Apr 27 :9pm Part/2 due Wed Ma :9pm Current reading assignment: Chapter.6.7, Chapter Final Ma 0, 3:2pm, MCB 26 Godmar

More information

Routing Algorithm Classification. A Link-State Routing Algorithm

Routing Algorithm Classification. A Link-State Routing Algorithm Routing Algorithm lassification Global or decentralied information? Global: All routers have complete topolog, link cost info Link state algorithms Decentralied: Router knows phsicallconnected neighbors,

More information

Chapter 5 Network Layer

Chapter 5 Network Layer Chapter Network Layer Network layer Physical layer: moe bit seqence between two adjacent nodes Data link: reliable transmission between two adjacent nodes Network: gides packets from the sorce to destination,

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14 1 Two notes on routing algorithm Do not believe ou can understand an routing protocol, e.g.,

More information

Network Layer: Routing

Network Layer: Routing Network Laer: Routing Instructor: Anirban Mahanti Office: ICT 74 Email: mahanti@cpsc.ucalgar.ca Class Location: ICT Lectures: MWF :00 :0 hours Notes derived Computer Networking: A Top Down Approach Featuring

More information

Internet Technology. 08. Routing. Paul Krzyzanowski. Rutgers University. Spring CS Paul Krzyzanowski

Internet Technology. 08. Routing. Paul Krzyzanowski. Rutgers University. Spring CS Paul Krzyzanowski Internet Technolog 08. Routing Paul Kranoski Rutgers Universit Spring 06 March, 06 CS 0-06 Paul Kranoski Routing algorithm goal st hop router = source router last hop router = destination router router

More information

Computer Networks. Instructor: Niklas Carlsson

Computer Networks. Instructor: Niklas Carlsson Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Notes derived Computer Networking: A Top Down Approach, b Jim Kurose and Keith Ross, Addison-Wesle. The slides are adapted and

More information

Initialization: Loop until all nodes in N

Initialization: Loop until all nodes in N Routing Routing lgorithm classification Routing protocol Goal: determine good path (sequence of routers) thru netork from source to dest. Graph abstraction for routing s: graph nodes are routers graph

More information

Agenda. distance-vector (what you invented last Friday) hierarchical routing routing in the Internet. v DNS assignment Q&A v Routing Algorithms

Agenda. distance-vector (what you invented last Friday) hierarchical routing routing in the Internet. v DNS assignment Q&A v Routing Algorithms Agenda v DNS assignment Q&A v Routing Algorithms distance-vector (what ou invented last Frida) hierarchical routing routing in the Internet Network Laer 4- Chapter 4 Network Laer A note on the use of these

More information

Network Layer: Control Plane 5-2

Network Layer: Control Plane 5-2 Network Laer: Control Plane EECS34 8-03-05 4- Chapter 5: network laer control plane chapter goals: understand principles behind network control plane traditional routing algorithms SDN controlllers Internet

More information

Chapter 4 Network Layer. Network Layer 4-1

Chapter 4 Network Layer. Network Layer 4-1 Chapter 4 Network Layer Network Layer 4- Chapter 4: Network Layer 4. Introduction 4. Virtual circuit and datagram networks 4. What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing

More information

Net Ne w t ork y La e y r Net Ne w t ork y La e y r Initial motivation: Net Ne w t ork y La e y r Net Ne w t ork y La e y r Net Ne w t ork

Net Ne w t ork y La e y r Net Ne w t ork y La e y r Initial motivation: Net Ne w t ork y La e y r Net Ne w t ork y La e y r Net Ne w t ork None lef! 0.0.04 IP6 Iniial moiaion: -bi address space soon o be compleel allocaed. Vin Cerf 67 ddiional moiaion: header forma helps speed processing/forarding header changes o faciliae QoS IP6 gram forma:

More information

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: IPv6 Initial motivation: 3-bit address space soon to be completel allocated. Additional motivation: Header format helps speed processing/forwarding Header changes to facilitate QoS (service classes) Reduction

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Laer A note on the use of these ppt slides: The notes used in this course are substantiall based on powerpoint slides developed and coprighted b J.F. Kurose and K.W. Ross, 1996-2007 Computer

More information

Chapter 4: Network Layer: Part II

Chapter 4: Network Layer: Part II 4: Network Laer Chapter 4: Network Laer: Part II (last revision 9/04/05. v3) 4. Introduction 4. Virtual circuit and datagram networks 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format

More information

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms Announcements CS 6 Network Architecture and Protocols Lecture 8 Godmar Back Project A due Apr 8 (toda) Project B due in parts: Apr 9 and Ma 6 See link to NY Times article on RFC Project B Project B Highlevel

More information

Network service model. Network service model. Network Layer (part 1) Virtual circuits. By the end of this lecture, you should be able to.

Network service model. Network service model. Network Layer (part 1) Virtual circuits. By the end of this lecture, you should be able to. Netork Layer (part ) y the end of this lecture, you should be able to. xplain the operation of distance vector routing algorithm xplain shortest path routing algorithm escribe the major points of RIP and

More information

Lecture 8. Network Layer (cont d) Network Layer 1-1

Lecture 8. Network Layer (cont d) Network Layer 1-1 Lecture 8 Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets Network

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer CPSC 335 Data Communication Systems Readings: 4.4.3, 4.4.4, 4.5, 4.5.1 David Nguyen Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March

More information

Summary Chapter 4. Smith College, CSC 249 March 2, q IP Addressing. q DHCP dynamic addressing

Summary Chapter 4. Smith College, CSC 249 March 2, q IP Addressing. q DHCP dynamic addressing Smith College, CSC 49 March, 08 Summary Chapter 4 q IP Addressing Network prefixes and Subnets IP datagram format q DHCP dynamic addressing Obtain: own IP address Subnet mask, DNS serer & first-hop router

More information

An Extended Fault-Tolerant Link-State Routing Protocol in the Internet

An Extended Fault-Tolerant Link-State Routing Protocol in the Internet An Extended Falt-Tolerant Link-State Roting Protocol in the Internet Jie W, Xiaola Lin, Jiannong Cao z, and Weijia Jia x Department of Compter Science and Engineering Florida Atlantic Uniersit Boca Raton,

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13 CMPE 50/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 3 Lab3 online Due March 4 th. Introduction -2 IP addresses: how to get one? Q: how does network

More information

Interplay tra routing e forwarding

Interplay tra routing e forwarding Interpla tra routing e forwarding routing algorithm local forwarding table header value output link 000 00 0 00 value in arriving packet s header 0 Network Laer 4- Grafi Grafo: G = (N,E) u v w N = insieme

More information

CMPE 80N: Introduction to Networking and the Internet

CMPE 80N: Introduction to Networking and the Internet CMPE 80N: Introduction to Networking and the Internet Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 17 CMPE 80N Spring'10 1 Announcements Next class: Presentation of fun projects

More information

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network Layer. Chapter goals:

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network Layer. Chapter goals: Chapter 4 Network Laer A note on the use of these ppt slides: The notes used in this course are substantiall based on powerpoint slides developed and coprighted b J.F. Kurose and K.W. Ross, 996-7 Computer

More information

11/13/2017 Network Layer (SSL) Network-layer functions. Recall the two network-layer functions:

11/13/2017 Network Layer (SSL) Network-layer functions. Recall the two network-layer functions: Chapter 5: outline 5. introduction 5.2 routing protocols link state distance vector 5.3 intra-as routing in the Internet 5.4 inter-as routing: BGP 5.5 The SDN control 5.6 ICMP: The Internet Control Message

More information

Routing. 9: Intro to Routing Algorithms. Routing. Roadmap. Routing Algorithm classification: Static or Dynamic?

Routing. 9: Intro to Routing Algorithms. Routing. Roadmap. Routing Algorithm classification: Static or Dynamic? Routing 9: Intro to Routing lgorithms Last Modified: // :: PM : Netork Layer a- IP Routing each router is supposed to send each IP datagram one step closer to its Ho do they do that? Static Routing Hierarchical

More information

The Network Layer Forwarding Tables and Switching Fabric

The Network Layer Forwarding Tables and Switching Fabric The Network Layer Forwarding Tables and Switching Fabric Smith College, CSC 49 February 7, 07 Network Layer Oeriew q Network layer serices Desired serices and tasks Actual serices and tasks q Forwarding

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

Lecture 4 The Network Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 4 The Network Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 4 The Network Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Network layer functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Graph abstraction: costs. Graph abstraction 10/26/2018. Interplay between routing and forwarding

Graph abstraction: costs. Graph abstraction 10/26/2018. Interplay between routing and forwarding 0/6/08 Interpla between routing and forwarding Routing Algorithms Link State Distance Vector BGP routing routing algorithm local forwarding table header value output link 000 00 0 00 value in arriving

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Network Layer IPv4, Format and Addressing,, IPv6 Prof. Lina Battestilli Fall 2017 Chapter 4 Outline Network Layer: Data Plane 4.1 Overview of Network layer

More information

CSC 4900 Computer Networks: Routing Algorithms

CSC 4900 Computer Networks: Routing Algorithms CSC 4900 Computer Networks: Routing Algorithms Professor Henry Carter Fall 2017 Last Time Subnets provide granularity for address assignment and ease management. What is 192.168.8.0? 192.168.32.0? 192.168.8.0:

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book & Slides: Computer Networking, A Top-Down Approach By: Kurose, Ross Introduction Course Overview Basics of Computer Networks

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones proided by the textbook authors. Network

More information

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane This presentation is adapted from slides produced by Jim Kurose and Keith Ross for their book, Computer Networking:

More information

Chapter 4: Network Layer

Chapter 4: Network Layer hapter 4: Network Layer hapter goals: understand principles behind layer services: routing (path selection) dealing with scale how a router works advanced topics: IPv6, multicast instantiation and implementation

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2017 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński Network Layer The majority of slides presented in

More information

Quiz. Segment structure and fields Flow control (rwnd) Timeout interval. Phases transition ssthresh setting Cwnd setting

Quiz. Segment structure and fields Flow control (rwnd) Timeout interval. Phases transition ssthresh setting Cwnd setting Quiz v 10/30/2013 (Wednesday), 20 mins v Midterm question (available on website) v TCP basics Segment structure and fields Flow control (rwnd) Timeout interval v TCP Congestion control Phases transition

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 40 Data and Computer Communications Networks Network Layer NAT, Routing, Link State, Distance Vector Prof. Lina Battestilli Fall 07 Chapter 4 Outline Network Layer: Data Plane 4. Overview of Network

More information

Chapter 5: Network Layer Control Plane. understand principles behind network control plane : traditional routing algorithms

Chapter 5: Network Layer Control Plane. understand principles behind network control plane : traditional routing algorithms Introduction to Computer Networking Gu Leduc Chapter 5 Network Laer: The Control Plane Computer Networking: A Top Down Approach, 7 th edition. Jim Kurose, Keith Ross Addison-Wesle, April 06. From Computer

More information

Protocoles et Interconnexions

Protocoles et Interconnexions Protocoles et Interconneions Course Overview and Introduction Dario Vieira Department of Computer Science EFREI Routing Protocol BGP TCP Computer Networking Preliminaries Transport Laer Network Laer Introduction

More information

Lecture 3. The Network Layer (cont d) Network Layer 1-1

Lecture 3. The Network Layer (cont d) Network Layer 1-1 Lecture 3 The Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router? Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat no true in practice. administrative autonomy

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat no true in practice. administrative autonomy Hierarchical Routing Our routing study thus far - idealization all routers identical network flat no true in practice scale: with 50 million destinations: can t store all dest s in routing tables! routing

More information

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Δίκτυα Υπολογιστών ΙΙ. Κώστας Μαγκούτης Επίκουρος Καθηγητής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων

Δίκτυα Υπολογιστών ΙΙ. Κώστας Μαγκούτης Επίκουρος Καθηγητής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Δίκτυα Υπολογιστών ΙΙ Κώστας Μαγκούτης Επίκουρος Καθηγητής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Course information introductory course in computer networking course materials: text:

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

CSCE 463/612 Networks and Distributed Processing Spring 2017

CSCE 463/612 Networks and Distributed Processing Spring 2017 CSCE 46/6 Networks and Distributed Processing Spring 07 Network Layer III Dmitri Loguinov Texas A&M University April, 07 Original slides copyright 996-004 J.F Kurose and K.W. Ross Homework #4 Grading Default

More information

Intra-AS Routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

Intra-AS Routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley. Intra-AS Routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesle http://xkcd.com/85/ Some materials copright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

More information

Internet Technology 3/21/2016

Internet Technology 3/21/2016 Intrnt Tchnolog //6 Roting algorithm goal st hop rotr = sorc rotr last hop rotr = dstination rotr rotr Intrnt Tchnolog 8. Roting sitch rotr LAN Pal Kranoski Rtgrs Unirsit Spring 6 LAN Roting algorithm:

More information

COMP211 Chapter 4 Network Layer: The Data Plane

COMP211 Chapter 4 Network Layer: The Data Plane COMP211 Chapter 4 Network Layer: The Data Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross

More information

4.5 Routing Algorithms

4.5 Routing Algorithms 4.5 ROUTING ALGORITHMS 363 to hosts enjo the securit services provided b IPsec. On the sending side, the transport laer passes a segment to IPsec. IPsec then encrpts the segment, appends additional securit

More information

Chapter 4: Network Layer, partb

Chapter 4: Network Layer, partb Chapter 4: Network Layer, partb The slides are adaptations of the slides available by the main textbook authors, Kurose&Ross Network Layer 4-1 Interplay between routing, forwarding routing algorithm local

More information

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing Last time Network layer Introduction forwarding vs. routing Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding tables, longest prefix matching IP: the Internet Protocol

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer IV Dmitri Loguinov Texas A&M University April 12, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Chapter 4: Network Layer 4. 1 Introduction 4.2 What s inside a router 4.3 IP: Internet Protocol Datagram format 4.4 Generalized

More information

Ethernet Basics Learning Switches. based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers

Ethernet Basics Learning Switches. based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers Ethernet Basics Learning Sitches based on Chapter 4 of CompTIA Netork+ Eam Guide, 4 th ed., Mike Meers Sitch Forarding A sitch forards frames based on destination MAC address Ho does the sitch kno hich

More information

Announcement. Project 2 extended to 2/20 midnight Project 3 available this weekend Homework 3 available today, will put it online

Announcement. Project 2 extended to 2/20 midnight Project 3 available this weekend Homework 3 available today, will put it online Announcement Project 2 extended to 2/20 midnight Project 3 available this weekend Homework 3 available today, will put it online Outline Introduction and Network Service Models Routing Principles Link

More information

CS 43: Computer Networks. 21: The Network Layer & IP November 7, 2018

CS 43: Computer Networks. 21: The Network Layer & IP November 7, 2018 CS 43: Computer Networks 21: The Network Layer & IP November 7, 2018 The Network Layer! Application: the application (e.g., the Web, Email) Transport: end-to-end connections, reliability Network: routing

More information

CSCI Computer Networks Fall 2016

CSCI Computer Networks Fall 2016 source: computer-s-webdesign.com CSCI 4760 - Computer Networks Fall 2016 Instructor: Prof. Roberto Perdisci perdisci@cs.uga.edu These slides are adapted from the textbook slides by J.F. Kurose and K.W.

More information

Lecture 5 The Network Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 5 The Network Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 5 The Network Layer part II Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it IP datagram format IP protocol version number header length (bytes) type of data max number remaining

More information

Network Layer: Internet Protocol

Network Layer: Internet Protocol Network Layer: Internet Protocol Motivation Heterogeneity Scale Intering IP is the glue that connects heterogeneous s giving the illusion of a homogenous one. Salient Features Each host is identified by

More information

Chapter 4: network layer

Chapter 4: network layer Chapter 4: network layer chapter goals: understand principles behind network layer services: network layer service models forwarding versus routing how a router works routing (path selection) broadcast,

More information

Network Layer. CMPS 4750/6750: Computer Networks

Network Layer. CMPS 4750/6750: Computer Networks Network Layer CMPS 4750/6750: Computer Networks 1 Outline Overview of network layer Forwarding (data plane) Routing (control plane) The Internet Protocol (IP) Routing in the Internet: OSPF, BGP 2 Network

More information

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer 1 CPSC 826 Intering The Network Layer: Routing & Addressing Outline The Network Layer Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu November 10, 2004 Network layer

More information

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: IPv6 Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: header format helps speed processing/forwarding header changes to facilitate QoS IPv6 datagram format:

More information

Internet Protocol: Routing Algorithms. Srinidhi Varadarajan

Internet Protocol: Routing Algorithms. Srinidhi Varadarajan Internet Protocol: Routing Algorithms Srinidhi Varadarajan Routing Routing protocol Goal: determine good path (sequence of routers) thru network from source to dest. Graph abstraction for routing algorithms:

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 01 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Homework #4 Due Thursday, Nov 1 st Project # Due Tuesday, Nov 6 th Later this semester: Homework #5 Due Thursday,

More information

Chapter 5 Network Layer: The Control Plane

Chapter 5 Network Layer: The Control Plane Chapter 5 Network Layer: The Control Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you

More information

UNIT III THE NETWORK LAYER

UNIT III THE NETWORK LAYER UNIT III THE NETWORK LAYER Introduction-Virtual Circuit and Datagram Networks- Inside a Router- The Internet Protocol (IP): Forwarding and Addressing in the Internet-Routing Algorithms Routing in the Internet-Broadcast

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Layer Chapter goals: understand principles behind layer services: routing (path selection) dealing with scale how a router works advanced topics: IPv6, mobility instantiation and implementation

More information

1-1. Switching Networks (Fall 2010) EE 586 Communication and. October 25, Lecture 24

1-1. Switching Networks (Fall 2010) EE 586 Communication and. October 25, Lecture 24 EE 586 Communication and Switching Networks (Fall 2010) Lecture 24 October 25, 2010 1-1 Announcements Midterm 1: Mean = 92.2 Stdev = 8 Still grading your programs (sorry about the delay) Network Layer

More information

Network layer: Overview. Network layer functions Routing IP Forwarding

Network layer: Overview. Network layer functions Routing IP Forwarding Network layer: Overview Network layer functions Routing IP Forwarding Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every host, router application

More information

EE 122: Intra-domain routing

EE 122: Intra-domain routing EE : Intra-domain routing Ion Stoica September 0, 00 (* this presentation is based on the on-line slides of J. Kurose & K. Rose) Internet Routing Internet organized as a two level hierarchy First level

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Key Network-Layer Functions. Network layer.

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Key Network-Layer Functions. Network layer. Chapter 4 Network Laer note on the use of these ppt slides: We re making these slides freel available to all (facult, students, readers). The re in PowerPoint form so ou can add, modif, and delete slides

More information

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network layer. Two Key Network-Layer Functions

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network layer. Two Key Network-Layer Functions 当前无法显示此图像 Chapter 4: Network Laer Chapter 4 Network Laer Chapter goals: understand principles behind laer services: laer service models forwarding versus routing how a works routing (path selection) dealing

More information

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016 9/9/6 S 7 Networking and the Internet Fall 06 Shortest-Path Problem Given: network topology with link costs c(x,y): link cost from node x to node y Infinity if x and y are not direct neighbors ompute:

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.13 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

IPv4. Christian Grothoff.

IPv4. Christian Grothoff. IPv4 christian@grothoff.org http://grothoff.org/christian/ Sites need to be able to interact in one single, universal space. Tim Berners-Lee 1 The Network Layer Transports datagrams from sending to receiving

More information

Data Communication & Networks G Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer

Data Communication & Networks G Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Data Communication & Networks G22.2262-001 Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Dr. Jean-Claude Franchitti New York University Computer Science

More information

TDTS06: computer Networks

TDTS06: computer Networks TDTS06: computer Networks Lecturer: Johannes Schmidt The slides are taken from the book s companion Web site with few modifications: Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith

More information

Router Architecture Overview

Router Architecture Overview Chapter 4: r Introduction (forwarding and routing) r Review of queueing theory r Router design and operation r IP: Internet Protocol m IPv4 (datagram format, addressing, ICMP, NAT) m Ipv6 r Generalized

More information

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network layer

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network layer Chapter 4 Network Laer A note on the use of these ppt slides: We re making these slides freel available to all (facult, students, readers). The re in PowerPoint form so ou can add, modif, and delete slides

More information

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm Last time Transitioning to IPv6 Tunneling Gateways Routing Graph abstraction Link-state routing Dijkstra's Algorithm Distance-vector routing Bellman-Ford Equation 10-1 This time Distance vector link cost

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information