Net Ne w t ork y La e y r Net Ne w t ork y La e y r Initial motivation: Net Ne w t ork y La e y r Net Ne w t ork y La e y r Net Ne w t ork

Size: px
Start display at page:

Download "Net Ne w t ork y La e y r Net Ne w t ork y La e y r Initial motivation: Net Ne w t ork y La e y r Net Ne w t ork y La e y r Net Ne w t ork"

Transcription

1 None lef! IP6 Iniial moiaion: -bi address space soon o be compleel allocaed. Vin Cerf 67 ddiional moiaion: header forma helps speed processing/forarding header changes o faciliae QoS IP6 gram forma: fied-lengh 40 be header no fragmenaion alloed 68 IP6 Header (Con) Comparison of IP4 and IP6 Priori: idenif priori among grams in flo Flo Label: idenif grams in same flo. (concep of flo no ell defined). Ne header: idenif pper laer proocol for IP4: 0-e head IP6: 40-be head Oher Changes IP4 Checksm: remoed enirel o redce processing ime a each hop Opions: alloed, b oside of header, indicaed b Ne Header field ICMP6: ne ersion of ICMP addiional message pes, e.g. Packe Too ig mlicas grop managemen fncions Transiion From IP4 To IP6 No all roers can be pgraded simlaneosl no flag das Ho ill he neork operae ih mied IP4 and IP6 roers? Tnneling: IP6 carried as paload in IP4 gram among IP4 roers 隧道技术 7 7

2 Tnneling Logical ie: Phsical ie: E F nnel IP6 IP6 IP6 IP6 E F IP6 IP6 IP4 IP4 IP6 IP6 Tnneling Logical ie: Phsical ie: E F nnel IP6 IP6 IP6 IP6 C E F IP6 IP6 IP4 IP4 IP6 IP6 Flo: X Src: Src: es: E Flo: X Src: Src: es: E Flo: X Src: Flo: X Src: 7 -o-: IP6 -o-c: IP6 inside IP4 -o-c: IP6 inside IP4 E-o-F: IP6 74

3 Mobile neork Yanmin Zh eparmen of Comper Science and Engineering Global ISP Home neork Regional ISP Insiional neork Inrodcion Viral circi and gram neorks Wha s inside a roer 4 IP: Inerne Proocol aagram forma IP4 addressing ICMP IP6 Roing algorihms Link sae isance Vecor Hierarchical roing 6 Roing in he Inerne RIP OSPF GP Inerpla beeen roing, forarding Graph absracion roing algorihm local forarding able header ale op link Graph: G = (N,E) ale in arriing packe s header 0 N = se of roers = {,,,,, } E = se of links ={ (,), (,), (,), (,), (,), (,), (,), (,), (,) } Remark: Graph absracion is sefl in oher neork cones Eample: PP, here N is se of peers and E is se of TCP connecions 4 Graph absracion: coss Roing lgorihm classificaion c(, ) = cos of link (, ) - e.g., c(,) = cos cold alas be, or inersel relaed o bandidh, or inersel relaed o congesion Cos of pah (,,,, p ) = c(, ) + c(, ) + + c( p-, p ) Qesion: Wha s he leas-cos pah beeen and? Roing algorihm: algorihm ha finds leas-cos pah Global or decenralied informaion? Global: all roers hae complee opolog, link cos info link sae algorihms ecenralied: roer knos phsicallconneced neighbors, link coss o neighbors ieraie process of compaion, echange of info ih neighbors disance ecor algorihms Saic or dnamic? Saic: roes change slol oer ime namic: roes change more qickl periodic pdae in response o link cos changes 6

4 Link-Sae: ig Picre Inrodcion Viral circi and gram neorks Wha s inside a roer 4 IP: Inerne Proocol aagram forma IP4 addressing ICMP IP6 Roing algorihms Link sae isance Vecor Hierarchical roing 6 Roing in he Inerne RIP OSPF GP 7 Each node measres eer neighbor Each node sends able of neighbors o all nodes Eer node compes roing pah 8 Link-Sae Roing lgorihm ijskra s lgorihm ijksra s algorihm ne opolog, link coss knon o all nodes accomplished ia link sae broadcas all nodes hae same info compes leas cos pahs one node ( sorce ) o all oher nodes gies forarding able for ha node ieraie: afer k ieraions, kno leas cos pah o k des. s Noaion: c(,): link cos node o ; = if no direc neighbors (): crren ale of cos of pah sorce o des. p(): predecessor node along pah sorce o N': se of nodes hose leas cos pah definiiel knon 9 Iniialiaion: N' = {} for all nodes 4 if adjacen o hen () = c(,) 6 else () = 7 8 Loop 9 find no in N' sch ha () is a minimm 0 add o N' pdae () for all adjacen o and no in N' : () = min( (), () + c(,) ) /* ne is eiher old or knon 4 shores pah pls cos o */ nil all nodes in N' 0 ijksra s algorihm: eample ijksra s algorihm: eample () Sep 0 4 N' (),p(),,, (),p(), 4,,, (),p(), (),p(), (),p() 4, 4, 4, Resling shores-pah ree : Resling forarding able in : desinaion link (,) (,) (,) (,) (,)

5 ijksra s algorihm, discssion lgorihm complei: n nodes each ieraion: need o check all nodes,, no in N n(n+)/ comparisons: O(n ) more efficien implemenaions possible: O(nlogn) Oscillaions possible: e.g., link cos = amon of carried raffic +e e C e iniiall +e 0 +e 0 0 C recompe roing 0 +e 0 0 C +e recompe +e 0 +e 0 e C recompe Inrodcion Viral circi and gram neorks Wha s inside a roer 4 IP: Inerne Proocol aagram forma IP4 addressing ICMP IP6 Roing algorihms Link sae isance Vecor Hierarchical roing 6 Roing in he Inerne RIP OSPF GP 4 isance Vecor: Raional ellman-ford eample ellman-ford Eqaion (dnamic programming) efine d () := cos of leas-cos pah o Then d () = min {c(,) + d () } here min is aken oer all neighbors of Node ha achiees minimm is ne hop in shores pah forarding able Clearl, d () =, d () =, d () = -F eqaion sas: d () = min { c(,) + d (), c(,) + d (), c(,) + d () } = min { +, +, + } = 4 6 isance Vecor: ig Picre des cos ne hop U X W Inf - Inf - des V cos ne hop des cos s s s ne hop s disance ecor des cos ne hop inf - inf - inf - 7 isance Vecor lgorihm () = esimae of leas cos o Node knos each neighbor : c(,) Node mainains disance ecor = [ (): є N ] Node also mainains is neighbors disance ecors For each neighbor, mainains = [ (): є N ] 8

6 isance ecor algorihm (4) isance Vecor lgorihm () asic idea: From ime-o-ime, each node sends is on disance ecor esimae o neighbors snchronos When a node receies ne V esimae neighbor, i pdaes is on V sing -F eqaion: () min {c(,) + ()} for each node N Under minor, naral condiions, he esimae () conerge o he acal leas cos d () Ieraie, asnchronos: each local ieraion cased b: local link cos change V pdae message neighbor isribed: each node noifies neighbors onl hen is V changes neighbors hen noif heir neighbors if necessar Each node: ai for (change in local link cos or msg neighbor) recompe esimaes if V o an des has changed, noif neighbors 9 0 node able 0 7 node able node able () = min{c(,) + (), c(,) + ()} = min{+0, 7+} = ime () = min{c(,) + (), c(,) + ()} = min{+, 7+0} = 7 node able 0 7 node able node able () = min{c(,) + (), c(,) + ()} = min{+0, 7+} = ime () = min{c(,) + (), c(,) + ()} = min{+, 7+0} = 7 VR Shorcomings Solion: Spli Horion ih Poison Reerse VR is pre epensie: i rns o o be O(n ) hich is oo high for a fas conergence. In VR, here is he problem of con-oinfini in he presence of node crashes. Unsiable for large neork. Con-o-infini problem Spli Horion (SH): Roer does no ell roer he pah for X if he pah is hrogh SH ih Poison Reerse: Roer ells roer ha he pah for X has a meric of inf. 4 4

Network layer. Two Key Network-Layer Functions. Datagram Forwarding table. IP datagram format. IP Addressing: introduction

Network layer. Two Key Network-Layer Functions. Datagram Forwarding table. IP datagram format. IP Addressing: introduction Netork laer transport segment sending to receiing host on sending side encapslates segments into grams on rcing side, deliers segments to transport laer laer protocols in eer host, roter roter eamines

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Introdction (forarding and roting) Reie of qeeing theor Roting algorithms Link state, Distance Vector Roter design and operation IP: Internet Protocol IP4 (datagram format, addressing, ICMP,

More information

Chapter 4: Network Layer. TDTS06 Computer networks. Chapter 4: Network Layer. Network layer. Two Key Network-Layer Functions

Chapter 4: Network Layer. TDTS06 Computer networks. Chapter 4: Network Layer. Network layer. Two Key Network-Layer Functions Chapter : Netork Laer TDTS06 Compter s Lectre : Netork laer II Roting algorithms Jose M. Peña, jospe@ida.li.se ID/DIT, LiU 009-09- Chapter goals: nderstand principles behind laer serices: laer serice models

More information

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP Chapter 4: outline 4. introduction 4. irtual circuit and datagram networks 4. what s inside a router 4.4 IP: Internet Protocol datagram format IP4 addressing ICMP IP6 4.5 routing algorithms link state

More information

Rou$ng. Rou$ng: Mapping Link to Path. Data and Control Planes. Rou$ng vs. Forwarding. Rou$ng Protocols. What Does the Protocol Compute?

Rou$ng. Rou$ng: Mapping Link to Path. Data and Control Planes. Rou$ng vs. Forwarding. Rou$ng Protocols. What Does the Protocol Compute? Ro$ng: Mapping Link o Pah Ro$ng Jennifer Reford COS : Comper Nework Lecre: MW 0-0:0am in Archiecre N0 hgp://www.c.princeon.ed/core/archie/pr/co/ link eion pah name addre Daa and Conrol Plane daa plane

More information

Computer Networking. Rou1ng Algorithms. Rou1ng Algorithms. Interplay between rou1ng, forwarding. routing algorithm

Computer Networking. Rou1ng Algorithms. Rou1ng Algorithms. Interplay between rou1ng, forwarding. routing algorithm Computer Networking Interpla between roung, forwarding routing algorithm local forwarding table header alue output link 000 00 0 00 alue in arriing packet s header 0 Graph abstracon Graph: G = (N,E) u

More information

Computational Geometry in Wireless Networks - Routing. Presented by Heather M. Michaud

Computational Geometry in Wireless Networks - Routing. Presented by Heather M. Michaud Compaional Geomery in Wireless Neworks - Roing Presened by Heaher M. Michad 1 Ad Hoc Wireless Neworks No fixed pre-exising infrasrcre Nodes can be saic or mobile Assme nodes don move dring roing or opology

More information

Shortest Path Algorithms. Lecture I: Shortest Path Algorithms. Example. Graphs and Matrices. Setting: Dr Kieran T. Herley.

Shortest Path Algorithms. Lecture I: Shortest Path Algorithms. Example. Graphs and Matrices. Setting: Dr Kieran T. Herley. Shores Pah Algorihms Background Seing: Lecure I: Shores Pah Algorihms Dr Kieran T. Herle Deparmen of Compuer Science Universi College Cork Ocober 201 direced graph, real edge weighs Le he lengh of a pah

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 56: Adanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 0 Fall 06 A-term Some slides are originall from the course materials of the tetbook Computer

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 56: Adanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 0 Fall 07 A-term Some slides are originall the course materials of the tetbook Computer Networking:

More information

Assignments. Computer Networks LECTURE 7 Network Layer: Routing and Addressing. Network Layer Function. Internet Architecture

Assignments. Computer Networks LECTURE 7 Network Layer: Routing and Addressing. Network Layer Function. Internet Architecture ompter Netorks LETURE Netork Laer: Roting and ddressing ssignments Project : Web Pro Serer DUE OT Sandha Darkadas Department of ompter Science Uniersit of Rochester Internet rchitectre Bottom-p: phsical:

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Laer 4. Introduction 4. Virtual circuit and datagram networks 4. What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4. Routing algorithms Link

More information

Step N' D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z) 0 u 7,u 3,u 5,u. N (uw) update D(v), D(x), D(y), D(z)

Step N' D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z) 0 u 7,u 3,u 5,u. N (uw) update D(v), D(x), D(y), D(z) Dijsktra s lgorithm Initialiation: N' = {s} for all nodes n If n adjacent to s then D(n) = c(s,n) 6 else D(n) = 8 Loop 9 Find m not in N' sch that D(m) is a minimm 0 dd m to N' pdate D(m) for all n adjacent

More information

6.8 Shortest Paths. Chapter 6. Dynamic Programming. Shortest Paths: Failed Attempts. Shortest Paths

6.8 Shortest Paths. Chapter 6. Dynamic Programming. Shortest Paths: Failed Attempts. Shortest Paths 1 Chaper.8 Shore Pah Dynamic Programming Slide by Kein Wayne. Copyrigh 5 Pearon-Addion Weley. All righ reered. Shore Pah Shore Pah: Failed Aemp Shore pah problem. Gien a direced graph G = (V, E), wih edge

More information

Interplay between routing, forwarding

Interplay between routing, forwarding Chapter 4: outline 4. introduction 4. virtual circuit and datagram networks 4. what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link state

More information

Chapter IV: Network Layer

Chapter IV: Network Layer Chapter IV: Network Laer UG3 Computer Communications & Networks (COMN) Mungjin Lee mungjin.lee@ed.ac.uk Slides copright of Kurose and Ross IP addresses: how to get one? Q: How does a host get IP address?

More information

Flooding. Routing: Outlook. Flooding Algorithms. Spanning Tree. Flooding

Flooding. Routing: Outlook. Flooding Algorithms. Spanning Tree. Flooding Roting: Otlook Flooding Flooding Link-State: complete, global knoledge Distance-Vector: iteratie, distribted calclation Goal: To distribte a packet in the hole netork (i.e. to realie a netork-ide broadcast)

More information

Internet Technology. 08. Routing. Paul Krzyzanowski. Rutgers University. Spring CS Paul Krzyzanowski

Internet Technology. 08. Routing. Paul Krzyzanowski. Rutgers University. Spring CS Paul Krzyzanowski Internet Technolog 08. Routing Paul Kranoski Rutgers Universit Spring 06 March, 06 CS 0-06 Paul Kranoski Routing algorithm goal st hop router = source router last hop router = destination router router

More information

Targil 8 : Image warping. Forward warping. Motion Transformations and Image Warping (cont.) Automatic Image Alignment: Lucas Kanade (cont.

Targil 8 : Image warping. Forward warping. Motion Transformations and Image Warping (cont.) Automatic Image Alignment: Lucas Kanade (cont. Hebrew Uniersi mage Processing - 006 Hebrew Uniersi mage Processing - 006 Moion Transformaions and mage Warping - conine Targil 8 : Moion Transformaions and mage Warping con. Aomaic mage Alignmen: Lcas

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14 1 Two notes on routing algorithm Do not believe ou can understand an routing protocol, e.g.,

More information

Distributed Construction of a Planar Spanner and Routing for Ad Hoc Wireless Networks

Distributed Construction of a Planar Spanner and Routing for Ad Hoc Wireless Networks Disribed Consrcion of a Planar Spanner and Roing for Ad Hoc Wireless Neorks Xiang-Yang Li Gria Calinesc Peng-Jn Wan Absrac Seeral localied roing proocols [1] garanee he delier of he packes hen he nderling

More information

Agenda. distance-vector (what you invented last Friday) hierarchical routing routing in the Internet. v DNS assignment Q&A v Routing Algorithms

Agenda. distance-vector (what you invented last Friday) hierarchical routing routing in the Internet. v DNS assignment Q&A v Routing Algorithms Agenda v DNS assignment Q&A v Routing Algorithms distance-vector (what ou invented last Frida) hierarchical routing routing in the Internet Network Laer 4- Chapter 4 Network Laer A note on the use of these

More information

Network Layer: Routing

Network Layer: Routing Network Laer: Routing Instructor: Anirban Mahanti Office: ICT 74 Email: mahanti@cpsc.ucalgar.ca Class Location: ICT Lectures: MWF :00 :0 hours Notes derived Computer Networking: A Top Down Approach Featuring

More information

Interplay tra routing e forwarding

Interplay tra routing e forwarding Interpla tra routing e forwarding routing algorithm local forwarding table header value output link 000 00 0 00 value in arriving packet s header 0 Network Laer 4- Grafi Grafo: G = (N,E) u v w N = insieme

More information

Chapter 4 Network Layer. Network Layer 4-1

Chapter 4 Network Layer. Network Layer 4-1 Chapter 4 Network Layer Network Layer 4- Chapter 4: Network Layer 4. Introduction 4. Virtual circuit and datagram networks 4. What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing

More information

Computer Networks. Instructor: Niklas Carlsson

Computer Networks. Instructor: Niklas Carlsson Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Notes derived Computer Networking: A Top Down Approach, b Jim Kurose and Keith Ross, Addison-Wesle. The slides are adapted and

More information

Initialization: Loop until all nodes in N

Initialization: Loop until all nodes in N Routing Routing lgorithm classification Routing protocol Goal: determine good path (sequence of routers) thru netork from source to dest. Graph abstraction for routing s: graph nodes are routers graph

More information

Network service model. Network service model. Network Layer (part 1) Virtual circuits. By the end of this lecture, you should be able to.

Network service model. Network service model. Network Layer (part 1) Virtual circuits. By the end of this lecture, you should be able to. Netork Layer (part ) y the end of this lecture, you should be able to. xplain the operation of distance vector routing algorithm xplain shortest path routing algorithm escribe the major points of RIP and

More information

Network Layer: Control Plane 5-2

Network Layer: Control Plane 5-2 Network Laer: Control Plane EECS34 8-03-05 4- Chapter 5: network laer control plane chapter goals: understand principles behind network control plane traditional routing algorithms SDN controlllers Internet

More information

Chapter 4: Network Layer: Part II

Chapter 4: Network Layer: Part II 4: Network Laer Chapter 4: Network Laer: Part II (last revision 9/04/05. v3) 4. Introduction 4. Virtual circuit and datagram networks 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format

More information

Routing Algorithm Classification. A Link-State Routing Algorithm

Routing Algorithm Classification. A Link-State Routing Algorithm Routing Algorithm lassification Global or decentralied information? Global: All routers have complete topolog, link cost info Link state algorithms Decentralied: Router knows phsicallconnected neighbors,

More information

Optimal Crane Scheduling

Optimal Crane Scheduling Opimal Crane Scheduling Samid Hoda, John Hooker Laife Genc Kaya, Ben Peerson Carnegie Mellon Universiy Iiro Harjunkoski ABB Corporae Research EWO - 13 November 2007 1/16 Problem Track-mouned cranes move

More information

11/13/2017 Network Layer (SSL) Network-layer functions. Recall the two network-layer functions:

11/13/2017 Network Layer (SSL) Network-layer functions. Recall the two network-layer functions: Chapter 5: outline 5. introduction 5.2 routing protocols link state distance vector 5.3 intra-as routing in the Internet 5.4 inter-as routing: BGP 5.5 The SDN control 5.6 ICMP: The Internet Control Message

More information

Ethernet Basics Learning Switches. based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers

Ethernet Basics Learning Switches. based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers Ethernet Basics Learning Sitches based on Chapter 4 of CompTIA Netork+ Eam Guide, 4 th ed., Mike Meers Sitch Forarding A sitch forards frames based on destination MAC address Ho does the sitch kno hich

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer CPSC 335 Data Communication Systems Readings: 4.4.3, 4.4.4, 4.5, 4.5.1 David Nguyen Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March

More information

COSC 3213: Computer Networks I Chapter 6 Handout # 7

COSC 3213: Computer Networks I Chapter 6 Handout # 7 COSC 3213: Compuer Neworks I Chaper 6 Handou # 7 Insrucor: Dr. Marvin Mandelbaum Deparmen of Compuer Science York Universiy F05 Secion A Medium Access Conrol (MAC) Topics: 1. Muliple Access Communicaions:

More information

Reconstruct scene geometry from two or more calibrated images. scene point. image plane. Reconstruct scene geometry from two or more calibrated images

Reconstruct scene geometry from two or more calibrated images. scene point. image plane. Reconstruct scene geometry from two or more calibrated images Sereo and Moion The Sereo Problem Reconsrc scene geomer from wo or more calibraed images scene poin focal poin image plane Sereo The Sereo Problem Reconsrc scene geomer from wo or more calibraed images

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Laer A note on the use of these ppt slides: The notes used in this course are substantiall based on powerpoint slides developed and coprighted b J.F. Kurose and K.W. Ross, 1996-2007 Computer

More information

Network management and QoS provisioning - QoS in Frame Relay. . packet switching with virtual circuit service (virtual circuits are bidirectional);

Network management and QoS provisioning - QoS in Frame Relay. . packet switching with virtual circuit service (virtual circuits are bidirectional); QoS in Frame Relay Frame relay characerisics are:. packe swiching wih virual circui service (virual circuis are bidirecional);. labels are called DLCI (Daa Link Connecion Idenifier);. for connecion is

More information

Internet Technology 3/21/2016

Internet Technology 3/21/2016 Intrnt Tchnolog //6 Roting algorithm goal st hop rotr = sorc rotr last hop rotr = dstination rotr rotr Intrnt Tchnolog 8. Roting sitch rotr LAN Pal Kranoski Rtgrs Unirsit Spring 6 LAN Roting algorithm:

More information

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: IPv6 Initial motivation: 3-bit address space soon to be completel allocated. Additional motivation: Header format helps speed processing/forwarding Header changes to facilitate QoS (service classes) Reduction

More information

CSC 4900 Computer Networks: Routing Algorithms

CSC 4900 Computer Networks: Routing Algorithms CSC 4900 Computer Networks: Routing Algorithms Professor Henry Carter Fall 2017 Last Time Subnets provide granularity for address assignment and ease management. What is 192.168.8.0? 192.168.32.0? 192.168.8.0:

More information

4.5 Routing Algorithms

4.5 Routing Algorithms 4.5 ROUTING ALGORITHMS 363 to hosts enjo the securit services provided b IPsec. On the sending side, the transport laer passes a segment to IPsec. IPsec then encrpts the segment, appends additional securit

More information

IMAGE SAMPLING AND IMAGE QUANTIZATION

IMAGE SAMPLING AND IMAGE QUANTIZATION Digial image processing IMAGE SAMPLING AND IMAGE QUANTIZATION. Inrodcion. Sampling in he wo-dimensional space Basics on image sampling The concep of spaial freqencies Images of limied bandwidh Two-dimensional

More information

Chapter 5: Network Layer Control Plane. understand principles behind network control plane : traditional routing algorithms

Chapter 5: Network Layer Control Plane. understand principles behind network control plane : traditional routing algorithms Introduction to Computer Networking Gu Leduc Chapter 5 Network Laer: The Control Plane Computer Networking: A Top Down Approach, 7 th edition. Jim Kurose, Keith Ross Addison-Wesle, April 06. From Computer

More information

Routing. 9: Intro to Routing Algorithms. Routing. Roadmap. Routing Algorithm classification: Static or Dynamic?

Routing. 9: Intro to Routing Algorithms. Routing. Roadmap. Routing Algorithm classification: Static or Dynamic? Routing 9: Intro to Routing lgorithms Last Modified: // :: PM : Netork Layer a- IP Routing each router is supposed to send each IP datagram one step closer to its Ho do they do that? Static Routing Hierarchical

More information

Assignment 2. Due Monday Feb. 12, 10:00pm.

Assignment 2. Due Monday Feb. 12, 10:00pm. Faculy of rs and Science Universiy of Torono CSC 358 - Inroducion o Compuer Neworks, Winer 218, LEC11 ssignmen 2 Due Monday Feb. 12, 1:pm. 1 Quesion 1 (2 Poins): Go-ack n RQ In his quesion, we review how

More information

Chapter 8 LOCATION SERVICES

Chapter 8 LOCATION SERVICES Disribued Compuing Group Chaper 8 LOCATION SERVICES Mobile Compuing Winer 2005 / 2006 Overview Mobile IP Moivaion Daa ransfer Encapsulaion Locaion Services & Rouing Classificaion of locaion services Home

More information

SMICE. SMICE is the new line of printing peripherals designed to revolutionize the point-of-sale market (p.o.s.)

SMICE. SMICE is the new line of printing peripherals designed to revolutionize the point-of-sale market (p.o.s.) SMICE s m a r n i c e s m i c e SMICE is he new line of prining peripherals designed o revolionize he poin-of-sale marke (p.o.s.) The fll range of SMICE prodcs offers innovaive, dynamic solions niqe in

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13 CMPE 50/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 3 Lab3 online Due March 4 th. Introduction -2 IP addresses: how to get one? Q: how does network

More information

Network layer. Network Layer 4-1. application transport network data link physical. network data link physical. network data link physical

Network layer. Network Layer 4-1. application transport network data link physical. network data link physical. network data link physical Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on receiving side, delivers segments to transport layer network layer protocols in every

More information

An Extended Fault-Tolerant Link-State Routing Protocol in the Internet

An Extended Fault-Tolerant Link-State Routing Protocol in the Internet An Extended Falt-Tolerant Link-State Roting Protocol in the Internet Jie W, Xiaola Lin, Jiannong Cao z, and Weijia Jia x Department of Compter Science and Engineering Florida Atlantic Uniersit Boca Raton,

More information

Chapter 5 Network Layer

Chapter 5 Network Layer Chapter Network Layer Network layer Physical layer: moe bit seqence between two adjacent nodes Data link: reliable transmission between two adjacent nodes Network: gides packets from the sorce to destination,

More information

MOTION DETECTORS GRAPH MATCHING LAB PRE-LAB QUESTIONS

MOTION DETECTORS GRAPH MATCHING LAB PRE-LAB QUESTIONS NME: TE: LOK: MOTION ETETORS GRPH MTHING L PRE-L QUESTIONS 1. Read he insrucions, and answer he following quesions. Make sure you resae he quesion so I don hae o read he quesion o undersand he answer..

More information

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network Layer. Chapter goals:

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network Layer. Chapter goals: Chapter 4 Network Laer A note on the use of these ppt slides: The notes used in this course are substantiall based on powerpoint slides developed and coprighted b J.F. Kurose and K.W. Ross, 996-7 Computer

More information

4. Minimax and planning problems

4. Minimax and planning problems CS/ECE/ISyE 524 Inroducion o Opimizaion Spring 2017 18 4. Minima and planning problems ˆ Opimizing piecewise linear funcions ˆ Minima problems ˆ Eample: Chebyshev cener ˆ Muli-period planning problems

More information

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II CS 152 Compuer Archiecure and Engineering Lecure 7 - Memory Hierarchy-II Krse Asanovic Elecrical Engineering and Compuer Sciences Universiy of California a Berkeley hp://www.eecs.berkeley.edu/~krse hp://ins.eecs.berkeley.edu/~cs152

More information

Announcements. CS 5565 Network Architecture and Protocols. Count-To-Infinity. Poisoned Reverse. Distance Vector: Link Cost Changes.

Announcements. CS 5565 Network Architecture and Protocols. Count-To-Infinity. Poisoned Reverse. Distance Vector: Link Cost Changes. Announcements CS 6 Network Architecture and Protocols Lecture 20 Project 2B Part/ due Wed Apr 27 :9pm Part/2 due Wed Ma :9pm Current reading assignment: Chapter.6.7, Chapter Final Ma 0, 3:2pm, MCB 26 Godmar

More information

Summary Chapter 4. Smith College, CSC 249 March 2, q IP Addressing. q DHCP dynamic addressing

Summary Chapter 4. Smith College, CSC 249 March 2, q IP Addressing. q DHCP dynamic addressing Smith College, CSC 49 March, 08 Summary Chapter 4 q IP Addressing Network prefixes and Subnets IP datagram format q DHCP dynamic addressing Obtain: own IP address Subnet mask, DNS serer & first-hop router

More information

Test - Accredited Configuration Engineer (ACE) Exam - PAN-OS 6.0 Version

Test - Accredited Configuration Engineer (ACE) Exam - PAN-OS 6.0 Version Tes - Accredied Configuraion Engineer (ACE) Exam - PAN-OS 6.0 Version ACE Exam Quesion 1 of 50. Which of he following saemens is NOT abou Palo Alo Neworks firewalls? Sysem defauls may be resored by performing

More information

Mobile Robots Mapping

Mobile Robots Mapping Mobile Robos Mapping 1 Roboics is Easy conrol behavior percepion modelling domain model environmen model informaion exracion raw daa planning ask cogniion reasoning pah planning navigaion pah execuion

More information

Restorable Dynamic Quality of Service Routing

Restorable Dynamic Quality of Service Routing QOS ROUTING Resorable Dynamic Qualiy of Service Rouing Murali Kodialam and T. V. Lakshman, Lucen Technologies ABSTRACT The focus of qualiy-of-service rouing has been on he rouing of a single pah saisfying

More information

Implementing Ray Casting in Tetrahedral Meshes with Programmable Graphics Hardware (Technical Report)

Implementing Ray Casting in Tetrahedral Meshes with Programmable Graphics Hardware (Technical Report) Implemening Ray Casing in Terahedral Meshes wih Programmable Graphics Hardware (Technical Repor) Marin Kraus, Thomas Erl March 28, 2002 1 Inroducion Alhough cell-projecion, e.g., [3, 2], and resampling,

More information

Maximum Flows: Polynomial Algorithms

Maximum Flows: Polynomial Algorithms Maximum Flow: Polynomial Algorihm Algorihm Augmening pah Algorihm - Labeling Algorihm - Capaciy Scaling Algorihm - Shore Augmening Pah Algorihm Preflow-Puh Algorihm - FIFO Preflow-Puh Algorihm - Highe

More information

Chapter 4: Network Layer, partb

Chapter 4: Network Layer, partb Chapter 4: Network Layer, partb The slides are adaptations of the slides available by the main textbook authors, Kurose&Ross Network Layer 4-1 Interplay between routing, forwarding routing algorithm local

More information

End-to-end path: route

End-to-end path: route Multi-hop Wireless Netorks CMU CS 15-829: Internet-Scale Sensor Sstems Overvie: Large-Scale Wireless Sstems Small-Scale: Ho to build single-hop ireless LAN; ho to make TCP perform ell over it Large-Scale:

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 40 Data and Computer Communications Networks Network Layer NAT, Routing, Link State, Distance Vector Prof. Lina Battestilli Fall 07 Chapter 4 Outline Network Layer: Data Plane 4. Overview of Network

More information

Motor Control. 5. Control. Motor Control. Motor Control

Motor Control. 5. Control. Motor Control. Motor Control 5. Conrol In his chaper we will do: Feedback Conrol On/Off Conroller PID Conroller Moor Conrol Why use conrol a all? Correc or wrong? Supplying a cerain volage / pulsewidh will make he moor spin a a cerain

More information

Ray Tracing II. Improving Raytracing Speed. Improving Computational Complexity. Raytracing Computational Complexity

Ray Tracing II. Improving Raytracing Speed. Improving Computational Complexity. Raytracing Computational Complexity Ra Tracing II Iproving Raracing Speed Copuer Graphics Ra Tracing II 2005 Fabio Pellacini 1 Copuer Graphics Ra Tracing II 2005 Fabio Pellacini 2 Raracing Copuaional Coplei ra-scene inersecion is epensive

More information

Image warping Li Zhang CS559

Image warping Li Zhang CS559 Wha is an image Image arping Li Zhang S559 We can hink of an image as a funcion, f: R 2 R: f(, ) gives he inensi a posiion (, ) defined over a recangle, ih a finie range: f: [a,b][c,d] [,] f Slides solen

More information

Motion along a Line. Describing Motion along a Line

Motion along a Line. Describing Motion along a Line Moion along a Line Describing Moion: Displacemen Velociy Acceleraion Uniformly Acceleraed Moion Free Fall Describing Moion along a Line Wha is he posiion, elociy, and acceleraion of he blue do a each insan

More information

Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley

Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Intra- AS Rou-ng h0p://kcd.com/85/ Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesle Some materials copright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

More information

Location. Electrical. Loads. 2-wire mains-rated. 0.5 mm² to 1.5 mm² Max. length 300 m (with 1.5 mm² cable). Example: Belden 8471

Location. Electrical. Loads. 2-wire mains-rated. 0.5 mm² to 1.5 mm² Max. length 300 m (with 1.5 mm² cable). Example: Belden 8471 Produc Descripion Insallaion and User Guide Transiser Dimmer (454) The DIN rail mouned 454 is a 4channel ransisor dimmer. I can operae in one of wo modes; leading edge or railing edge. All 4 channels operae

More information

4 Error Control. 4.1 Issues with Reliable Protocols

4 Error Control. 4.1 Issues with Reliable Protocols 4 Error Conrol Jus abou all communicaion sysems aemp o ensure ha he daa ges o he oher end of he link wihou errors. Since i s impossible o build an error-free physical layer (alhough some shor links can

More information

COMP26120: Algorithms and Imperative Programming

COMP26120: Algorithms and Imperative Programming COMP26120 ecure C3 1/48 COMP26120: Algorihms and Imperaive Programming ecure C3: C - Recursive Daa Srucures Pee Jinks School of Compuer Science, Universiy of Mancheser Auumn 2011 COMP26120 ecure C3 2/48

More information

ECO-friendly Distributed Routing Protocol for Reducing Network Energy Consumption

ECO-friendly Distributed Routing Protocol for Reducing Network Energy Consumption ECO-friendly Disribued Rouing Proocol for Reducing Nework Energy Consumpion Daisuke Arai and Kiyohio Yoshihara KDDI R&D Laboraories Inc. 2-1-15 Ohara Fujimino-shi Saiama, Japan Email: {di-arai, yosshy}@kddilabs.jp

More information

! errors caused by signal attenuation, noise.!! receiver detects presence of errors:!

! errors caused by signal attenuation, noise.!! receiver detects presence of errors:! Daa Link Layer! The Daa Link layer can be furher subdivided ino:!.! Logical Link Conrol (LLC): error and flow conrol!.! Media Access Conrol (MAC): framing and media access! differen link proocols may provide

More information

CS4311 Design and Analysis of Algorithms. Lecture 23: Elementary Graph Algorithms II

CS4311 Design and Analysis of Algorithms. Lecture 23: Elementary Graph Algorithms II CS4311 Deign and Anali of Algoihm Lece 23: Elemena Gaph Algoihm II 1 Abo hi lece Deph Fi Seach DFS Tee and DFS Foe Popeie of DFS Paenhei heoem (e impoan) Whie-pah heoem (e efl) 2 Deph Fi Seach (DFS) An

More information

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms Announcements CS 6 Network Architecture and Protocols Lecture 8 Godmar Back Project A due Apr 8 (toda) Project B due in parts: Apr 9 and Ma 6 See link to NY Times article on RFC Project B Project B Highlevel

More information

An efficient approach to improve throughput for TCP vegas in ad hoc network

An efficient approach to improve throughput for TCP vegas in ad hoc network Inernaional Research Journal of Engineering and Technology (IRJET) e-issn: 395-0056 Volume: 0 Issue: 03 June-05 www.irje.ne p-issn: 395-007 An efficien approach o improve hroughpu for TCP vegas in ad hoc

More information

geometric transformations

geometric transformations geomeric ranformaion comuer grahic ranform 28 fabio ellacini linear algebra review marice noaion baic oeraion mari-vecor mulilicaion comuer grahic ranform 28 fabio ellacini 2 marice noaion for marice and

More information

Ultimate Forwarding Resilience in OpenFlow Networks

Ultimate Forwarding Resilience in OpenFlow Networks Ulimae Forarding Resilience in OpenFlo Neorks Chrisopher Hannon Illinois Insiue of Technolog channon@hak.ii.edu Dong Jin Illinois Insiue of Technolog dong.jin@ii.edu Jianhui Wang Argonne Naional Laboraor

More information

Graph abstraction: costs. Graph abstraction 10/26/2018. Interplay between routing and forwarding

Graph abstraction: costs. Graph abstraction 10/26/2018. Interplay between routing and forwarding 0/6/08 Interpla between routing and forwarding Routing Algorithms Link State Distance Vector BGP routing routing algorithm local forwarding table header value output link 000 00 0 00 value in arriving

More information

Chapter 5 Network Layer: The Control Plane

Chapter 5 Network Layer: The Control Plane Chapter 5 Network Layer: The Control Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you

More information

Outline. CS38 Introduction to Algorithms 5/8/2014. Network flow. Lecture 12 May 8, 2014

Outline. CS38 Introduction to Algorithms 5/8/2014. Network flow. Lecture 12 May 8, 2014 /8/0 Ouline CS8 Inroducion o Algorihm Lecure May 8, 0 Nework flow finihing capaciy-caling analyi Edmond-Karp, blocking-flow implemenaion uni-capaciy imple graph biparie maching edge-dijoin pah aignmen

More information

Chapter 22: Elementary Graph Algorithms II

Chapter 22: Elementary Graph Algorithms II Chape 22: Elemena Gaph Algoihm II 1 Abo hi lece Deph Fi Seach DFS Tee and DFS Foe Popeie of DFS Paenhei heoem (e impoan) Whie-pah heoem (e efl) 2 Deph Fi Seach (DFS) An alenaie algoihm o find all eice

More information

Wireless LANs: MAC. Wireless LAN: MAC. IEEE protocol stack. Module W.lan MAC

Wireless LANs: MAC. Wireless LAN: MAC. IEEE protocol stack. Module W.lan MAC Wireless LANs: W.lan.3-2 Wireless LAN: 802.11MAC Dr.M.Y.Wu@CSE Shanghai Jiaoong Universiy Shanghai, China Module W.lan.3 Dr.W.Shu@ECE Universiy of New Mexico Albuquerque, NM, USA managemen PANs & Blueooh:

More information

CENG 477 Introduction to Computer Graphics. Modeling Transformations

CENG 477 Introduction to Computer Graphics. Modeling Transformations CENG 477 Inroducion o Compuer Graphics Modeling Transformaions Modeling Transformaions Model coordinaes o World coordinaes: Model coordinaes: All shapes wih heir local coordinaes and sies. world World

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones proided by the textbook authors. Network

More information

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems Fas Indexing: Sppor for Size-Changing Algorihms in Sackable File Sysems Erez Zadok SUNY a Sony Brook ezk@cs.snysb.ed Johan M. Andersen, Ion Bădlesc, and Jason Nieh Colmbia Universiy johan,ion,nieh @cs.colmbia.ed

More information

Protocoles et Interconnexions

Protocoles et Interconnexions Protocoles et Interconneions Course Overview and Introduction Dario Vieira Department of Computer Science EFREI Routing Protocol BGP TCP Computer Networking Preliminaries Transport Laer Network Laer Introduction

More information

Communication Networks

Communication Networks Communicaion Neworks Chaper 10 Wireless Local Area Neworks According o IEEE 802.11 Communicaion Neworks: 10. IEEE 802.11 651 10. WLANs According o IEEE 802.11 Overview Organizaion of a WLAN according o

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 01 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Homework #4 Due Thursday, Nov 1 st Project # Due Tuesday, Nov 6 th Later this semester: Homework #5 Due Thursday,

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book & Slides: Computer Networking, A Top-Down Approach By: Kurose, Ross Introduction Course Overview Basics of Computer Networks

More information

Announcements. TCP Congestion Control. Goals of Today s Lecture. State Diagrams. TCP State Diagram

Announcements. TCP Congestion Control. Goals of Today s Lecture. State Diagrams. TCP State Diagram nnouncemens TCP Congesion Conrol Projec #3 should be ou onigh Can do individual or in a eam of 2 people Firs phase due November 16 - no slip days Exercise good (beer) ime managemen EE 122: Inro o Communicaion

More information

Motion estimation. Announcements. Outline. Motion estimation

Motion estimation. Announcements. Outline. Motion estimation Annoncemens Moion esimaion Projec # is e on ne Tesa sbmission mechanism will be annonce laer his week. graing: reor is imoran resls goo/ba iscssions on imlemenaion inerface feares ec. Digial Visal Effecs

More information

Intra-AS Routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

Intra-AS Routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley. Intra-AS Routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesle http://xkcd.com/85/ Some materials copright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

More information

On the Spacetime Geometry of Galilean Cameras

On the Spacetime Geometry of Galilean Cameras On he Spaceime Geomery of Galilean Cameras Yaser Sheikh Roboics Insie Carnegie Mellon Uniersiy yaser@cs.cm.ed Alexei Griai Comper Vision Laboraory Uniersiy of Cenral Florida agrisay@cs.cf.ed Mbarak Shah

More information

CSCE 463/612 Networks and Distributed Processing Spring 2017

CSCE 463/612 Networks and Distributed Processing Spring 2017 CSCE 46/6 Networks and Distributed Processing Spring 07 Network Layer III Dmitri Loguinov Texas A&M University April, 07 Original slides copyright 996-004 J.F Kurose and K.W. Ross Homework #4 Grading Default

More information

Image warping/morphing

Image warping/morphing Image arping/morphing Image arping Digial Visual Effecs Yung-Yu Chuang ih slides b Richard Szeliski, Seve Seiz, Tom Funkhouser and leei Efros Image formaion Sampling and quanizaion B Wha is an image We

More information