ECE 1749H: Interconnec1on Networks for Parallel Computer Architectures. Introduc1on. Prof. Natalie Enright Jerger

Size: px
Start display at page:

Download "ECE 1749H: Interconnec1on Networks for Parallel Computer Architectures. Introduc1on. Prof. Natalie Enright Jerger"

Transcription

1 ECE 1749H: Interconnec1on Networks for Parallel Computer Architectures Introduc1on Prof. Natalie Enright Jerger Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 1

2 Interconnec1on Networks Introduc1on How to connect individual devices together into a community of communica1ng devices? Device: Component within a computer Single computer System of computers End Node End Node End Node End Node Device Device Device Device Link Link Link SW Interface SW Interface SW Interface SW Interface HW Interface HW Interface HW Interface HW Interface Link Types of elements: Interconnec(on Network end nodes (device + interface) links interconnec1on network Internetworking: interconnec1on of mul1ple networks Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 2 Slide courtesy Timothy Mark Pinkston and José Duato

3 Interconnec1on Networks Introduc1on Interconnection networks should be designed to transfer the maximum amount of information within the least amount of time (and cost, power constraints) so as not to bottleneck the system Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 3

4 Why study interconnects? They provide external connec1vity from system to outside world Also, connec1vity within a single computer system at many levels I/O units, boards, chips, modules and blocks inside chips Trends: high demand on communica1on bandwidth increased compu1ng power and storage capacity switched networks are replacing buses Computer architects/engineers must understand interconnect problems and solu7ons in order to more effec7vely design and evaluate systems Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 4 Slide courtesy Timothy Mark Pinkston and José Duato

5 Types of Interconnec1on Networks Interconnec1on networks can be grouped into four domains Depending on number and proximity of devices to be connected On- Chip networks (OCNs or NoCs) Devices include microarchitectural elements (func1onal units, register files), caches, directories, processors Current designs: small number of devices Ex: IBM Cell, Sun s Niagara Projected systems: dozens, hundreds of devices Ex: Intel TeraFLOPS research prototypes cores Proximity: millimeters Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 6 Slide courtesy Timothy Mark Pinkston and José Duato

6 System/Storage Area Networks (SANs) Mul1processor and mul1computer systems Interprocessor and processor- memory interconnec1ons Server and data center environments Storage and I/O components Hundreds to thousands of devices interconnected IBM Blue Gene/L supercomputer (64K nodes, each with 2 processors) Maximum interconnect distance tens of meters (typical) a few hundred meters (some) InfiniBand: 120 Gbps over a distance of 300 m Examples (standards and proprietary) InfiniBand, Myrinet, Quadrics, Advanced Switching Interconnect Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 7 Slide courtesy Timothy Mark Pinkston and José Duato

7 Local Area Network (LANs) Interconnect autonomous computer systems Machine room or throughout a building or campus Hundreds of devices interconnected (1,000s with bridging) Maximum interconnect distance few kilometers few tens of kilometers (some) Example (most popular): Ethernet, with 10 Gbps over 40Km Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 8 Slide courtesy Timothy Mark Pinkston and José Duato

8 Wide Area Networks (WANs) Interconnect systems distributed across the globe Internetworking support is required Many millions of devices interconnected Maximum interconnect distance many thousands of kilometers Example: ATM (asynchronous transfer mode) Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 9 Slide courtesy Timothy Mark Pinkston and José Duato

9 Interconnec1on Network Domains Distance (meters) 5 x x x 10 0 LANs SANs WANs 5 x 10-3 OCNs ,000 10,000 >100,000 Number of devices interconnected Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 10 Slide courtesy Timothy Mark Pinkston and José Duato

10 Course Overview Focus on On- Chip Networks Two aspects: Interconnec1on network basics Lectures covering: topology, rou1ng, flow control and router microarchitecture Second part: Mix in current OCN research with each lecture topic Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 11

11 Moore s Law: Double the number of transistors on chip every 2 years Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 12 Chart courtesy Intel Corp.

12 What is Tera- scale? TIPs of compute power opera1ng on Tera- bytes of data Entertainment TIPS Source: electronic visualiza1on lab University of Illinois Learning & Travel Performance GIPS MIPS 3D & Video Multi- Media RMS Personal Media Crea(on and Management KIPS Text Health Kilobytes Megabytes Gigabytes Terabytes Dataset Size Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 13 hip://techresearch.intel.com/ar1cles/tera- Scale/1421.htm [Ack. Jim Held, Intel Fellow]

13 Performance Scaling Challenges Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 14 [Ack. Jim Held, Intel Fellow]

14 Processor power skyrocke1ng Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 15 [Ack: Fred Pollack, Intel Fellow, 1996]

15 Mul1- core chips the answer to the power problem Cache Large Core Power 4 3 Performance 2 2 Small 1 1 Core Power = 1/4 Performance = 1/2 1 1 C1 C3 Cache C2 C Mul1- Core: Power efficient Beier power and thermal management Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 16 [Ack. Shekhar Borkar, Intel Fellow]

16 Tera- scale Research Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 17 [Ack. Jim Held, Intel Fellow]

17 On- Chip Networks (OCN or NoCs) Why On- Chip Network? Ad- hoc wiring does not scale beyond a small number of cores Prohibi1ve area Long latency OCN offers scalability efficient mul1plexing of communica1on onen modular in nature (ease verifica1on) Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 19

18 Differences between on- chip and off- chip networks Significant research in mul1- chassis interconnec1on networks (off- chip) Supercomputers Clusters of worksta1ons Internet routers Leverage research and insight but Constraints are different Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 20

19 Off- chip vs. on- chip Off- chip: I/O boilenecks Pin- limited bandwidth Inherent overheads of off- chip I/O transmission On- chip Wiring constraints Metal layer limita1ons Horizontal and ver1cal layout Short, fixed length Repeater inser1on limits rou1ng of wires Avoid rou1ng over dense logic Impact wiring density Power Consume 10-15% or more of die power budget Latency Different order of magnitude Routers consume significant frac1on of latency Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 21

20 On- Chip Network Evolu1on Ad hoc wiring Small number of nodes Buses and Crossbars Simplest variant of on- chip networks Low core counts Like tradi1onal mul1processors Bus traffic quickly saturates with a modest number of cores Crossbars: higher bandwidth Poor area and power scaling Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 22

21 Mul1core Examples (1) XBAR Sun Niagara Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 23

22 Mul1core Examples (2) RING Element Interconnect Bus 12 elements 4 unidirec1onal rings 16 Bytes wide Operate at 1.6 GHz IBM Cell Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 24

23 Many Core Example 2D MESH Intel TeraFLOPS 80 core prototype 5 GHz Each 1le: Processing engine + on- chip network router Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger)

24 Many- Core: Intel SCC Intel s Single- chip Cloud Computer (SCC) uses a 2D mesh with state of the art routers Will discuss in detail later in lecture Poten1al plaqorm for project Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 26

25 Performance and Cost Latency (sec) Zero load latency Offered Traffic (bits/sec) Performance: latency and throughput Cost: area and power Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 27 Satura1on throughput

26 Course Informa1on Website: index.html Lecture: Wed 10-12, BA 4164 Contact Informa1on: Office: 374A Prai Stop by or send me for appointment Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 28

27 Course Format ~5 weeks of lecture Covering material from book: On- Chip Networks Available for free download (within UofT) Remaining weeks: Presenta1on of research papers by you Should be interac1ve/foster discussion Cri1ques (1 page) iden1fy one idea in paper that is major contribu1on or major limita1on describe new idea (of yours) that builds on paper Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 29

28 Course Marking Scheme Evalua1on Scheme: Presenta1on: 20% Cri1ques: 35% Project: 45% Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 30

29 Course Project Propose your own topic Topics do not need to be limited to OCN Look for ways to relate OCN to your research Re- evaluate recent paper (or compare 2 papers) Can use a paper from class Or see bibliographic notes in book for ideas Or check out recent conferences: ISCA, MICRO, HPCA, NOCS etc. Can work in groups of 2 Project must be sized accordingly Enrolled in 1755? Parallel Computer Architecture and Programming Do one larger project that spans both classes Must get approval from Prof. Steffan as well See website for details Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 31

30 Next Time Look at Topology Discuss various poten1al projects Not too early to start thinking about your project and bring ques1ons Send me e- mail/stop by if you want to discuss your project early Project should Reinforce/enhance class material Add value to your research publish at conference/ workshop? Winter 2011 ECE 1749H: Interconnec1on Networks (Enright Jerger) 32

1/12/11. ECE 1749H: Interconnec3on Networks for Parallel Computer Architectures. Introduc3on. Interconnec3on Networks Introduc3on

1/12/11. ECE 1749H: Interconnec3on Networks for Parallel Computer Architectures. Introduc3on. Interconnec3on Networks Introduc3on ECE 1749H: Interconnec3on Networks for Parallel Computer Architectures Introduc3on Prof. Natalie Enright Jerger Winter 2011 ECE 1749H: Interconnec3on Networks (Enright Jerger) 1 Interconnec3on Networks

More information

ECE/CS 757: Advanced Computer Architecture II Interconnects

ECE/CS 757: Advanced Computer Architecture II Interconnects ECE/CS 757: Advanced Computer Architecture II Interconnects Instructor:Mikko H Lipasti Spring 2017 University of Wisconsin-Madison Lecture notes created by Natalie Enright Jerger Lecture Outline Introduction

More information

Interconnection Networks

Interconnection Networks Interconnection Networks Interconnection Networks Introduction How to connect individual devices together into a group of communicating devices? Device: r r r Component within a computer Single computer

More information

Low-Power Interconnection Networks

Low-Power Interconnection Networks Low-Power Interconnection Networks Li-Shiuan Peh Associate Professor EECS, CSAIL & MTL MIT 1 Moore s Law: Double the number of transistors on chip every 2 years 1970: Clock speed: 108kHz No. transistors:

More information

Lecture 1: Introduction

Lecture 1: Introduction ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2016 http://tusharkrishna.ece.gatech.edu/teaching/icn_s16/ Lecture 1: Introduction Tushar Krishna Assistant Professor School of Electrical and

More information

TDT Appendix E Interconnection Networks

TDT Appendix E Interconnection Networks TDT 4260 Appendix E Interconnection Networks Review Advantages of a snooping coherency protocol? Disadvantages of a snooping coherency protocol? Advantages of a directory coherency protocol? Disadvantages

More information

Lecture 2: Topology - I

Lecture 2: Topology - I ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017 http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/ Lecture 2: Topology - I Tushar Krishna Assistant Professor School of Electrical and

More information

ECE 1749H: Interconnec1on Networks for Parallel Computer Architectures: Rou1ng. Prof. Natalie Enright Jerger

ECE 1749H: Interconnec1on Networks for Parallel Computer Architectures: Rou1ng. Prof. Natalie Enright Jerger ECE 1749H: Interconnec1on Networks for Parallel Computer Architectures: Rou1ng Prof. Natalie Enright Jerger Announcements Feedback on your project proposals This week Scheduled extended 1 week Next week:

More information

ECSE 425 Lecture 1: Course Introduc5on Bre9 H. Meyer

ECSE 425 Lecture 1: Course Introduc5on Bre9 H. Meyer ECSE 425 Lecture 1: Course Introduc5on 2011 Bre9 H. Meyer Staff Instructor: Bre9 H. Meyer, Professor of ECE Email: bre9 dot meyer at mcgill.ca Phone: 514-398- 4210 Office: McConnell 525 OHs: M 14h00-15h00;

More information

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Aim High Intel Technical Update Teratec 07 Symposium June 20, 2007 Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Risk Factors Today s s presentations contain forward-looking statements.

More information

Lecture 1: Introduction

Lecture 1: Introduction ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017 http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/ Lecture 1: Introduction Tushar Krishna Assistant Professor School of Electrical and

More information

ECE 1749H: Interconnec1on Networks for Parallel Computer Architectures: Interface with System Architecture. Prof. Natalie Enright Jerger

ECE 1749H: Interconnec1on Networks for Parallel Computer Architectures: Interface with System Architecture. Prof. Natalie Enright Jerger ECE 1749H: Interconnec1on Networks for Parallel Computer Architectures: Interface with System Architecture Prof. Natalie Enright Jerger Systems and Interfaces Look at how systems interact and interface

More information

ECE 588/688 Advanced Computer Architecture II

ECE 588/688 Advanced Computer Architecture II ECE 588/688 Advanced Computer Architecture II Instructor: Alaa Alameldeen alaa@ece.pdx.edu Winter 2018 Portland State University Copyright by Alaa Alameldeen and Haitham Akkary 2018 1 When and Where? When:

More information

Lecture 7: Flow Control - I

Lecture 7: Flow Control - I ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017 http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/ Lecture 7: Flow Control - I Tushar Krishna Assistant Professor School of Electrical

More information

ECE 5970 Chip-Level Interconnection Networks Lecture 1: Course Overview

ECE 5970 Chip-Level Interconnection Networks Lecture 1: Course Overview ECE 5970 Chip-Level Interconnection Networks Lecture 1: Course Overview Christopher Batten Cornell University January 26, 2010 http://www.csl.cornell.edu/courses/ece5970 Agenda Course Motivation Interconnection

More information

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems.

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. Cluster Networks Introduction Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. As usual, the driver is performance

More information

Interconnection Networks

Interconnection Networks Lecture 18: Interconnection Networks Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2015 Credit: many of these slides were created by Michael Papamichael This lecture is partially

More information

Network Superhighway CSCD 330. Network Programming Winter Lecture 13 Network Layer. Reading: Chapter 4

Network Superhighway CSCD 330. Network Programming Winter Lecture 13 Network Layer. Reading: Chapter 4 CSCD 330 Network Superhighway Network Programming Winter 2015 Lecture 13 Network Layer Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-2007

More information

Interconnection Networks and Clusters. Interconnection Networks and Clusters. Interconnection Networks and Clusters

Interconnection Networks and Clusters. Interconnection Networks and Clusters. Interconnection Networks and Clusters Introduction Computer Architecture: A Quantitative Approach, 3 rd Edition Patterson and Hennessy (Morgan Kaufmann Publishers, 2003) Two reasons that computer architects should devote attention to networking:

More information

Lecture 26: Interconnects. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 26: Interconnects. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 26: Interconnects James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L26 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Housekeeping Your goal today get an overview of parallel

More information

EE 6900: Interconnection Networks for HPC Systems Fall 2016

EE 6900: Interconnection Networks for HPC Systems Fall 2016 EE 6900: Interconnection Networks for HPC Systems Fall 2016 Avinash Karanth Kodi School of Electrical Engineering and Computer Science Ohio Uversity Athens, OH 45701 Email: kodi@ohio.edu 1 Acknowledgement:

More information

ECE 588/688 Advanced Computer Architecture II

ECE 588/688 Advanced Computer Architecture II ECE 588/688 Advanced Computer Architecture II Instructor: Alaa Alameldeen alaa@ece.pdx.edu Fall 2009 Portland State University Copyright by Alaa Alameldeen and Haitham Akkary 2009 1 When and Where? When:

More information

UPCRC Overview. Universal Computing Research Centers launched at UC Berkeley and UIUC. Andrew A. Chien. Vice President of Research Intel Corporation

UPCRC Overview. Universal Computing Research Centers launched at UC Berkeley and UIUC. Andrew A. Chien. Vice President of Research Intel Corporation UPCRC Overview Universal Computing Research Centers launched at UC Berkeley and UIUC Andrew A. Chien Vice President of Research Intel Corporation Announcement Key Messages Microsoft and Intel are announcing

More information

TYPES OF COMPUTER NETWORKS

TYPES OF COMPUTER NETWORKS TYPES OF COMPUTER NETWORKS What is a Network? A network consists of two or more computers that are linked in order to share resources (such as printers and CDs), exchange files, or allow electronic communications.

More information

Achieving Lightweight Multicast in Asynchronous Networks-on-Chip Using Local Speculation

Achieving Lightweight Multicast in Asynchronous Networks-on-Chip Using Local Speculation Achieving Lightweight Multicast in Asynchronous Networks-on-Chip Using Local Speculation Kshitij Bhardwaj Dept. of Computer Science Columbia University Steven M. Nowick 2016 ACM/IEEE Design Automation

More information

BlueGene/L. Computer Science, University of Warwick. Source: IBM

BlueGene/L. Computer Science, University of Warwick. Source: IBM BlueGene/L Source: IBM 1 BlueGene/L networking BlueGene system employs various network types. Central is the torus interconnection network: 3D torus with wrap-around. Each node connects to six neighbours

More information

Intel High-Performance Computing. Technologies for Engineering

Intel High-Performance Computing. Technologies for Engineering 6. LS-DYNA Anwenderforum, Frankenthal 2007 Keynote-Vorträge II Intel High-Performance Computing Technologies for Engineering H. Cornelius Intel GmbH A - II - 29 Keynote-Vorträge II 6. LS-DYNA Anwenderforum,

More information

Introduction to Computer Networks INTRODUCTION TO COMPUTER NETWORKS

Introduction to Computer Networks INTRODUCTION TO COMPUTER NETWORKS INTRODUCTION TO COMPUTER NETWORKS Computer Networks Computer network connects two or more autonomous computers. The computers can be geographically located anywhere. LAN, MAN & WAN Network in small geographical

More information

High Performance Computing Course Notes Course Administration

High Performance Computing Course Notes Course Administration High Performance Computing Course Notes 2009-2010 2010 Course Administration Contacts details Dr. Ligang He Home page: http://www.dcs.warwick.ac.uk/~liganghe Email: liganghe@dcs.warwick.ac.uk Office hours:

More information

ProAc&ve Rou&ng In Scalable Data Centers with PARIS

ProAc&ve Rou&ng In Scalable Data Centers with PARIS ProAc&ve Rou&ng In Scalable Data Centers with PARIS Theophilus Benson Duke University Joint work with Dushyant Arora + and Jennifer Rexford* + Arista Networks *Princeton University Data Center Networks

More information

Types of Computer Networks and their Topologies Three important groups of computer networks: LAN, MAN, WAN

Types of Computer Networks and their Topologies Three important groups of computer networks: LAN, MAN, WAN Types of Computer and their Topologies Three important groups of computer networks: LAN, MAN, WAN LAN (Local Area ) 1 MAN (Metropolitan Area ) 2 WAN (Wide Area ) 3 Problems to be discussed when presenting

More information

Lecture 9: MIMD Architectures

Lecture 9: MIMD Architectures Lecture 9: MIMD Architectures Introduction and classification Symmetric multiprocessors NUMA architecture Clusters Zebo Peng, IDA, LiTH 1 Introduction MIMD: a set of general purpose processors is connected

More information

Interconnection Networks

Interconnection Networks Lecture 17: Interconnection Networks Parallel Computer Architecture and Programming A comment on web site comments It is okay to make a comment on a slide/topic that has already been commented on. In fact

More information

Link Layer. w/ credit to Rick Graziani (Cabrillo) for some of the anima<ons

Link Layer. w/ credit to Rick Graziani (Cabrillo) for some of the anima<ons Link Layer w/ credit to Rick Graziani (Cabrillo) for some of the anima

More information

Interconnection Networks: Topology. Prof. Natalie Enright Jerger

Interconnection Networks: Topology. Prof. Natalie Enright Jerger Interconnection Networks: Topology Prof. Natalie Enright Jerger Topology Overview Definition: determines arrangement of channels and nodes in network Analogous to road map Often first step in network design

More information

Link Layer. w/ much credit to Cisco CCNA and Rick Graziani (Cabrillo)

Link Layer. w/ much credit to Cisco CCNA and Rick Graziani (Cabrillo) Link Layer w/ much credit to Cisco CCNA and Rick Graziani (Cabrillo) Administra>via How are the labs going? Telnet- ing into Linux as root In /etc/pam.d/remote comment out line auth required pam_securely.so

More information

(ii) Why are we going to multi-core chips to find performance? Because we have to.

(ii) Why are we going to multi-core chips to find performance? Because we have to. CSE 30321 Computer Architecture I Fall 2009 Lab 06 Introduction to Multi-core Processors and Parallel Programming Assigned: November 3, 2009 Due: November 17, 2009 1. Introduction: This lab will introduce

More information

Basic Low Level Concepts

Basic Low Level Concepts Course Outline Basic Low Level Concepts Case Studies Operation through multiple switches: Topologies & Routing v Direct, indirect, regular, irregular Formal models and analysis for deadlock and livelock

More information

Network Design Considerations for Grid Computing

Network Design Considerations for Grid Computing Network Design Considerations for Grid Computing Engineering Systems How Bandwidth, Latency, and Packet Size Impact Grid Job Performance by Erik Burrows, Engineering Systems Analyst, Principal, Broadcom

More information

A MAC protocol for Reliable Broadcast Communica7ons in Wireless Network- on- Chip

A MAC protocol for Reliable Broadcast Communica7ons in Wireless Network- on- Chip A MAC protocol for Reliable Broadcast Communica7ons in Wireless Network- on- Chip Sergi Abadal (abadal@ac.upc.edu) Albert Mestres, Josep Torrellas, Eduard Alarcón, and Albert Cabellos- Aparicio UPC and

More information

Modular Platforms Market Trends & Platform Requirements Presentation for IEEE Backplane Ethernet Study Group Meeting. Gopal Hegde, Intel Corporation

Modular Platforms Market Trends & Platform Requirements Presentation for IEEE Backplane Ethernet Study Group Meeting. Gopal Hegde, Intel Corporation Modular Platforms Market Trends & Platform Requirements Presentation for IEEE Backplane Ethernet Study Group Meeting Gopal Hegde, Intel Corporation Outline Market Trends Business Case Blade Server Architectures

More information

Hybrid On-chip Data Networks. Gilbert Hendry Keren Bergman. Lightwave Research Lab. Columbia University

Hybrid On-chip Data Networks. Gilbert Hendry Keren Bergman. Lightwave Research Lab. Columbia University Hybrid On-chip Data Networks Gilbert Hendry Keren Bergman Lightwave Research Lab Columbia University Chip-Scale Interconnection Networks Chip multi-processors create need for high performance interconnects

More information

CS4961 Parallel Programming. Lecture 4: Memory Systems and Interconnects 9/1/11. Administrative. Mary Hall September 1, Homework 2, cont.

CS4961 Parallel Programming. Lecture 4: Memory Systems and Interconnects 9/1/11. Administrative. Mary Hall September 1, Homework 2, cont. CS4961 Parallel Programming Lecture 4: Memory Systems and Interconnects Administrative Nikhil office hours: - Monday, 2-3PM - Lab hours on Tuesday afternoons during programming assignments First homework

More information

Xilinx SSI Technology Concept to Silicon Development Overview

Xilinx SSI Technology Concept to Silicon Development Overview Xilinx SSI Technology Concept to Silicon Development Overview Shankar Lakka Aug 27 th, 2012 Agenda Economic Drivers and Technical Challenges Xilinx SSI Technology, Power, Performance SSI Development Overview

More information

Internet II. CS10 : Beauty and Joy of Computing. cs10.berkeley.edu. !!Senior Lecturer SOE Dan Garcia!!! Garcia UCB!

Internet II. CS10 : Beauty and Joy of Computing. cs10.berkeley.edu. !!Senior Lecturer SOE Dan Garcia!!!  Garcia UCB! cs10.berkeley.edu CS10 : Beauty and Joy of Computing Internet II!!Senior Lecturer SOE Dan Garcia!!!www.cs.berkeley.edu/~ddgarcia CS10 L17 Internet II (1)! Why Networks?! Originally sharing I/O devices

More information

F.1 Introduction F-2 F.2 Interconnecting Two Devices F-6 F.3 Connecting More Than Two Devices F-20 F.4 Network Topology F-30 F.

F.1 Introduction F-2 F.2 Interconnecting Two Devices F-6 F.3 Connecting More Than Two Devices F-20 F.4 Network Topology F-30 F. F.1 Introduction F-2 F.2 Interconnecting Two Devices F-6 F.3 Connecting More Than Two Devices F-20 F.4 Network Topology F-30 F.5 Network Routing, Arbitration, and Switching F-44 F.6 Switch Microarchitecture

More information

COEN-4730 Computer Architecture Lecture 08 Thread Level Parallelism and Coherence

COEN-4730 Computer Architecture Lecture 08 Thread Level Parallelism and Coherence 1 COEN-4730 Computer Architecture Lecture 08 Thread Level Parallelism and Coherence Cristinel Ababei Dept. of Electrical and Computer Engineering Marquette University Credits: Slides adapted from presentations

More information

CS780: Topics in Computer Graphics

CS780: Topics in Computer Graphics CS780: Topics in Computer Graphics Scalable Graphics/Geometric Algorithms Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/sga/ About the Instructor Joined KAIST at July this year

More information

Lecture 9: MIMD Architecture

Lecture 9: MIMD Architecture Lecture 9: MIMD Architecture Introduction and classification Symmetric multiprocessors NUMA architecture Cluster machines Zebo Peng, IDA, LiTH 1 Introduction MIMD: a set of general purpose processors is

More information

Introduction to TCP/IP Offload Engine (TOE)

Introduction to TCP/IP Offload Engine (TOE) Introduction to TCP/IP Offload Engine (TOE) Version 1.0, April 2002 Authored By: Eric Yeh, Hewlett Packard Herman Chao, QLogic Corp. Venu Mannem, Adaptec, Inc. Joe Gervais, Alacritech Bradley Booth, Intel

More information

ASPERA HIGH-SPEED TRANSFER. Moving the world s data at maximum speed

ASPERA HIGH-SPEED TRANSFER. Moving the world s data at maximum speed ASPERA HIGH-SPEED TRANSFER Moving the world s data at maximum speed ASPERA HIGH-SPEED FILE TRANSFER Aspera FASP Data Transfer at 80 Gbps Elimina8ng tradi8onal bo

More information

The Impact of Optics on HPC System Interconnects

The Impact of Optics on HPC System Interconnects The Impact of Optics on HPC System Interconnects Mike Parker and Steve Scott Hot Interconnects 2009 Manhattan, NYC Will cost-effective optics fundamentally change the landscape of networking? Yes. Changes

More information

Thread- Level Parallelism. ECE 154B Dmitri Strukov

Thread- Level Parallelism. ECE 154B Dmitri Strukov Thread- Level Parallelism ECE 154B Dmitri Strukov Introduc?on Thread- Level parallelism Have mul?ple program counters and resources Uses MIMD model Targeted for?ghtly- coupled shared- memory mul?processors

More information

E.1 Introduction E-2 E.2 Interconnecting Two Devices E-5 E.3 Connecting More than Two Devices E-20 E.4 Network Topology E-29 E.

E.1 Introduction E-2 E.2 Interconnecting Two Devices E-5 E.3 Connecting More than Two Devices E-20 E.4 Network Topology E-29 E. E.1 Introduction E-2 E.2 Interconnecting Two Devices E-5 E.3 Connecting More than Two Devices E-20 E.4 Network Topology E-29 E.5 Network Routing, Arbitration, and Switching E-45 E.6 Switch Microarchitecture

More information

Infiniband Fast Interconnect

Infiniband Fast Interconnect Infiniband Fast Interconnect Yuan Liu Institute of Information and Mathematical Sciences Massey University May 2009 Abstract Infiniband is the new generation fast interconnect provides bandwidths both

More information

Lecture 16: On-Chip Networks. Topics: Cache networks, NoC basics

Lecture 16: On-Chip Networks. Topics: Cache networks, NoC basics Lecture 16: On-Chip Networks Topics: Cache networks, NoC basics 1 Traditional Networks Huh et al. ICS 05, Beckmann MICRO 04 Example designs for contiguous L2 cache regions 2 Explorations for Optimality

More information

Service Mesh and Microservices Networking

Service Mesh and Microservices Networking Service Mesh and Microservices Networking WHITEPAPER Service mesh and microservice networking As organizations adopt cloud infrastructure, there is a concurrent change in application architectures towards

More information

Module 18: "TLP on Chip: HT/SMT and CMP" Lecture 39: "Simultaneous Multithreading and Chip-multiprocessing" TLP on Chip: HT/SMT and CMP SMT

Module 18: TLP on Chip: HT/SMT and CMP Lecture 39: Simultaneous Multithreading and Chip-multiprocessing TLP on Chip: HT/SMT and CMP SMT TLP on Chip: HT/SMT and CMP SMT Multi-threading Problems of SMT CMP Why CMP? Moore s law Power consumption? Clustered arch. ABCs of CMP Shared cache design Hierarchical MP file:///e /parallel_com_arch/lecture39/39_1.htm[6/13/2012

More information

IT 4504 Section 4.0. Network Architectures. 2008, University of Colombo School of Computing 1

IT 4504 Section 4.0. Network Architectures. 2008, University of Colombo School of Computing 1 IT 4504 Section 4.0 Network Architectures 2008, University of Colombo School of Computing 1 Section 4.1 Introduction to Computer Networks 2008, University of Colombo School of Computing 2 Introduction

More information

Local Area Networks (LANs): Packets, Frames and Technologies Gail Hopkins. Part 3: Packet Switching and. Network Technologies.

Local Area Networks (LANs): Packets, Frames and Technologies Gail Hopkins. Part 3: Packet Switching and. Network Technologies. Part 3: Packet Switching and Gail Hopkins Local Area Networks (LANs): Packets, Frames and Technologies Gail Hopkins Introduction Circuit Switching vs. Packet Switching LANs and shared media Star, bus and

More information

What s inside your computer? Session 3. Peter Henderson

What s inside your computer? Session 3. Peter Henderson What s inside your computer? Session 3 Peter Henderson phenders@butler.edu 1 Time & Space/Size & Speed Time How long does it take to do something? (retrieve data from memory, execute a computer instruction,

More information

High Performance Datacenter Networks

High Performance Datacenter Networks M & C Morgan & Claypool Publishers High Performance Datacenter Networks Architectures, Algorithms, and Opportunity Dennis Abts John Kim SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE Mark D. Hill, Series

More information

OSNT A Community-owned platform for high-performance and low-cost network testing

OSNT A Community-owned platform for high-performance and low-cost network testing May, 14 2015 OSNT A Community-owned platform for high-performance and low-cost network testing Gianni Antichi gianni.antichi@cl.cam.ac.uk 1 Let s start with the context. We all know why we need network

More information

Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects?

Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects? Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects? N. S. Islam, X. Lu, M. W. Rahman, and D. K. Panda Network- Based Compu2ng Laboratory Department of Computer

More information

Chapter 9 Multiprocessors

Chapter 9 Multiprocessors ECE200 Computer Organization Chapter 9 Multiprocessors David H. lbonesi and the University of Rochester Henk Corporaal, TU Eindhoven, Netherlands Jari Nurmi, Tampere University of Technology, Finland University

More information

Network on Chip Architecture: An Overview

Network on Chip Architecture: An Overview Network on Chip Architecture: An Overview Md Shahriar Shamim & Naseef Mansoor 12/5/2014 1 Overview Introduction Multi core chip Challenges Network on Chip Architecture Regular Topology Irregular Topology

More information

Lecture: Interconnection Networks

Lecture: Interconnection Networks Lecture: Interconnection Networks Topics: Router microarchitecture, topologies Final exam next Tuesday: same rules as the first midterm 1 Packets/Flits A message is broken into multiple packets (each packet

More information

Microprocessor Trends and Implications for the Future

Microprocessor Trends and Implications for the Future Microprocessor Trends and Implications for the Future John Mellor-Crummey Department of Computer Science Rice University johnmc@rice.edu COMP 522 Lecture 4 1 September 2016 Context Last two classes: from

More information

Buses. Disks PCI RDRAM RDRAM LAN. Some slides adapted from lecture by David Culler. Pentium 4 Processor. Memory Controller Hub.

Buses. Disks PCI RDRAM RDRAM LAN. Some slides adapted from lecture by David Culler. Pentium 4 Processor. Memory Controller Hub. es > 100 MB/sec Pentium 4 Processor L1 and L2 caches Some slides adapted from lecture by David Culler 3.2 GB/sec Display Memory Controller Hub RDRAM RDRAM Dual Ultra ATA/100 24 Mbit/sec Disks LAN I/O Controller

More information

Chapter 2: Computer-System Structures. Hmm this looks like a Computer System?

Chapter 2: Computer-System Structures. Hmm this looks like a Computer System? Chapter 2: Computer-System Structures Lab 1 is available online Last lecture: why study operating systems? Purpose of this lecture: general knowledge of the structure of a computer system and understanding

More information

Uniprocessor Computer Architecture Example: Cray T3E

Uniprocessor Computer Architecture Example: Cray T3E Chapter 2: Computer-System Structures MP Example: Intel Pentium Pro Quad Lab 1 is available online Last lecture: why study operating systems? Purpose of this lecture: general knowledge of the structure

More information

EECS 598: Integrating Emerging Technologies with Computer Architecture. Lecture 12: On-Chip Interconnects

EECS 598: Integrating Emerging Technologies with Computer Architecture. Lecture 12: On-Chip Interconnects 1 EECS 598: Integrating Emerging Technologies with Computer Architecture Lecture 12: On-Chip Interconnects Instructor: Ron Dreslinski Winter 216 1 1 Announcements Upcoming lecture schedule Today: On-chip

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Network Superhighway Spring 2018 Lecture 13 Network Layer Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-2007

More information

An introduction on the on-chip networks (NoC)

An introduction on the on-chip networks (NoC) Friday, October 12th, 2012 An introduction on the on-chip networks (NoC) Davide Zoni PhD Student email: zoni@elet.polimi.it webpage: home.dei.polimi.it/zoni Outline Introduction to Network-on-Chip New

More information

Bridging and Switching Basics

Bridging and Switching Basics CHAPTER 4 Bridging and Switching Basics This chapter introduces the technologies employed in devices loosely referred to as bridges and switches. Topics summarized here include general link-layer device

More information

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E)

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) Lecture 12: Interconnection Networks Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) 1 Topologies Internet topologies are not very regular they grew

More information

Computer Communication Networks Lecture No. 1

Computer Communication Networks Lecture No. 1 Computer Communication Networks Lecture No. 1 Reference books used in lectures 1- Computer Networks, Tanenbaum 2- Communication networks, Sharam Hekmat 3- Computer Networks, a system approach, L. Peterson

More information

Natalie Enright Jerger, Jason Anderson, University of Toronto November 5, 2010

Natalie Enright Jerger, Jason Anderson, University of Toronto November 5, 2010 Next Generation FPGA Research Natalie Enright Jerger, Jason Anderson, and Ali Sheikholeslami l i University of Toronto November 5, 2010 Outline Part (I): Next Generation FPGA Architectures Asynchronous

More information

New Dimensions in Microarchitecture Harnessing 3D Integration Technologies

New Dimensions in Microarchitecture Harnessing 3D Integration Technologies New Dimensions in Microarchitecture Harnessing 3D Integration Technologies Kerry Bernstein IBM T.J. Watson Research Center Yorktown Heights, NY 6 March, 27 San Jose, California DARPA Microsystems Technology

More information

CMSC 611: Advanced. Interconnection Networks

CMSC 611: Advanced. Interconnection Networks CMSC 611: Advanced Computer Architecture Interconnection Networks Interconnection Networks Massively parallel processor networks (MPP) Thousands of nodes Short distance (

More information

Future Routing Schemes in Petascale clusters

Future Routing Schemes in Petascale clusters Future Routing Schemes in Petascale clusters Gilad Shainer, Mellanox, USA Ola Torudbakken, Sun Microsystems, Norway Richard Graham, Oak Ridge National Laboratory, USA Birds of a Feather Presentation Abstract

More information

1. What is a Computer Network? interconnected collection of autonomous computers connected by a communication technology

1. What is a Computer Network? interconnected collection of autonomous computers connected by a communication technology Review Questions for exam Preparation (22-07-2017) 1. What is a Computer Network? interconnected collection of autonomous computers connected by a communication technology 2. What is the Internet? "network

More information

Brief Background in Fiber Optics

Brief Background in Fiber Optics The Future of Photonics in Upcoming Processors ECE 4750 Fall 08 Brief Background in Fiber Optics Light can travel down an optical fiber if it is completely confined Determined by Snells Law Various modes

More information

Lecture 3: Flow-Control

Lecture 3: Flow-Control High-Performance On-Chip Interconnects for Emerging SoCs http://tusharkrishna.ece.gatech.edu/teaching/nocs_acaces17/ ACACES Summer School 2017 Lecture 3: Flow-Control Tushar Krishna Assistant Professor

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture Lecture 9: Multiprocessors Challenges of Parallel Processing First challenge is % of program inherently

More information

SMP and ccnuma Multiprocessor Systems. Sharing of Resources in Parallel and Distributed Computing Systems

SMP and ccnuma Multiprocessor Systems. Sharing of Resources in Parallel and Distributed Computing Systems Reference Papers on SMP/NUMA Systems: EE 657, Lecture 5 September 14, 2007 SMP and ccnuma Multiprocessor Systems Professor Kai Hwang USC Internet and Grid Computing Laboratory Email: kaihwang@usc.edu [1]

More information

Extending InfiniBand Globally

Extending InfiniBand Globally Extending InfiniBand Globally Eric Dube (eric@baymicrosystems.com) com) Senior Product Manager of Systems November 2010 Bay Microsystems Overview About Bay Founded in 2000 to provide high performance networking

More information

Architecting the High Performance Storage Network

Architecting the High Performance Storage Network Architecting the High Performance Storage Network Jim Metzler Ashton, Metzler & Associates Table of Contents 1.0 Executive Summary...3 3.0 SAN Architectural Principals...5 4.0 The Current Best Practices

More information

Parallel Architectures

Parallel Architectures Parallel Architectures Part 1: The rise of parallel machines Intel Core i7 4 CPU cores 2 hardware thread per core (8 cores ) Lab Cluster Intel Xeon 4/10/16/18 CPU cores 2 hardware thread per core (8/20/32/36

More information

Introduction. High Speed LANs. Emergence of High-Speed LANs. Characteristics of High Speed LANS. Text ch. 6, High-Speed Networks and

Introduction. High Speed LANs. Emergence of High-Speed LANs. Characteristics of High Speed LANS. Text ch. 6, High-Speed Networks and High Speed LANs 3BA33 David Lewis 2 nd Semester 2006-07 3BA33 D.Lewis 2007 1 Characteristics of High Speed LANS 3BA33 D.Lewis 2007 3 Introduction Fast Ethernet and Gigabit Ethernet Fibre Channel High-speed

More information

Interconnection Network. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Interconnection Network. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Interconnection Network Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Topics Taxonomy Metric Topologies Characteristics Cost Performance 2 Interconnection

More information

CSE 141: Computer Architecture. Professor: Michael Taylor. UCSD Department of Computer Science & Engineering

CSE 141: Computer Architecture. Professor: Michael Taylor. UCSD Department of Computer Science & Engineering CSE 141: Computer 0 Architecture Professor: Michael Taylor RF UCSD Department of Computer Science & Engineering Computer Architecture from 10,000 feet foo(int x) {.. } Class of application Physics Computer

More information

Next hop in rou-ng Summary of Future Internet WP1 work. Hannu Flinck

Next hop in rou-ng Summary of Future Internet WP1 work. Hannu Flinck Next hop in rou-ng Summary of Future Internet WP1 work Hannu Flinck Original focus on Rou-ng Scalability Mo$va$on: Internet Architecture Board stated (in RFC 4984): rou-ng scalability is the most important

More information

ECE 1749H: Interconnec1on Networks for Parallel Computer Architectures: Rou1ng. Prof. Natalie Enright Jerger

ECE 1749H: Interconnec1on Networks for Parallel Computer Architectures: Rou1ng. Prof. Natalie Enright Jerger ECE 1749H: Interconnec1on Networks for Parallel Computer Architectures: Rou1ng Prof. Natalie Enright Jerger Rou1ng Overview Discussion of topologies assumed ideal rou1ng In prac1ce Rou1ng algorithms are

More information

Networking: Hardware, Rou?ng and new Challenges

Networking: Hardware, Rou?ng and new Challenges Mestrado em Engenharia Informá?ca e de Computadores Master Degree (MSc) in Informa?on Systems and Computer Engineering Administração e Gestão de Infra-estruturas de IT IT Infrastructure Management and

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Vijay Nagarajan and Prof. Nigel Topham! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

COMP 322: Principles of Parallel Programming. Lecture 17: Understanding Parallel Computers (Chapter 2) Fall 2009

COMP 322: Principles of Parallel Programming. Lecture 17: Understanding Parallel Computers (Chapter 2) Fall 2009 COMP 322: Principles of Parallel Programming Lecture 17: Understanding Parallel Computers (Chapter 2) Fall 2009 http://www.cs.rice.edu/~vsarkar/comp322 Vivek Sarkar Department of Computer Science Rice

More information

PicoServer : Using 3D Stacking Technology To Enable A Compact Energy Efficient Chip Multiprocessor

PicoServer : Using 3D Stacking Technology To Enable A Compact Energy Efficient Chip Multiprocessor PicoServer : Using 3D Stacking Technology To Enable A Compact Energy Efficient Chip Multiprocessor Taeho Kgil, Shaun D Souza, Ali Saidi, Nathan Binkert, Ronald Dreslinski, Steve Reinhardt, Krisztian Flautner,

More information

Computer Architecture s Changing Definition

Computer Architecture s Changing Definition Computer Architecture s Changing Definition 1950s Computer Architecture Computer Arithmetic 1960s Operating system support, especially memory management 1970s to mid 1980s Computer Architecture Instruction

More information

Network core and metrics

Network core and metrics Network core and metrics latency propaga-on transmit queue Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Some materials copyright 1996-2012 J.F Kurose and

More information