Multi-dimensional Parallel Training of Winograd Layer on Memory-Centric Architecture

Size: px
Start display at page:

Download "Multi-dimensional Parallel Training of Winograd Layer on Memory-Centric Architecture"

Transcription

1 The 51st Annual IEEE/ACM International Symposium on Microarchitecture Multi-dimensional Parallel Training of Winograd Layer on Memory-Centric Architecture Byungchul Hong Yeonju Ro John Kim FuriosaAI Samsung Research KAIST

2 Neural Network Training : Scalability matters Today the job of training machine learning models is limited by compute, if we had faster processors we d run bigger models - Greg Diamos, Senior Researcher, Baidu (EE times, Sep 2016) Nvidia DGX-2 : Designed to train the previously impossible Nvidia DGX-1 Nvidia DGX-2 2

3 Neural Network Training : Scalability matters Data Parallel Training is widely used for CNN Distributes inputs, and duplicates weights Weight update through collective communication input batch W 0 W 1 W 2 Reduce Broadcast W 3 W W update : worker 3

4 Scalable Parallel Training of CNN Data Parallel : constant amount of communication per worker Common approach to make DPT scalable is increasing batch size However, large batch can lower convergence stability or require longer training [Masters, arxiv 18], [Hoffer, NIPS 17] input batch W 0 W 0 1 Assume a moderate fixed batch size (256) W W 0 1 W 1 W 2 W 0 W 3 W 1 Reduce Broadcast We explore a new parallelism dimension and interconnect W 0 architecture W 1 W W for scalable parallel training update W W update Communication time can limit scalability with a fixed batch size : worker 4

5 Contents Background / Motivation Winograd transform and Intra-tile parallelism Multi-dimensional Parallel Training Hybrid Interconnect topology and Dynamic clustering Evaluation Conclusion

6 Tile based Winograd Transform for CNN Convolution Dot products 2x~4x reduction in multiplication, but increase in memory access Supported by Nvidia cudnn, Intel Nervana, NNPACK (Caffe2, PyTorch, MXNet) Winograd Layer [Li, arxiv 17] Spatial Domain Winograd Domain w Transform W x X Y Transform Spatial Domain Activation y T : tile T element 6

7 Intra-tile parallelism in transformed convolution Element-wise independent computation Intra-tile parallelism x y X Y w W tile Direct convolution Transformed convolution 7

8 Multi-dimensional Parallel Training (MPT) Data + Intra-tile parallelism a row = cluster (Intra-tile parallel), a column = group (Data parallel) cluster Intra-tile Parallel Data Parallel group weight W Data parallel training fmap tile transfer + weight communication within group - Tile transfer required Multi-dimensional parallel training 8

9 16 workers per group Hybrid Interconnect Network Architecture Two communication types (weight, tile) have different traffic patterns Hybrid interconnect network topology : Ring + High-radix gr0 gr1 gr2 gr3 gr4 gr7 gr8 gr11 gr12 gr15 High-radix (FBFLY) network for intra-cluster network : for all-to-all communication gr0 gr1 gr2 gr3 gr4 gr5 gr6 gr7 gr8 gr 12 gr9 gr 13 gr 10 gr 14 gr 11 gr 15 Host CPU : worker Ring for intra-group network : for collective communication 9

10 Challenges of MPT Early layer Larger feature map Smaller weights Tile transfer >> Weight communication Late layer Smaller feature map Larger weights Weight communication >> Tile transfer MPT Bad MPT Good MPT helps for late layers, but huge amount of tile transfer in a few early layers can degrade overall performance. 10

11 Dynamic clustering to minimize the overhead of MPT Multiple possible configurations of MPT Reconfigures the MPT organization through different routing among the workers to minimize overall communication per layer. Data parallel = MPT with 1 group Dynamic clustering MPT with 2 groups MPT with 4 groups W 11

12 16 workers per group Interconnect Network with Dynamic clustering Convolution layers have different layer structure Balance the Weight and tile communication : Dynamic clustering gr0 gr1 gr2 gr3 gr4 gr7 gr8 gr11 gr12 gr15 Host CPU Host CPU Host CPU # groups = 16 # groups = 4 # groups = 1 Host CPU Exploit the connectivity through the host 12

13 16 HMC per group crossbar align Scratch pad Scratch pad Scalable Near-data Processing Architecture gr0 DRAM layers 1. To utilize higher bandwidth of 3D-stacked memory (Winograd transform reduces computation, but increases data access) 2. To exploit the high-speed serial links for hybrid interconnect topology Logic layer gr1 gr2 gr3 gr4 gr7 Input buffer Input buffer PE PE PE PE Systolic Array (MAC) Compute Host CPU Output buffer gr8 gr11 on-chip gr12 network gr15 (control) Input buffer Input buffer Acc Trans -pose Instr. ALU ALU Accum. Input DMA Decode Vector Processor Addr Use NDP for worker Output DMA on-chip network (Data) Task scheduler Task Graph Dependency check Control p2p Comm. collective Comm. Communication DRAM, I/O link 13

14 More details in the paper Activation prediction with non-uniform quantization Transfers quantized data to predict the activations Skip the transfer of tile data transformed to non-activated neurons No accuracy loss with conservative prediction Micro-architecture for communication logic Sparse data transfer for tile transfer with activation prediction Concurrent collective communication for Reduction 14

15 Evaluation - Workloads Layer-wise evaluation for detailed analysis Abbr. CNN layer I, J (# channel) x(y) dim. w dim. Early ResNet-34 conv2 x 128,128 56x56 3x3 Mid-1 ResNet-34 conv4 x 256,256 14x14 3x3 Mid-2 WRN conv3 320,320 16x16 3x3 Late-1 ResNet-34 conv5 x 512,512 7x7 3x3 Late-2 WRN conv4 640,640 8x8 3x3 Full CNN evaluation for overall impact and comparison Used CNNs having large parameter (weight) size Network Wide ResNet [Zagoryuko, arxiv 16] ResNet [He, CVPR 16] FractalNet [Larsson, arxiv 16] Configuration WRN ResNet-34 4 block, 4 column 15

16 Evaluation - Methodology Evaluated System 1 CPU, 256 NDP modules Network (Ring + FBFLY) Router clock : 1GHz 3D-stacked Memory : 320GB/sec bandwidth Worker model implemented on the cycle-accurate network simulator System Configurations Abbr. System Configuration d_dp Direct convolution with data parallelism (update w) w_dp Winograd convolution with data parallelism (update w) w_mp Winograd convolution with MPT (update W) w_mp+* w_mp + dynamic clustering + activation prediction Baseline Proposed 16

17 backward - Execution time backward-energy forward - Execution time forward-energy Evaluation Layer-wise Results Execution time Energy d_dp w_dp (baseline) w_mp w_mp Early Late-2 GMEAN * 0.84x GMEAN Compute SRAM DRAM Link Early Late-2 GMEAN 4.1x GMEAN Compute SRAM DRAM Link 17

18 100 Images/sec (log scale) Evaluation Full CNN Results Comparison with DGX-1 system (8 Volta GPUs with 6 Nvlinks) NCCL library is used for collective communication, batch size = 256 Similar power consumption with 256 NDP workers 8gpu 1ndp 256ndp w_dp 256ndp w_mp 256ndp w_mp+* x 80x 168x x 221x x x 8 1x 4 2 1x 1 Wide ResNet ResNet-34 FractalNet : 2.7x performance increase (up to 6x for late layers) from different parallelism with the same worker architecture 18

19 Conclusion Exploited element-wise computation (or intra-tile parallelism) of Winograd transformed convolution for scalable training. Proposed multi-dimensional parallel training (MPT) that combines data parallelism and intra-tile parallelism. MPT creates a new type of communication (tile transfer) with very different traffic pattern than weight communication. Proposed hybrid interconnect topology (Ring + High-radix topology) Proposed dynamic clustering and activation prediction to minimize the overhead of MPT (details in paper) Results in 2.7x performance increase compared to data parallelism with the same NDP architecture (up to 6x for late layers). 19

20 Thank you

21 Back-up slides

22 Background : Training of CNN Synchronous Stochastic Gradient Descent (S-SGD) Weight update per mini-batch Composed of three phases Forward propagation (fprop) Backward propagation (bprop) Update gradients (updategrad) input f.map x output f.map weight w y x y w Act. w update y w f x fprop (bprop) updategrad 22

23 Winograd Transform updategrad phase : No transformation Winograd domain data X and Y are stored to DRAM at fprop and bprop phases, and weights are updated directly in Winograd domain. Winograd Domain old Load from DRAM X W W update new W Y updategrad

24 Winograd Transform with 4D tensors Input feature maps Weights Output feature maps B batch x I ch. J channels w I ch. B batch y J ch. Transform B t I ch. J channles I ch. B t J ch. X W Y u T : tile with T T elements v

25 Communication amount (MB) Communication amount (MB) Challenges of MPT Early layer Larger feature map Smaller weights Tile transfer > Weight comm. Late layer Smaller feature map Larger weights Weight comm. > Tile transfer Number of workers (p) Number of workers (p) Data parallel (weights) MPT (tiles) MPT (weights)

26 Activation prediction without accuracy loss A simple idea Inverse-transform of a tile to spatial domain neurons is not necessary if the spatial domain neurons are all non-activated. Source worker Non-uniform Quantization Destination worker Calculate estimated value and max. quant. error Skips data transfer for non act. tile Conservative prediction (predict to non-activated if est. value < max. error)

27 Activation prediction without accuracy loss Non-uniform quantization : To follow the distribution of the value of tile data Hardware logic of non-uniform quantization for single-precision float

28 Activation prediction without accuracy loss Act. predict Dest. worker Source worker max. possible error (+) compare y(est.) 2D Predict 1D Predict Max. error (2D) + - Max. error (1D) Transform (2D) Transform (1D) or Transform (1D) uniform value Resolution region Q.decode Tile assemble Quantizer μ, μ, σ 28

29 Activation prediction without accuracy loss Best result with 4-region quant, and showed 53.6~60% of tile transfer 29

30 Scalable Near-data Processing Architecture Communication units Winograd Transfrom 0- unpack Quantizer Prediction Act. map packing (compress) Packet generator Link Communication buffers DRAM DMA Addr gen. push Free Entry List Data partially movable shift register Pointer Act. map pack p3 p2 p1 p0 pack p1 p3 p2 p0 pop Used for Tile transfer - Tile gathering with act. prediction : Data packing p2p (compression) comm. unit is required, and pointer-based shift register is used Buffer Alloc. weight update chunk Reduce layer Reduce crossbar Dynamic clustering dest. Packet generator Broadcast Link Link Used for Collective communication - Ring-based (pipelined) reduce / broadcast - Concurrent collective communication comm. unitwith multiple reduce logic / buffers 30

31 100 Images/sec. (log scale) Normalized Images/sec (per Watt) Evaluation Full CNN Results Full CNN evaluation Comparison with state-of-the-art multi-gpu system Nvidia DGX-1 (8 Volta GPU + NVlink), NCCL collective comm., TensorFlow 1gpu 2gpu 4gpu 8gpu 1ndp 256ndp (w_dp) 256ndp (w_mp++) x 1x 183x 168x 80x Wide ResNet ResNet-34 FractalNet 1x Batch size = 256 (fixed) 68x 1x 221x 8gpu 256ndp (w_dp) 256ndp (w_mp++) K 4K 2K Wide ResNet ResNet-34 FractalNet Batch size increased to show the best performance for multi- GPU system 31

32 1/Time (5 layers) Results Applying MDP to conventional network (Ethernet) and parameter server system Communication reduction has larger impact for low BW system Parameter servers: PS PS PS Network (switches) cluster Transform, Act. predict W p + Tiles p p workers: group0 group1 gruop0 group High BW Low BW w_dp w_mp++ Performance increase of MDP compared to Data Parallel : 2.8x (High BW system) 4.1x (Low BW system) 32

High Performance Computing

High Performance Computing High Performance Computing 9th Lecture 2016/10/28 YUKI ITO 1 Selected Paper: vdnn: Virtualized Deep Neural Networks for Scalable, MemoryEfficient Neural Network Design Minsoo Rhu, Natalia Gimelshein, Jason

More information

TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory

TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, Christos Kozyrakis Stanford University Platform Lab Review Feb 2017 Deep Neural

More information

CafeGPI. Single-Sided Communication for Scalable Deep Learning

CafeGPI. Single-Sided Communication for Scalable Deep Learning CafeGPI Single-Sided Communication for Scalable Deep Learning Janis Keuper itwm.fraunhofer.de/ml Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany Deep Neural Networks

More information

Deep Learning Accelerators

Deep Learning Accelerators Deep Learning Accelerators Abhishek Srivastava (as29) Samarth Kulshreshtha (samarth5) University of Illinois, Urbana-Champaign Submitted as a requirement for CS 433 graduate student project Outline Introduction

More information

Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters

Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters Hao Zhang Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu, Jianliang Wei, Pengtao Xie,

More information

Arm s First-Generation Machine Learning Processor

Arm s First-Generation Machine Learning Processor Arm s First-Generation Machine Learning Processor Ian Bratt 2018 Arm Limited Introducing the Arm Machine Learning (ML) Processor Optimized ground-up architecture for machine learning processing Massive

More information

Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs

Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs Ritchie Zhao 1, Weinan Song 2, Wentao Zhang 2, Tianwei Xing 3, Jeng-Hau Lin 4, Mani Srivastava 3, Rajesh Gupta 4, Zhiru

More information

NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS

NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS TECHNICAL OVERVIEW NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS A Guide to the Optimized Framework Containers on NVIDIA GPU Cloud Introduction Artificial intelligence is helping to solve some of the most

More information

Democratizing Machine Learning on Kubernetes

Democratizing Machine Learning on Kubernetes Democratizing Machine Learning on Kubernetes Joy Qiao, Senior Solution Architect - AI and Research Group, Microsoft Lachlan Evenson - Principal Program Manager AKS/ACS, Microsoft Who are we? The Data Scientist

More information

Recurrent Neural Networks. Deep neural networks have enabled major advances in machine learning and AI. Convolutional Neural Networks

Recurrent Neural Networks. Deep neural networks have enabled major advances in machine learning and AI. Convolutional Neural Networks Deep neural networks have enabled major advances in machine learning and AI Computer vision Language translation Speech recognition Question answering And more Problem: DNNs are challenging to serve and

More information

Scaling Neural Network Acceleration using Coarse-Grained Parallelism

Scaling Neural Network Acceleration using Coarse-Grained Parallelism Scaling Neural Network Acceleration using Coarse-Grained Parallelism Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, Christos Kozyrakis Stanford University Platform Lab Review Feb 2018 Neural Networks (NNs)

More information

Scaling Distributed Machine Learning

Scaling Distributed Machine Learning Scaling Distributed Machine Learning with System and Algorithm Co-design Mu Li Thesis Defense CSD, CMU Feb 2nd, 2017 nx min w f i (w) Distributed systems i=1 Large scale optimization methods Large-scale

More information

Distributed Training of Deep Neural Networks: Theoretical and Practical Limits of Parallel Scalability

Distributed Training of Deep Neural Networks: Theoretical and Practical Limits of Parallel Scalability Distributed Training of Deep Neural Networks: Theoretical and Practical Limits of Parallel Scalability Janis Keuper Itwm.fraunhofer.de/ml Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern,

More information

Towards a Uniform Template-based Architecture for Accelerating 2D and 3D CNNs on FPGA

Towards a Uniform Template-based Architecture for Accelerating 2D and 3D CNNs on FPGA Towards a Uniform Template-based Architecture for Accelerating 2D and 3D CNNs on FPGA Junzhong Shen, You Huang, Zelong Wang, Yuran Qiao, Mei Wen, Chunyuan Zhang National University of Defense Technology,

More information

Profiling DNN Workloads on a Volta-based DGX-1 System

Profiling DNN Workloads on a Volta-based DGX-1 System Profiling DNN Workloads on a Volta-based DGX-1 System Saiful A. Mojumder 1, Marcia S Louis 1, Yifan Sun 2, Amir Kavyan Ziabari 3, José L. Abellán 4, John Kim 5, David Kaeli 2, Ajay Joshi 1 1 ECE Department,

More information

Index. Springer Nature Switzerland AG 2019 B. Moons et al., Embedded Deep Learning,

Index. Springer Nature Switzerland AG 2019 B. Moons et al., Embedded Deep Learning, Index A Algorithmic noise tolerance (ANT), 93 94 Application specific instruction set processors (ASIPs), 115 116 Approximate computing application level, 95 circuits-levels, 93 94 DAS and DVAS, 107 110

More information

Scalable Distributed Training with Parameter Hub: a whirlwind tour

Scalable Distributed Training with Parameter Hub: a whirlwind tour Scalable Distributed Training with Parameter Hub: a whirlwind tour TVM Stack Optimization High-Level Differentiable IR Tensor Expression IR AutoTVM LLVM, CUDA, Metal VTA AutoVTA Edge FPGA Cloud FPGA ASIC

More information

Research Faculty Summit Systems Fueling future disruptions

Research Faculty Summit Systems Fueling future disruptions Research Faculty Summit 2018 Systems Fueling future disruptions Efficient Edge Computing for Deep Neural Networks and Beyond Vivienne Sze In collaboration with Yu-Hsin Chen, Joel Emer, Tien-Ju Yang, Sertac

More information

Evaluating On-Node GPU Interconnects for Deep Learning Workloads

Evaluating On-Node GPU Interconnects for Deep Learning Workloads Evaluating On-Node GPU Interconnects for Deep Learning Workloads NATHAN TALLENT, NITIN GAWANDE, CHARLES SIEGEL ABHINAV VISHNU, ADOLFY HOISIE Pacific Northwest National Lab PMBS 217 (@ SC) November 13,

More information

Training Deep Neural Networks (in parallel)

Training Deep Neural Networks (in parallel) Lecture 9: Training Deep Neural Networks (in parallel) Visual Computing Systems How would you describe this professor? Easy? Mean? Boring? Nerdy? Professor classification task Classifies professors as

More information

A 400Gbps Multi-Core Network Processor

A 400Gbps Multi-Core Network Processor A 400Gbps Multi-Core Network Processor James Markevitch, Srinivasa Malladi Cisco Systems August 22, 2017 Legal THE INFORMATION HEREIN IS PROVIDED ON AN AS IS BASIS, WITHOUT ANY WARRANTIES OR REPRESENTATIONS,

More information

Parallel Deep Network Training

Parallel Deep Network Training Lecture 26: Parallel Deep Network Training Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2016 Tunes Speech Debelle Finish This Album (Speech Therapy) Eat your veggies and study

More information

Scaling Throughput Processors for Machine Intelligence

Scaling Throughput Processors for Machine Intelligence Scaling Throughput Processors for Machine Intelligence ScaledML Stanford 24-Mar-18 simon@graphcore.ai 1 MI The impact on humanity of harnessing machine intelligence will be greater than the impact of harnessing

More information

Ultra-Fast NoC Emulation on a Single FPGA

Ultra-Fast NoC Emulation on a Single FPGA The 25 th International Conference on Field-Programmable Logic and Applications (FPL 2015) September 3, 2015 Ultra-Fast NoC Emulation on a Single FPGA Thiem Van Chu, Shimpei Sato, and Kenji Kise Tokyo

More information

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda 1 Motivation And Intro Programming Model Spark Data Transformation Model Construction Model Training Model Inference Execution Model Data Parallel Training

More information

Efficient Communication Library for Large-Scale Deep Learning

Efficient Communication Library for Large-Scale Deep Learning IBM Research AI Efficient Communication Library for Large-Scale Deep Learning Mar 26, 2018 Minsik Cho (minsikcho@us.ibm.com) Deep Learning changing Our Life Automotive/transportation Security/public safety

More information

Towards Scalable Machine Learning

Towards Scalable Machine Learning Towards Scalable Machine Learning Janis Keuper itwm.fraunhofer.de/ml Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany Fraunhofer Center Machnine Larning Outline I Introduction

More information

Lecture 22: Router Design

Lecture 22: Router Design Lecture 22: Router Design Papers: Power-Driven Design of Router Microarchitectures in On-Chip Networks, MICRO 03, Princeton A Gracefully Degrading and Energy-Efficient Modular Router Architecture for On-Chip

More information

Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural Networks

Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural Networks Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural Networks Charles Eckert Xiaowei Wang Jingcheng Wang Arun Subramaniyan Ravi Iyer Dennis Sylvester David Blaauw Reetuparna Das M-Bits Research

More information

TCEP: Traffic Consolidation for Energy-Proportional High-Radix Networks

TCEP: Traffic Consolidation for Energy-Proportional High-Radix Networks TCEP: Traffic Consolidation for Energy-Proportional High-Radix Networks Gwangsun Kim Arm Research Hayoung Choi, John Kim KAIST High-radix Networks Dragonfly network in Cray XC30 system 1D Flattened butterfly

More information

High-Performance Training for Deep Learning and Computer Vision HPC

High-Performance Training for Deep Learning and Computer Vision HPC High-Performance Training for Deep Learning and Computer Vision HPC Panel at CVPR-ECV 18 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Bandwidth-Centric Deep Learning Processing through Software-Hardware Co-Design

Bandwidth-Centric Deep Learning Processing through Software-Hardware Co-Design Bandwidth-Centric Deep Learning Processing through Software-Hardware Co-Design Song Yao 姚颂 Founder & CEO DeePhi Tech 深鉴科技 song.yao@deephi.tech Outline - About DeePhi Tech - Background - Bandwidth Matters

More information

BHNN: a Memory-Efficient Accelerator for Compressing Deep Neural Network with Blocked Hashing Techniques

BHNN: a Memory-Efficient Accelerator for Compressing Deep Neural Network with Blocked Hashing Techniques BHNN: a Memory-Efficient Accelerator for Compressing Deep Neural Network with Blocked Hashing Techniques Jingyang Zhu 1, Zhiliang Qian 2*, and Chi-Ying Tsui 1 1 The Hong Kong University of Science and

More information

OPTIMIZED GPU KERNELS FOR DEEP LEARNING. Amir Khosrowshahi

OPTIMIZED GPU KERNELS FOR DEEP LEARNING. Amir Khosrowshahi OPTIMIZED GPU KERNELS FOR DEEP LEARNING Amir Khosrowshahi GTC 17 Mar 2015 Outline About nervana Optimizing deep learning at assembler level Limited precision for deep learning neon benchmarks 2 About nervana

More information

Transparent Offloading and Mapping (TOM) Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh

Transparent Offloading and Mapping (TOM) Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh Transparent Offloading and Mapping () Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O Connor, Nandita Vijaykumar,

More information

How to Estimate the Energy Consumption of Deep Neural Networks

How to Estimate the Energy Consumption of Deep Neural Networks How to Estimate the Energy Consumption of Deep Neural Networks Tien-Ju Yang, Yu-Hsin Chen, Joel Emer, Vivienne Sze MIT 1 Problem of DNNs Recognition Smart Drone AI Computation DNN 15k 300k OP/Px DPM 0.1k

More information

Xilinx ML Suite Overview

Xilinx ML Suite Overview Xilinx ML Suite Overview Yao Fu System Architect Data Center Acceleration Xilinx Accelerated Computing Workloads Machine Learning Inference Image classification and object detection Video Streaming Frame

More information

Exploiting InfiniBand and GPUDirect Technology for High Performance Collectives on GPU Clusters

Exploiting InfiniBand and GPUDirect Technology for High Performance Collectives on GPU Clusters Exploiting InfiniBand and Direct Technology for High Performance Collectives on Clusters Ching-Hsiang Chu chu.368@osu.edu Department of Computer Science and Engineering The Ohio State University OSU Booth

More information

CNN optimization. Rassadin A

CNN optimization. Rassadin A CNN optimization Rassadin A. 01.2017-02.2017 What to optimize? Training stage time consumption (CPU / GPU) Inference stage time consumption (CPU / GPU) Training stage memory consumption Inference stage

More information

Unit 11: Putting it All Together: Anatomy of the XBox 360 Game Console

Unit 11: Putting it All Together: Anatomy of the XBox 360 Game Console Computer Architecture Unit 11: Putting it All Together: Anatomy of the XBox 360 Game Console Slides originally developed by Milo Martin & Amir Roth at University of Pennsylvania! Computer Architecture

More information

High-Performance Data Loading and Augmentation for Deep Neural Network Training

High-Performance Data Loading and Augmentation for Deep Neural Network Training High-Performance Data Loading and Augmentation for Deep Neural Network Training Trevor Gale tgale@ece.neu.edu Steven Eliuk steven.eliuk@gmail.com Cameron Upright c.upright@samsung.com Roadmap 1. The General-Purpose

More information

Building the Most Efficient Machine Learning System

Building the Most Efficient Machine Learning System Building the Most Efficient Machine Learning System Mellanox The Artificial Intelligence Interconnect Company June 2017 Mellanox Overview Company Headquarters Yokneam, Israel Sunnyvale, California Worldwide

More information

Near-Data Processing for Differentiable Machine Learning Models

Near-Data Processing for Differentiable Machine Learning Models Near-Data Processing for Differentiable Machine Learning Models Hyeokjun Choe 1, Seil Lee 1, Hyunha Nam 1, Seongsik Park 1, Seijoon Kim 1, Eui-Young Chung 2 and Sungroh Yoon 1,3 1 Electrical and Computer

More information

SDA: Software-Defined Accelerator for Large- Scale DNN Systems

SDA: Software-Defined Accelerator for Large- Scale DNN Systems SDA: Software-Defined Accelerator for Large- Scale DNN Systems Jian Ouyang, 1 Shiding Lin, 1 Wei Qi, Yong Wang, Bo Yu, Song Jiang, 2 1 Baidu, Inc. 2 Wayne State University Introduction of Baidu A dominant

More information

This Unit: Putting It All Together. CIS 501 Computer Architecture. What is Computer Architecture? Sources

This Unit: Putting It All Together. CIS 501 Computer Architecture. What is Computer Architecture? Sources This Unit: Putting It All Together CIS 501 Computer Architecture Unit 12: Putting It All Together: Anatomy of the XBox 360 Game Console Application OS Compiler Firmware CPU I/O Memory Digital Circuits

More information

Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks

Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks Naveen Suda, Vikas Chandra *, Ganesh Dasika *, Abinash Mohanty, Yufei Ma, Sarma Vrudhula, Jae-sun Seo, Yu

More information

Cray XC Scalability and the Aries Network Tony Ford

Cray XC Scalability and the Aries Network Tony Ford Cray XC Scalability and the Aries Network Tony Ford June 29, 2017 Exascale Scalability Which scalability metrics are important for Exascale? Performance (obviously!) What are the contributing factors?

More information

Frequency Domain Acceleration of Convolutional Neural Networks on CPU-FPGA Shared Memory System

Frequency Domain Acceleration of Convolutional Neural Networks on CPU-FPGA Shared Memory System Frequency Domain Acceleration of Convolutional Neural Networks on CPU-FPGA Shared Memory System Chi Zhang, Viktor K Prasanna University of Southern California {zhan527, prasanna}@usc.edu fpga.usc.edu ACM

More information

Computer Architectures for Deep Learning. Ethan Dell and Daniyal Iqbal

Computer Architectures for Deep Learning. Ethan Dell and Daniyal Iqbal Computer Architectures for Deep Learning Ethan Dell and Daniyal Iqbal Agenda Introduction to Deep Learning Challenges Architectural Solutions Hardware Architectures CPUs GPUs Accelerators FPGAs SOCs ASICs

More information

Deep Learning on Modern Architectures. Keren Zhou 4/17/2017

Deep Learning on Modern Architectures. Keren Zhou 4/17/2017 Deep Learning on Modern Architectures Keren Zhou 4/17/2017 HPC Software Stack Application Algorithm Data Layout CPU GPU MIC Others HPC Software Stack Deep Learning Algorithm Data Layout CPU GPU MIC Others

More information

A Reconfigurable Crossbar Switch with Adaptive Bandwidth Control for Networks-on

A Reconfigurable Crossbar Switch with Adaptive Bandwidth Control for Networks-on A Reconfigurable Crossbar Switch with Adaptive Bandwidth Control for Networks-on on-chip Donghyun Kim, Kangmin Lee, Se-joong Lee and Hoi-Jun Yoo Semiconductor System Laboratory, Dept. of EECS, Korea Advanced

More information

Overcoming the Memory System Challenge in Dataflow Processing. Darren Jones, Wave Computing Drew Wingard, Sonics

Overcoming the Memory System Challenge in Dataflow Processing. Darren Jones, Wave Computing Drew Wingard, Sonics Overcoming the Memory System Challenge in Dataflow Processing Darren Jones, Wave Computing Drew Wingard, Sonics Current Technology Limits Deep Learning Performance Deep Learning Dataflow Graph Existing

More information

World s most advanced data center accelerator for PCIe-based servers

World s most advanced data center accelerator for PCIe-based servers NVIDIA TESLA P100 GPU ACCELERATOR World s most advanced data center accelerator for PCIe-based servers HPC data centers need to support the ever-growing demands of scientists and researchers while staying

More information

S8688 : INSIDE DGX-2. Glenn Dearth, Vyas Venkataraman Mar 28, 2018

S8688 : INSIDE DGX-2. Glenn Dearth, Vyas Venkataraman Mar 28, 2018 S8688 : INSIDE DGX-2 Glenn Dearth, Vyas Venkataraman Mar 28, 2018 Why was DGX-2 created Agenda DGX-2 internal architecture Software programming model Simple application Results 2 DEEP LEARNING TRENDS Application

More information

Phastlane: A Rapid Transit Optical Routing Network

Phastlane: A Rapid Transit Optical Routing Network Phastlane: A Rapid Transit Optical Routing Network Mark Cianchetti, Joseph Kerekes, and David Albonesi Computer Systems Laboratory Cornell University The Interconnect Bottleneck Future processors: tens

More information

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing CIT 668: System Architecture Parallel Computing Topics 1. What is Parallel Computing? 2. Why use Parallel Computing? 3. Types of Parallelism 4. Amdahl s Law 5. Flynn s Taxonomy of Parallel Computers 6.

More information

A performance comparison of Deep Learning frameworks on KNL

A performance comparison of Deep Learning frameworks on KNL A performance comparison of Deep Learning frameworks on KNL R. Zanella, G. Fiameni, M. Rorro Middleware, Data Management - SCAI - CINECA IXPUG Bologna, March 5, 2018 Table of Contents 1. Problem description

More information

Two FPGA-DNN Projects: 1. Low Latency Multi-Layer Perceptrons using FPGAs 2. Acceleration of CNN Training on FPGA-based Clusters

Two FPGA-DNN Projects: 1. Low Latency Multi-Layer Perceptrons using FPGAs 2. Acceleration of CNN Training on FPGA-based Clusters Two FPGA-DNN Projects: 1. Low Latency Multi-Layer Perceptrons using FPGAs 2. Acceleration of CNN Training on FPGA-based Clusters *Argonne National Lab +BU & USTC Presented by Martin Herbordt Work by Ahmed

More information

Lecture 11: Distributed Training and Communication Protocols. CSE599W: Spring 2018

Lecture 11: Distributed Training and Communication Protocols. CSE599W: Spring 2018 Lecture 11: Distributed Training and Communication Protocols CSE599W: Spring 2018 Where are we High level Packages User API Programming API Gradient Calculation (Differentiation API) System Components

More information

Network-on-Chip Architecture

Network-on-Chip Architecture Multiple Processor Systems(CMPE-655) Network-on-Chip Architecture Performance aspect and Firefly network architecture By Siva Shankar Chandrasekaran and SreeGowri Shankar Agenda (Enhancing performance)

More information

Deep Learning Hardware Acceleration

Deep Learning Hardware Acceleration * Deep Learning Hardware Acceleration Jorge Albericio + Alberto Delmas Lascorz Patrick Judd Sayeh Sharify Tayler Hetherington* Natalie Enright Jerger Tor Aamodt* + now at NVIDIA Andreas Moshovos Disclaimer

More information

EFFICIENT INFERENCE WITH TENSORRT. Han Vanholder

EFFICIENT INFERENCE WITH TENSORRT. Han Vanholder EFFICIENT INFERENCE WITH TENSORRT Han Vanholder AI INFERENCING IS EXPLODING 2 Trillion Messages Per Day On LinkedIn 500M Daily active users of iflytek 140 Billion Words Per Day Translated by Google 60

More information

NCCL 2.0. Sylvain Jeaugey

NCCL 2.0. Sylvain Jeaugey NCCL 2.0 Sylvain Jeaugey DEE LEARNING ON GUS Making DL training times shorter Deeper neural networks, larger data sets training is a very, very long operation! CUDA NCCL 1 NCCL 2 Multi-core CU GU Multi-GU

More information

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky Ilya Sutskever Geoffrey Hinton University of Toronto Canada Paper with same name to appear in NIPS 2012 Main idea Architecture

More information

Can FPGAs beat GPUs in accelerating next-generation Deep Neural Networks? Discussion of the FPGA 17 paper by Intel Corp. (Nurvitadhi et al.

Can FPGAs beat GPUs in accelerating next-generation Deep Neural Networks? Discussion of the FPGA 17 paper by Intel Corp. (Nurvitadhi et al. Can FPGAs beat GPUs in accelerating next-generation Deep Neural Networks? Discussion of the FPGA 17 paper by Intel Corp. (Nurvitadhi et al.) Andreas Kurth 2017-12-05 1 In short: The situation Image credit:

More information

Parallel Stochastic Gradient Descent: The case for native GPU-side GPI

Parallel Stochastic Gradient Descent: The case for native GPU-side GPI Parallel Stochastic Gradient Descent: The case for native GPU-side GPI J. Keuper Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany Mark Silberstein Accelerated Computer

More information

Deep Learning and Its Applications

Deep Learning and Its Applications Convolutional Neural Network and Its Application in Image Recognition Oct 28, 2016 Outline 1 A Motivating Example 2 The Convolutional Neural Network (CNN) Model 3 Training the CNN Model 4 Issues and Recent

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

Implementing Long-term Recurrent Convolutional Network Using HLS on POWER System

Implementing Long-term Recurrent Convolutional Network Using HLS on POWER System Implementing Long-term Recurrent Convolutional Network Using HLS on POWER System Xiaofan Zhang1, Mohamed El Hadedy1, Wen-mei Hwu1, Nam Sung Kim1, Jinjun Xiong2, Deming Chen1 1 University of Illinois Urbana-Champaign

More information

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Accelerating PageRank using Partition-Centric Processing Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Outline Introduction Partition-centric Processing Methodology Analytical Evaluation

More information

GPUs and GPGPUs. Greg Blanton John T. Lubia

GPUs and GPGPUs. Greg Blanton John T. Lubia GPUs and GPGPUs Greg Blanton John T. Lubia PROCESSOR ARCHITECTURAL ROADMAP Design CPU Optimized for sequential performance ILP increasingly difficult to extract from instruction stream Control hardware

More information

This Unit: Putting It All Together. CIS 371 Computer Organization and Design. Sources. What is Computer Architecture?

This Unit: Putting It All Together. CIS 371 Computer Organization and Design. Sources. What is Computer Architecture? This Unit: Putting It All Together CIS 371 Computer Organization and Design Unit 15: Putting It All Together: Anatomy of the XBox 360 Game Console Application OS Compiler Firmware CPU I/O Memory Digital

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Unified Deep Learning with CPU, GPU, and FPGA Technologies

Unified Deep Learning with CPU, GPU, and FPGA Technologies Unified Deep Learning with CPU, GPU, and FPGA Technologies Allen Rush 1, Ashish Sirasao 2, Mike Ignatowski 1 1: Advanced Micro Devices, Inc., 2: Xilinx, Inc. Abstract Deep learning and complex machine

More information

Challenges for Future Interconnection Networks Hot Interconnects Panel August 24, Dennis Abts Sr. Principal Engineer

Challenges for Future Interconnection Networks Hot Interconnects Panel August 24, Dennis Abts Sr. Principal Engineer Challenges for Future Interconnection Networks Hot Interconnects Panel August 24, 2006 Sr. Principal Engineer Panel Questions How do we build scalable networks that balance power, reliability and performance

More information

Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning

Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning 5th ANNUAL WORKSHOP 209 Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning Hari Subramoni Dhabaleswar K. (DK) Panda The Ohio State University The Ohio State University E-mail:

More information

high performance medical reconstruction using stream programming paradigms

high performance medical reconstruction using stream programming paradigms high performance medical reconstruction using stream programming paradigms This Paper describes the implementation and results of CT reconstruction using Filtered Back Projection on various stream programming

More information

SDA: Software-Defined Accelerator for Large- Scale DNN Systems

SDA: Software-Defined Accelerator for Large- Scale DNN Systems SDA: Software-Defined Accelerator for Large- Scale DNN Systems Jian Ouyang, 1 Shiding Lin, 1 Wei Qi, 1 Yong Wang, 1 Bo Yu, 1 Song Jiang, 2 1 Baidu, Inc. 2 Wayne State University Introduction of Baidu A

More information

M7: Next Generation SPARC. Hotchips 26 August 12, Stephen Phillips Senior Director, SPARC Architecture Oracle

M7: Next Generation SPARC. Hotchips 26 August 12, Stephen Phillips Senior Director, SPARC Architecture Oracle M7: Next Generation SPARC Hotchips 26 August 12, 2014 Stephen Phillips Senior Director, SPARC Architecture Oracle Safe Harbor Statement The following is intended to outline our general product direction.

More information

Scaling Deep Learning on Multiple In-Memory Processors

Scaling Deep Learning on Multiple In-Memory Processors Scaling Deep Learning on Multiple In-Memory Processors Lifan Xu, Dong Ping Zhang, and Nuwan Jayasena AMD Research, Advanced Micro Devices, Inc. {lifan.xu, dongping.zhang, nuwan.jayasena}@amd.com ABSTRACT

More information

Practical Near-Data Processing for In-Memory Analytics Frameworks

Practical Near-Data Processing for In-Memory Analytics Frameworks Practical Near-Data Processing for In-Memory Analytics Frameworks Mingyu Gao, Grant Ayers, Christos Kozyrakis Stanford University http://mast.stanford.edu PACT Oct 19, 2015 Motivating Trends End of Dennard

More information

Near Memory Key/Value Lookup Acceleration MemSys 2017

Near Memory Key/Value Lookup Acceleration MemSys 2017 Near Key/Value Lookup Acceleration MemSys 2017 October 3, 2017 Scott Lloyd, Maya Gokhale Center for Applied Scientific Computing This work was performed under the auspices of the U.S. Department of Energy

More information

C-Brain: A Deep Learning Accelerator

C-Brain: A Deep Learning Accelerator C-Brain: A Deep Learning Accelerator that Tames the Diversity of CNNs through Adaptive Data-level Parallelization Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, Xiaowei Li State Key Laboratory

More information

Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks

Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks Yu-Hsin Chen 1, Joel Emer 1, 2, Vivienne Sze 1 1 MIT 2 NVIDIA 1 Contributions of This Work A novel energy-efficient

More information

Parallel Deep Network Training

Parallel Deep Network Training Lecture 19: Parallel Deep Network Training Parallel Computer Architecture and Programming How would you describe this professor? Easy? Mean? Boring? Nerdy? Professor classification task Classifies professors

More information

XPU A Programmable FPGA Accelerator for Diverse Workloads

XPU A Programmable FPGA Accelerator for Diverse Workloads XPU A Programmable FPGA Accelerator for Diverse Workloads Jian Ouyang, 1 (ouyangjian@baidu.com) Ephrem Wu, 2 Jing Wang, 1 Yupeng Li, 1 Hanlin Xie 1 1 Baidu, Inc. 2 Xilinx Outlines Background - FPGA for

More information

Scalable deep learning on distributed GPUs with a GPU-specialized parameter server

Scalable deep learning on distributed GPUs with a GPU-specialized parameter server Scalable deep learning on distributed GPUs with a GPU-specialized parameter server Henggang Cui, Gregory R. Ganger, and Phillip B. Gibbons Carnegie Mellon University CMU-PDL-15-107 October 2015 Parallel

More information

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9-1 Administrative A2 due Wed May 2 Midterm: In-class Tue May 8. Covers material through Lecture 10 (Thu May 3). Sample midterm released on piazza. Midterm review session: Fri May 4 discussion

More information

HPE Deep Learning Cookbook: Recipes to Run Deep Learning Workloads. Natalia Vassilieva, Sergey Serebryakov

HPE Deep Learning Cookbook: Recipes to Run Deep Learning Workloads. Natalia Vassilieva, Sergey Serebryakov HPE Deep Learning Cookbook: Recipes to Run Deep Learning Workloads Natalia Vassilieva, Sergey Serebryakov Deep learning ecosystem today Software Hardware 2 HPE s portfolio for deep learning Government,

More information

IN-MEMORY ASSOCIATIVE COMPUTING

IN-MEMORY ASSOCIATIVE COMPUTING IN-MEMORY ASSOCIATIVE COMPUTING AVIDAN AKERIB, GSI TECHNOLOGY AAKERIB@GSITECHNOLOGY.COM AGENDA The AI computational challenge Introduction to associative computing Examples An NLP use case What s next?

More information

PRIME: A Novel Processing-in-memory Architecture for Neural Network Computation in ReRAM-based Main Memory

PRIME: A Novel Processing-in-memory Architecture for Neural Network Computation in ReRAM-based Main Memory Scalable and Energy-Efficient Architecture Lab (SEAL) PRIME: A Novel Processing-in-memory Architecture for Neural Network Computation in -based Main Memory Ping Chi *, Shuangchen Li *, Tao Zhang, Cong

More information

Machine Learning on VMware vsphere with NVIDIA GPUs

Machine Learning on VMware vsphere with NVIDIA GPUs Machine Learning on VMware vsphere with NVIDIA GPUs Uday Kurkure, Hari Sivaraman, Lan Vu GPU Technology Conference 2017 2016 VMware Inc. All rights reserved. Gartner Hype Cycle for Emerging Technology

More information

High performance 2D Discrete Fourier Transform on Heterogeneous Platforms. Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli

High performance 2D Discrete Fourier Transform on Heterogeneous Platforms. Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli High performance 2D Discrete Fourier Transform on Heterogeneous Platforms Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli Motivation Fourier Transform widely used in Physics, Astronomy, Engineering

More information

Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations, and Hardware Implications

Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations, and Hardware Implications Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations, and Hardware Implications Jongsoo Park Facebook AI System SW/HW Co-design Team Sep-21 2018 Team Introduction

More information

This Unit: Putting It All Together. CIS 371 Computer Organization and Design. What is Computer Architecture? Sources

This Unit: Putting It All Together. CIS 371 Computer Organization and Design. What is Computer Architecture? Sources This Unit: Putting It All Together CIS 371 Computer Organization and Design Unit 15: Putting It All Together: Anatomy of the XBox 360 Game Console Application OS Compiler Firmware CPU I/O Memory Digital

More information

Graph Streaming Processor

Graph Streaming Processor Graph Streaming Processor A Next-Generation Computing Architecture Val G. Cook Chief Software Architect Satyaki Koneru Chief Technology Officer Ke Yin Chief Scientist Dinakar Munagala Chief Executive Officer

More information

PRACTICAL SCALING TECHNIQUES. Ujval Kapasi Dec 9, 2017

PRACTICAL SCALING TECHNIQUES. Ujval Kapasi Dec 9, 2017 PRACTICAL SCALING TECHNIQUES Ujval Kapasi Dec 9, 2017 DNN TRAINING ON MULTIPLE GPUS Making DL training times shorter 2 DNN TRAINING ON MULTIPLE GPUS Making DL training times shorter local local local Allreduce

More information

Asynchronous Parallel Stochastic Gradient Descent. A Numeric Core for Scalable Distributed Machine Learning Algorithms

Asynchronous Parallel Stochastic Gradient Descent. A Numeric Core for Scalable Distributed Machine Learning Algorithms Asynchronous Parallel Stochastic Gradient Descent A Numeric Core for Scalable Distributed Machine Learning Algorithms J. Keuper and F.-J. Pfreundt Competence Center High Performance Computing Fraunhofer

More information

Best Practices for Setting BIOS Parameters for Performance

Best Practices for Setting BIOS Parameters for Performance White Paper Best Practices for Setting BIOS Parameters for Performance Cisco UCS E5-based M3 Servers May 2013 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page

More information

Building the Most Efficient Machine Learning System

Building the Most Efficient Machine Learning System Building the Most Efficient Machine Learning System Mellanox The Artificial Intelligence Interconnect Company June 2017 Mellanox Overview Company Headquarters Yokneam, Israel Sunnyvale, California Worldwide

More information