Evaluating On-Node GPU Interconnects for Deep Learning Workloads

Size: px
Start display at page:

Download "Evaluating On-Node GPU Interconnects for Deep Learning Workloads"

Transcription

1 Evaluating On-Node GPU Interconnects for Deep Learning Workloads NATHAN TALLENT, NITIN GAWANDE, CHARLES SIEGEL ABHINAV VISHNU, ADOLFY HOISIE Pacific Northwest National Lab PMBS 217 SC) November 13, 217

2 Acknowledgements Center for Advanced Technology Evaluation (ASCR) Performance Prediction & Diagnosis for Extreme Scientific Workflows (ASCR) 2

3 Scaling Deep Learning Increasingly Important Scaling some workloads requires a high-performance interconnect Motivating Example: KNL/Omni-path vs. DGX-1 (NVLink 1.) What is scaling behavior given workload and interconnect? Single-KNL/GPU performance very similar, despite GPU's higher peak! DGX-1: better absolute performance but scaling behavior is quite different With Omni-Path, CifarNet scales better than AlexNet With NVLink, AlexNet scales better than CifarNet AlexNet s much larger all-to-all reduction operations stress interconnect bandwidth Iterations/second Iterations/second KNL/Omni-path CifarNet/Cifar1 Batch size 192 DGX AlexNet /ImageNet 4 8 Batch size: KNL Nodes or DGX-1 GPUs 3

4 Which On-Node GPU Interconnect is Best For Me? Our focus: Scaling Deep Learning across on-node GPUs: Is a high-performance interconnect required (e.g., NVIDIA NVLink) Are PCIe-based interconnects adequate? How dependent is the answer on my workload? Answers not obvious! NVIDIA DGX-1 (NVLink 1.) Cirrascale GX8 CPU CPU 1 IB PCIe GPU GPU 2 NVLink 1 GPU 1 GPU 3 PCIe GPU 4 GPU 6 GPU 5 GPU 7 IB PCIe Cirrascale SR3615 PCIe Riser GPU PCIe 3 GPU 1 GPU 2 GPU3 PCIe 3 CPU CPU 1 PCIe 3 Cirrascale SR3615 PCIe Riser GPU 4 PCIe 3 16 GB/s each direction GPU5 GPU6 GPU7 NVLink 1: 2 GB/s, each direction (per link) 4

5 On-Node GPU Networks: DGX-1 vs. GX8 CPU CPU 1 NVIDIA DGX-1 IB IB DGX-1 appears to offer much higher performance PCIe GPU GPU 2 NVLink 1 GPU 1 GPU 3 PCIe GPU 4 GPU 6 GPU 5 GPU 7 (Stylized to avoid crossing links: GPU GPU4) PCIe Cirrascale GX8 NVLink 1: 2 GB/s, each direction (per link) Hybrid cube mesh: Two (fully connected) 4-GPU meshes Each GPU: 4 links = 8 GB/s (uni) Two-level tree (PCIe): Two (fully connected) 4-GPU clusters Each GPU: 16 GB/s (uni) PCIe upstream: 16 GB/s Cirrascale SR3615 PCIe Riser GPU PCIe 3 GPU 1 GPU 2 GPU3 PCIe 3 CPU CPU 1 PCIe 3 Cirrascale SR3615 PCIe Riser GPU 4 PCIe 3 16 GB/s each direction GPU5 GPU6 GPU7 5

6 Outline of Deep Learning Workload Outline of deep learning training algorithm Replicate neural network architecture on each GPU For each batch in image data set: Distribute images among GPUs (data parallel) Process images à activations à parameters (per-gpu) activation: floating point operations Synchronize parameters: all-to-all reduction (allreduce) Use NCCL for GPU collectives: NCCL: NVIDIA Collective Communications Library topology-aware rings, optimized for throughput (pipelined) interconnect-aware Train on ImageNet Dataset: ImageNet Large Scale Visual Recognition Challenge (ILSVRC) Well known benchmark for object classification and detection Workloads: AlexNet (high comm) GoogLeNet (high compute) ResNet/x: everything in-between & more 6

7 Parameterize ResNet: Control Compute Intensity Work Span E+9 2.E+8 2.E+7 Activations/Batch Batch Category Intensity (Work/Comm) GoogLeNet ResNet/32 AlexNet ResNet/16 ResNet/8 ResNet/4 ResNet/2 ResNet/1 Activations/Parameter per Batch Span 1 2 GoogLeNet sandwitched Batch Category FLOPS ResNet/32 ResNet/16 ResNet/8 ResNet/4 ResNet/2 ResNet/1 GoogLeNet AlexNet communication (allreduce) Replicate a ResNet block x times where is x is {1, 2, 4, 8, 16, 32} Intensity When Strong Scaled Activations/Parameter per GPU Number of GPUs Parameterized workload: systematically represent range of neural network depths & batch sizes ResNet/x Span 1 3 GoogLeNet sandwitched ResNet/32 ResNet/16 ResNet/8 ResNet/4 ResNet/2 ResNet/1 GoogLeNet AlexNet 7

8 GPU-to-GPU Memory Copy: Bandwidth MGBench: unidirectional; GPU-GPU; pipelined using CUDA s async memcopy GX8 has three groups: Intra-SR: within switch Inter-SR: between switches Inter-SR*: anomaly Bandwidth, GB/s Intra-SR (GX8) Inter-SR (GX8) Inter-SR* (GX8) goal Between 4-GPU clusters: PCIe wins on midsize messages 1.E+ 1.E+2 1.E+4 1.E+6 1.E+8 Data Size, Bytes Group results by value clusters DGX-1 has two groups (expected) Inter GPU 1-hop (DGX-1) Inter GPU 2-hops (DGX-1) Within 4-GPU clusters (1-hop; intra-switch): NVink wins (85% of 1 link) (Uses only 1 NVLink; software has to manage routing, etc.) Between 4-GPU cluster (2-hop; inter-switch): depends on payload size PCIe anomaly (see latency plots) PCIe can win on long midsize transfers 8

9 GPU-to-GPU Memory Copy: Latency Latency, μs goal PCIe anomaly Data size: 1 KB DGX 1 DGX 1 GX8 GX8 DGX 1 GX8 Data -1 size: -2 4 Byte Peer-to-peer access between GPUs NVink wins Details at four different data sizes Latency, ms 16 Data size: 1MB DGX 1 NVink wins for large payloads PCIe wins: bandwidth saturates more quickly w.r.t payload x-y means GPU x sent data to GPU y PCIe anomaly GX Peer-to-peer access between GPUs NVLink: 2 groups, independent of data size PCIe: 1 3 groups, dependent on data size PCIe Anomaly Cirrascale SR, 2nd slot (GPU5) has longer signal paths; delays 9

10 NCCL: NVIDIA Collective Communications Library NCCL uses topology-aware & interconnect-aware rings Image: Sylvain Jeaugey PCIe / QPI : 1 unidirectional ring DGX-1 : 4 unidirectional rings NCCL is optimized for throughput (pipelined) Small payload: ring latency exposed time = hops link latency Large payload: ring latency hidden time = payload / bandwidth 1

11 NCCL Allreduce: Effective Bandwidth Effective BW: bandwidth relative to a single GPU s payload. Max is BW of memcopy. goal 4-GPUs (within cluster); ideal allreduce is 1 step. NVink wins by 4% (6% of max) 8-GPUs (between clusters); ideal allreduce is 2 steps: PCIe wins by 3%! 8-GPUs: PCIe wins by 1% on midsize messages Bandwidth, GB/s all_reduce DGX-1 8 GPUs GX8 8 GPUs AlexNet 5.E+5 5.E+6 5.E+7 5.E+8 Data size, Bytes PCIe Bandwidth saturates more quickly with respect to payload size. More hardware for switching and flow control? Broadcast Performance differs with collective. On 8-GPU broadcast, NVLink has slight advantage: single-root has less synchronization vs. all-to-all. 11

12 Iterations/second Iterations/second Strong-scaling (ImageNet): AlexNet & GoogLeNet goal DGX-1, batch size 256 GX8, batch size 256 DGX-1, batch size 512 GX8, batch size 512 AlexNet/ImageNet 1DGX-1, batch size 2512 GX8, 4 batch size GoogLeNet/ImageNet Number of GPUs Expected NVLink becomes less important as batch size increases (more computation). NVLink important for AlexNet (NVlink has 36% advantage) Same single-gpu performance. Power cap GPUs to equalize the slightly different SM frequencies PCIe is close to NVLink for GoogLeNet Unexpected! Although AlexNet is communication intensive, GX8 has slightly higher 8-GPU allreduce performance! Expected GoogLeNet is more compute intensive than AlexNet by 1 (activations/parameter/batch) AlexNet: 5.9 and 11.9 GoogLeNet: 5 and 14 Gripe: GPUs have very poor performance tools 12

13 Iterations/ s Iterations/ s Iterations/ s Strong-scaling (ImageNet): ResNet/x # ResNet Blocks: 1 goal DGX-1 batch size 16 GX8 batch size 16 DGX-1 batch size 32 GX8 batch size 32 DGX-1 batch size 64 GX8 batch size 64 DGX-1 batch size 64 GX8 batch size # ResNet Blocks: DGX-1 batch size 64 GX8 batch size # ResNet Blocks: GPUs 4 8 2, 4, 16 in paper Performance expectation Identical GPU work NVLink/PCIe win/loss: fraction of allreduce allreduce win/loss Single-GPU performance slightly different! Converges as batch size increases. But why? CPU-based overheads on smaller batch sizes? Expect DGX-1 win for 2 and 4 GPUs. Holds. Expect GX8 win for 8 GPUs. Explains knee on batch size 16. Why no more knees? GX8 is competitive for ResNet-style workloads. Smaller batch sizes (vs. AlexNet, G-Net). Comports with ResNet s deeper network & fewer parameters; highlight interconnect. 13

14 Conclusions Scaling ML across multiple on-node GPUs is increasingly important Workload Intensity helps explain scaling performance Parameterized ResNet captures large space of workload intensities Systematically characterize & specify neural network workloads Workload intensity: reflects computation/communication DGX-1 typically has superior performance More links than GX8 s PCIe bus; and higher bandwidth/link GX8 is very competitive for all ResNet-style workloads On 8 GPUs, the GX8 can slightly outperform Unexpected GX8 s PCIe bandwidth saturates more quickly w.r.t. to payload size For medium-sized messages, GX8 has better memory copy latency and an average of 1% better allreduceop performance ResNet currently more popular than AlexNet (large allreduce) GX8 may be especially attractive if cost is considered Hiring! 14

Evaluating On-Node GPU Interconnects for Deep Learning Workloads

Evaluating On-Node GPU Interconnects for Deep Learning Workloads Evaluating On-Node GPU Interconnects for Deep Learning Workloads Nathan R. Tallent 1, Nitin A. Gawande 1, Charles Siegel 1, Abhinav Vishnu 1, and Adolfy Hoisie 2 1 Pacific Northwest National Laboratory,

More information

Profiling DNN Workloads on a Volta-based DGX-1 System

Profiling DNN Workloads on a Volta-based DGX-1 System Profiling DNN Workloads on a Volta-based DGX-1 System Saiful A. Mojumder 1, Marcia S Louis 1, Yifan Sun 2, Amir Kavyan Ziabari 3, José L. Abellán 4, John Kim 5, David Kaeli 2, Ajay Joshi 1 1 ECE Department,

More information

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K.

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Panda Department of Computer Science and Engineering The Ohio

More information

CafeGPI. Single-Sided Communication for Scalable Deep Learning

CafeGPI. Single-Sided Communication for Scalable Deep Learning CafeGPI Single-Sided Communication for Scalable Deep Learning Janis Keuper itwm.fraunhofer.de/ml Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany Deep Neural Networks

More information

NCCL 2.0. Sylvain Jeaugey

NCCL 2.0. Sylvain Jeaugey NCCL 2.0 Sylvain Jeaugey DEE LEARNING ON GUS Making DL training times shorter Deeper neural networks, larger data sets training is a very, very long operation! CUDA NCCL 1 NCCL 2 Multi-core CU GU Multi-GU

More information

Efficient Communication Library for Large-Scale Deep Learning

Efficient Communication Library for Large-Scale Deep Learning IBM Research AI Efficient Communication Library for Large-Scale Deep Learning Mar 26, 2018 Minsik Cho (minsikcho@us.ibm.com) Deep Learning changing Our Life Automotive/transportation Security/public safety

More information

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager Characterization and Benchmarking of Deep Learning Natalia Vassilieva, PhD Sr. Research Manager Deep learning applications Vision Speech Text Other Search & information extraction Security/Video surveillance

More information

Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning

Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning 5th ANNUAL WORKSHOP 209 Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning Hari Subramoni Dhabaleswar K. (DK) Panda The Ohio State University The Ohio State University E-mail:

More information

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda Department of Computer Science and Engineering

More information

S8688 : INSIDE DGX-2. Glenn Dearth, Vyas Venkataraman Mar 28, 2018

S8688 : INSIDE DGX-2. Glenn Dearth, Vyas Venkataraman Mar 28, 2018 S8688 : INSIDE DGX-2 Glenn Dearth, Vyas Venkataraman Mar 28, 2018 Why was DGX-2 created Agenda DGX-2 internal architecture Software programming model Simple application Results 2 DEEP LEARNING TRENDS Application

More information

Exploiting InfiniBand and GPUDirect Technology for High Performance Collectives on GPU Clusters

Exploiting InfiniBand and GPUDirect Technology for High Performance Collectives on GPU Clusters Exploiting InfiniBand and Direct Technology for High Performance Collectives on Clusters Ching-Hsiang Chu chu.368@osu.edu Department of Computer Science and Engineering The Ohio State University OSU Booth

More information

High Performance Computing

High Performance Computing High Performance Computing 9th Lecture 2016/10/28 YUKI ITO 1 Selected Paper: vdnn: Virtualized Deep Neural Networks for Scalable, MemoryEfficient Neural Network Design Minsoo Rhu, Natalia Gimelshein, Jason

More information

Building the Most Efficient Machine Learning System

Building the Most Efficient Machine Learning System Building the Most Efficient Machine Learning System Mellanox The Artificial Intelligence Interconnect Company June 2017 Mellanox Overview Company Headquarters Yokneam, Israel Sunnyvale, California Worldwide

More information

PRACTICAL SCALING TECHNIQUES. Ujval Kapasi Dec 9, 2017

PRACTICAL SCALING TECHNIQUES. Ujval Kapasi Dec 9, 2017 PRACTICAL SCALING TECHNIQUES Ujval Kapasi Dec 9, 2017 DNN TRAINING ON MULTIPLE GPUS Making DL training times shorter 2 DNN TRAINING ON MULTIPLE GPUS Making DL training times shorter local local local Allreduce

More information

Democratizing Machine Learning on Kubernetes

Democratizing Machine Learning on Kubernetes Democratizing Machine Learning on Kubernetes Joy Qiao, Senior Solution Architect - AI and Research Group, Microsoft Lachlan Evenson - Principal Program Manager AKS/ACS, Microsoft Who are we? The Data Scientist

More information

Scalable Distributed Training with Parameter Hub: a whirlwind tour

Scalable Distributed Training with Parameter Hub: a whirlwind tour Scalable Distributed Training with Parameter Hub: a whirlwind tour TVM Stack Optimization High-Level Differentiable IR Tensor Expression IR AutoTVM LLVM, CUDA, Metal VTA AutoVTA Edge FPGA Cloud FPGA ASIC

More information

Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning

Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning Ammar Ahmad Awan, Khaled Hamidouche, Akshay Venkatesh, and Dhabaleswar K. Panda Network-Based Computing Laboratory Department

More information

Deep Learning with Intel DAAL

Deep Learning with Intel DAAL Deep Learning with Intel DAAL on Knights Landing Processor David Ojika dave.n.ojika@cern.ch March 22, 2017 Outline Introduction and Motivation Intel Knights Landing Processor Intel Data Analytics and Acceleration

More information

Hybrid MPI - A Case Study on the Xeon Phi Platform

Hybrid MPI - A Case Study on the Xeon Phi Platform Hybrid MPI - A Case Study on the Xeon Phi Platform Udayanga Wickramasinghe Center for Research on Extreme Scale Technologies (CREST) Indiana University Greg Bronevetsky Lawrence Livermore National Laboratory

More information

Interconnection Network for Tightly Coupled Accelerators Architecture

Interconnection Network for Tightly Coupled Accelerators Architecture Interconnection Network for Tightly Coupled Accelerators Architecture Toshihiro Hanawa, Yuetsu Kodama, Taisuke Boku, Mitsuhisa Sato Center for Computational Sciences University of Tsukuba, Japan 1 What

More information

Persistent RNNs. (stashing recurrent weights on-chip) Gregory Diamos. April 7, Baidu SVAIL

Persistent RNNs. (stashing recurrent weights on-chip) Gregory Diamos. April 7, Baidu SVAIL (stashing recurrent weights on-chip) Baidu SVAIL April 7, 2016 SVAIL Think hard AI. Goal Develop hard AI technologies that impact 100 million users. Deep Learning at SVAIL 100 GFLOP/s 1 laptop 6 TFLOP/s

More information

NVIDIA COLLECTIVE COMMUNICATION LIBRARY (NCCL)

NVIDIA COLLECTIVE COMMUNICATION LIBRARY (NCCL) NVIDIA COLLECTIVE COMMUNICATION LIBRARY (NCCL) RN-08645-000_v01 March 2018 Release Notes TABLE OF CONTENTS Chapter Chapter Chapter Chapter Chapter Chapter Chapter 1. 2. 3. 4. 5. 6. 7. NCCL NCCL NCCL NCCL

More information

TESLA V100 PERFORMANCE GUIDE. Life Sciences Applications

TESLA V100 PERFORMANCE GUIDE. Life Sciences Applications TESLA V100 PERFORMANCE GUIDE Life Sciences Applications NOVEMBER 2017 TESLA V100 PERFORMANCE GUIDE Modern high performance computing (HPC) data centers are key to solving some of the world s most important

More information

Can FPGAs beat GPUs in accelerating next-generation Deep Neural Networks? Discussion of the FPGA 17 paper by Intel Corp. (Nurvitadhi et al.

Can FPGAs beat GPUs in accelerating next-generation Deep Neural Networks? Discussion of the FPGA 17 paper by Intel Corp. (Nurvitadhi et al. Can FPGAs beat GPUs in accelerating next-generation Deep Neural Networks? Discussion of the FPGA 17 paper by Intel Corp. (Nurvitadhi et al.) Andreas Kurth 2017-12-05 1 In short: The situation Image credit:

More information

Building the Most Efficient Machine Learning System

Building the Most Efficient Machine Learning System Building the Most Efficient Machine Learning System Mellanox The Artificial Intelligence Interconnect Company June 2017 Mellanox Overview Company Headquarters Yokneam, Israel Sunnyvale, California Worldwide

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

TECHNOLOGIES FOR IMPROVED SCALING ON GPU CLUSTERS. Jiri Kraus, Davide Rossetti, Sreeram Potluri, June 23 rd 2016

TECHNOLOGIES FOR IMPROVED SCALING ON GPU CLUSTERS. Jiri Kraus, Davide Rossetti, Sreeram Potluri, June 23 rd 2016 TECHNOLOGIES FOR IMPROVED SCALING ON GPU CLUSTERS Jiri Kraus, Davide Rossetti, Sreeram Potluri, June 23 rd 2016 MULTI GPU PROGRAMMING Node 0 Node 1 Node N-1 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM

More information

Multi-dimensional Parallel Training of Winograd Layer on Memory-Centric Architecture

Multi-dimensional Parallel Training of Winograd Layer on Memory-Centric Architecture The 51st Annual IEEE/ACM International Symposium on Microarchitecture Multi-dimensional Parallel Training of Winograd Layer on Memory-Centric Architecture Byungchul Hong Yeonju Ro John Kim FuriosaAI Samsung

More information

A performance comparison of Deep Learning frameworks on KNL

A performance comparison of Deep Learning frameworks on KNL A performance comparison of Deep Learning frameworks on KNL R. Zanella, G. Fiameni, M. Rorro Middleware, Data Management - SCAI - CINECA IXPUG Bologna, March 5, 2018 Table of Contents 1. Problem description

More information

High-Performance Broadcast for Streaming and Deep Learning

High-Performance Broadcast for Streaming and Deep Learning High-Performance Broadcast for Streaming and Deep Learning Ching-Hsiang Chu chu.368@osu.edu Department of Computer Science and Engineering The Ohio State University OSU Booth - SC17 2 Outline Introduction

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

NVIDIA COLLECTIVE COMMUNICATION LIBRARY (NCCL)

NVIDIA COLLECTIVE COMMUNICATION LIBRARY (NCCL) NVIDIA COLLECTIVE COMMUNICATION LIBRARY (NCCL) RN-08645-000_v01 September 2018 Release Notes TABLE OF CONTENTS Chapter Chapter Chapter Chapter Chapter Chapter Chapter Chapter Chapter Chapter 1. NCCL Overview...1

More information

TESLA P100 PERFORMANCE GUIDE. HPC and Deep Learning Applications

TESLA P100 PERFORMANCE GUIDE. HPC and Deep Learning Applications TESLA P PERFORMANCE GUIDE HPC and Deep Learning Applications MAY 217 TESLA P PERFORMANCE GUIDE Modern high performance computing (HPC) data centers are key to solving some of the world s most important

More information

Effectively Scaling Deep Learning Frameworks

Effectively Scaling Deep Learning Frameworks Effectively Scaling Deep Learning Frameworks (To 40 GPUs and Beyond) Welcome everyone! I m excited to be here today and get the opportunity to present some of the work that we ve been doing at SVAIL, the

More information

Cisco UCS C480 ML M5 Rack Server Performance Characterization

Cisco UCS C480 ML M5 Rack Server Performance Characterization White Paper Cisco UCS C480 ML M5 Rack Server Performance Characterization The Cisco UCS C480 ML M5 Rack Server platform is designed for artificial intelligence and machine-learning workloads. 2018 Cisco

More information

IBM SpectrumAI with NVIDIA Converged Infrastructure Solutions for AI workloads

IBM SpectrumAI with NVIDIA Converged Infrastructure Solutions for AI workloads IBM SpectrumAI with NVIDIA Converged Infrastructure Solutions for AI workloads The engine to power your AI data pipeline Introduction: Artificial intelligence (AI) including deep learning (DL) and machine

More information

SDA: Software-Defined Accelerator for Large- Scale DNN Systems

SDA: Software-Defined Accelerator for Large- Scale DNN Systems SDA: Software-Defined Accelerator for Large- Scale DNN Systems Jian Ouyang, 1 Shiding Lin, 1 Wei Qi, Yong Wang, Bo Yu, Song Jiang, 2 1 Baidu, Inc. 2 Wayne State University Introduction of Baidu A dominant

More information

High-Performance Training for Deep Learning and Computer Vision HPC

High-Performance Training for Deep Learning and Computer Vision HPC High-Performance Training for Deep Learning and Computer Vision HPC Panel at CVPR-ECV 18 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

High-Performance Data Loading and Augmentation for Deep Neural Network Training

High-Performance Data Loading and Augmentation for Deep Neural Network Training High-Performance Data Loading and Augmentation for Deep Neural Network Training Trevor Gale tgale@ece.neu.edu Steven Eliuk steven.eliuk@gmail.com Cameron Upright c.upright@samsung.com Roadmap 1. The General-Purpose

More information

ENDURING DIFFERENTIATION. Timothy Lanfear

ENDURING DIFFERENTIATION. Timothy Lanfear ENDURING DIFFERENTIATION Timothy Lanfear WHERE ARE WE? 2 LIFE AFTER DENNARD SCALING 10 7 40 Years of Microprocessor Trend Data 10 6 10 5 10 4 Transistors (thousands) 1.1X per year 10 3 10 2 Single-threaded

More information

ENDURING DIFFERENTIATION Timothy Lanfear

ENDURING DIFFERENTIATION Timothy Lanfear ENDURING DIFFERENTIATION Timothy Lanfear WHERE ARE WE? 2 LIFE AFTER DENNARD SCALING GPU-ACCELERATED PERFORMANCE 10 7 40 Years of Microprocessor Trend Data 10 6 10 5 10 4 10 3 10 2 Single-threaded perf

More information

Fuzzy Set Theory in Computer Vision: Example 3

Fuzzy Set Theory in Computer Vision: Example 3 Fuzzy Set Theory in Computer Vision: Example 3 Derek T. Anderson and James M. Keller FUZZ-IEEE, July 2017 Overview Purpose of these slides are to make you aware of a few of the different CNN architectures

More information

Two FPGA-DNN Projects: 1. Low Latency Multi-Layer Perceptrons using FPGAs 2. Acceleration of CNN Training on FPGA-based Clusters

Two FPGA-DNN Projects: 1. Low Latency Multi-Layer Perceptrons using FPGAs 2. Acceleration of CNN Training on FPGA-based Clusters Two FPGA-DNN Projects: 1. Low Latency Multi-Layer Perceptrons using FPGAs 2. Acceleration of CNN Training on FPGA-based Clusters *Argonne National Lab +BU & USTC Presented by Martin Herbordt Work by Ahmed

More information

NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS

NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS TECHNICAL OVERVIEW NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS A Guide to the Optimized Framework Containers on NVIDIA GPU Cloud Introduction Artificial intelligence is helping to solve some of the most

More information

CUDA Kernel based Collective Reduction Operations on Large-scale GPU Clusters

CUDA Kernel based Collective Reduction Operations on Large-scale GPU Clusters CUDA Kernel based Collective Reduction Operations on Large-scale GPU Clusters Ching-Hsiang Chu, Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan and Dhabaleswar K. (DK) Panda Speaker: Sourav Chakraborty

More information

In partnership with. VelocityAI REFERENCE ARCHITECTURE WHITE PAPER

In partnership with. VelocityAI REFERENCE ARCHITECTURE WHITE PAPER In partnership with VelocityAI REFERENCE JULY // 2018 Contents Introduction 01 Challenges with Existing AI/ML/DL Solutions 01 Accelerate AI/ML/DL Workloads with Vexata VelocityAI 02 VelocityAI Reference

More information

Inception Network Overview. David White CS793

Inception Network Overview. David White CS793 Inception Network Overview David White CS793 So, Leonardo DiCaprio dreams about dreaming... https://m.media-amazon.com/images/m/mv5bmjaxmzy3njcxnf5bml5banbnxkftztcwnti5otm0mw@@._v1_sy1000_cr0,0,675,1 000_AL_.jpg

More information

IBM Deep Learning Solutions

IBM Deep Learning Solutions IBM Deep Learning Solutions Reference Architecture for Deep Learning on POWER8, P100, and NVLink October, 2016 How do you teach a computer to Perceive? 2 Deep Learning: teaching Siri to recognize a bicycle

More information

SDA: Software-Defined Accelerator for Large- Scale DNN Systems

SDA: Software-Defined Accelerator for Large- Scale DNN Systems SDA: Software-Defined Accelerator for Large- Scale DNN Systems Jian Ouyang, 1 Shiding Lin, 1 Wei Qi, 1 Yong Wang, 1 Bo Yu, 1 Song Jiang, 2 1 Baidu, Inc. 2 Wayne State University Introduction of Baidu A

More information

A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers

A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers Maxime Martinasso, Grzegorz Kwasniewski, Sadaf R. Alam, Thomas C. Schulthess, Torsten Hoefler Swiss National Supercomputing

More information

NVIDIA COLLECTIVE COMMUNICATION LIBRARY (NCCL)

NVIDIA COLLECTIVE COMMUNICATION LIBRARY (NCCL) NVIDIA COLLECTIVE COMMUNICATION LIBRARY (NCCL) DU-08730-210_v01 March 2018 Installation Guide TABLE OF CONTENTS Chapter 1. Overview... 1 Chapter 2. Prerequisites...3 2.1. Software Requirements... 3 2.2.

More information

ibench: Quantifying Interference in Datacenter Applications

ibench: Quantifying Interference in Datacenter Applications ibench: Quantifying Interference in Datacenter Applications Christina Delimitrou and Christos Kozyrakis Stanford University IISWC September 23 th 2013 Executive Summary Problem: Increasing utilization

More information

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri, D. Bureddy and D. K. Panda Presented by Dr. Xiaoyi

More information

HPE Deep Learning Cookbook: Recipes to Run Deep Learning Workloads. Natalia Vassilieva, Sergey Serebryakov

HPE Deep Learning Cookbook: Recipes to Run Deep Learning Workloads. Natalia Vassilieva, Sergey Serebryakov HPE Deep Learning Cookbook: Recipes to Run Deep Learning Workloads Natalia Vassilieva, Sergey Serebryakov Deep learning ecosystem today Software Hardware 2 HPE s portfolio for deep learning Government,

More information

RECENT TRENDS IN GPU ARCHITECTURES. Perspectives of GPU computing in Science, 26 th Sept 2016

RECENT TRENDS IN GPU ARCHITECTURES. Perspectives of GPU computing in Science, 26 th Sept 2016 RECENT TRENDS IN GPU ARCHITECTURES Perspectives of GPU computing in Science, 26 th Sept 2016 NVIDIA THE AI COMPUTING COMPANY GPU Computing Computer Graphics Artificial Intelligence 2 NVIDIA POWERS WORLD

More information

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda 1 Motivation And Intro Programming Model Spark Data Transformation Model Construction Model Training Model Inference Execution Model Data Parallel Training

More information

Agenda. System Performance Scaling of IBM POWER6 TM Based Servers

Agenda. System Performance Scaling of IBM POWER6 TM Based Servers System Performance Scaling of IBM POWER6 TM Based Servers Jeff Stuecheli Hot Chips 19 August 2007 Agenda Historical background POWER6 TM chip components Interconnect topology Cache Coherence strategies

More information

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python.

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python. Inception and Residual Networks Hantao Zhang Deep Learning with Python https://en.wikipedia.org/wiki/residual_neural_network Deep Neural Network Progress from Large Scale Visual Recognition Challenge (ILSVRC)

More information

Revolutionizing the Datacenter

Revolutionizing the Datacenter Power-Efficient Machine Learning using FPGAs on POWER Systems Ralph Wittig, Distinguished Engineer Office of the CTO, Xilinx Revolutionizing the Datacenter Join the Conversation #OpenPOWERSummit Top-5

More information

GPU FOR DEEP LEARNING. 周国峰 Wuhan University 2017/10/13

GPU FOR DEEP LEARNING. 周国峰 Wuhan University 2017/10/13 GPU FOR DEEP LEARNING chandlerz@nvidia.com 周国峰 Wuhan University 2017/10/13 Why Deep Learning Boost Today? Nvidia SDK for Deep Learning? Agenda CUDA 8.0 cudnn TensorRT (GIE) NCCL DIGITS 2 Why Deep Learning

More information

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience Jithin Jose, Mingzhe Li, Xiaoyi Lu, Krishna Kandalla, Mark Arnold and Dhabaleswar K. (DK) Panda Network-Based Computing Laboratory

More information

Lecture 11: Distributed Training and Communication Protocols. CSE599W: Spring 2018

Lecture 11: Distributed Training and Communication Protocols. CSE599W: Spring 2018 Lecture 11: Distributed Training and Communication Protocols CSE599W: Spring 2018 Where are we High level Packages User API Programming API Gradient Calculation (Differentiation API) System Components

More information

HA-PACS/TCA: Tightly Coupled Accelerators for Low-Latency Communication between GPUs

HA-PACS/TCA: Tightly Coupled Accelerators for Low-Latency Communication between GPUs HA-PACS/TCA: Tightly Coupled Accelerators for Low-Latency Communication between GPUs Yuetsu Kodama Division of High Performance Computing Systems Center for Computational Sciences University of Tsukuba,

More information

Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep Learning

Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep Learning Efficient and Scalable Multi-Source Streaming Broadcast on Clusters for Deep Learning Ching-Hsiang Chu 1, Xiaoyi Lu 1, Ammar A. Awan 1, Hari Subramoni 1, Jahanzeb Hashmi 1, Bracy Elton 2 and Dhabaleswar

More information

CUDA OPTIMIZATIONS ISC 2011 Tutorial

CUDA OPTIMIZATIONS ISC 2011 Tutorial CUDA OPTIMIZATIONS ISC 2011 Tutorial Tim C. Schroeder, NVIDIA Corporation Outline Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control

More information

Staged Memory Scheduling

Staged Memory Scheduling Staged Memory Scheduling Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel H. Loh*, Onur Mutlu Carnegie Mellon University, *AMD Research June 12 th 2012 Executive Summary Observation:

More information

Parallel Stochastic Gradient Descent: The case for native GPU-side GPI

Parallel Stochastic Gradient Descent: The case for native GPU-side GPI Parallel Stochastic Gradient Descent: The case for native GPU-side GPI J. Keuper Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany Mark Silberstein Accelerated Computer

More information

Quantum ESPRESSO on GPU accelerated systems

Quantum ESPRESSO on GPU accelerated systems Quantum ESPRESSO on GPU accelerated systems Massimiliano Fatica, Everett Phillips, Josh Romero - NVIDIA Filippo Spiga - University of Cambridge/ARM (UK) MaX International Conference, Trieste, Italy, January

More information

Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package

Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package High Performance Machine Learning Workshop Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package Matheus Souza, Lucas Maciel, Pedro Penna, Henrique Freitas 24/09/2018 Agenda Introduction

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline! Fermi Architecture! Kernel optimizations! Launch configuration! Global memory throughput! Shared memory access! Instruction throughput / control

More information

IBM Power AC922 Server

IBM Power AC922 Server IBM Power AC922 Server The Best Server for Enterprise AI Highlights More accuracy - GPUs access system RAM for larger models Faster insights - significant deep learning speedups Rapid deployment - integrated

More information

Intelligent Hybrid Flash Management

Intelligent Hybrid Flash Management Intelligent Hybrid Flash Management Jérôme Gaysse Senior Technology&Market Analyst jerome.gaysse@silinnov-consulting.com Flash Memory Summit 2018 Santa Clara, CA 1 Research context Analysis of system &

More information

Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures

Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures Rolf Rabenseifner rabenseifner@hlrs.de Gerhard Wellein gerhard.wellein@rrze.uni-erlangen.de University of Stuttgart

More information

Deep Learning Accelerators

Deep Learning Accelerators Deep Learning Accelerators Abhishek Srivastava (as29) Samarth Kulshreshtha (samarth5) University of Illinois, Urbana-Champaign Submitted as a requirement for CS 433 graduate student project Outline Introduction

More information

World s most advanced data center accelerator for PCIe-based servers

World s most advanced data center accelerator for PCIe-based servers NVIDIA TESLA P100 GPU ACCELERATOR World s most advanced data center accelerator for PCIe-based servers HPC data centers need to support the ever-growing demands of scientists and researchers while staying

More information

Applying DDN to Machine Learning

Applying DDN to Machine Learning Applying DDN to Machine Learning Jean-Thomas Acquaviva jacquaviva@ddn.com Learning from What? Multivariate data Image data Facial recognition Action recognition Object detection and recognition Handwriting

More information

Towards Scalable Machine Learning

Towards Scalable Machine Learning Towards Scalable Machine Learning Janis Keuper itwm.fraunhofer.de/ml Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany Fraunhofer Center Machnine Larning Outline I Introduction

More information

NVIDIA TESLA V100 GPU ARCHITECTURE THE WORLD S MOST ADVANCED DATA CENTER GPU

NVIDIA TESLA V100 GPU ARCHITECTURE THE WORLD S MOST ADVANCED DATA CENTER GPU NVIDIA TESLA V100 GPU ARCHITECTURE THE WORLD S MOST ADVANCED DATA CENTER GPU WP-08608-001_v1.1 August 2017 WP-08608-001_v1.1 TABLE OF CONTENTS Introduction to the NVIDIA Tesla V100 GPU Architecture...

More information

Training Deep Neural Networks (in parallel)

Training Deep Neural Networks (in parallel) Lecture 9: Training Deep Neural Networks (in parallel) Visual Computing Systems How would you describe this professor? Easy? Mean? Boring? Nerdy? Professor classification task Classifies professors as

More information

AIRI SCALE-OUT AI-READY INFRASTRUCTURE ARCHITECTED BY PURE STORAGE AND NVIDIA WITH ARISTA 7060X SWITCH REFERENCE ARCHITECTURE

AIRI SCALE-OUT AI-READY INFRASTRUCTURE ARCHITECTED BY PURE STORAGE AND NVIDIA WITH ARISTA 7060X SWITCH REFERENCE ARCHITECTURE REFERENCE ARCHITECTURE AIRI SCALE-OUT AI-READY INFRASTRUCTURE ARCHITECTED BY PURE STORAGE AND NVIDIA WITH ARISTA 7060X SWITCH TABLE OF CONTENTS INTRODUCTION... 3 Accelerating Computation: NVIDIA DGX-1...

More information

Layer-wise Performance Bottleneck Analysis of Deep Neural Networks

Layer-wise Performance Bottleneck Analysis of Deep Neural Networks Layer-wise Performance Bottleneck Analysis of Deep Neural Networks Hengyu Zhao, Colin Weinshenker*, Mohamed Ibrahim*, Adwait Jog*, Jishen Zhao University of California, Santa Cruz, *The College of William

More information

S THE MAKING OF DGX SATURNV: BREAKING THE BARRIERS TO AI SCALE. Presenter: Louis Capps, Solution Architect, NVIDIA,

S THE MAKING OF DGX SATURNV: BREAKING THE BARRIERS TO AI SCALE. Presenter: Louis Capps, Solution Architect, NVIDIA, S7750 - THE MAKING OF DGX SATURNV: BREAKING THE BARRIERS TO AI SCALE Presenter: Louis Capps, Solution Architect, NVIDIA, lcapps@nvidia.com A TALE OF ENLIGHTENMENT Basic OK List 10 for x = 1 to 3 20 print

More information

AI for HPC and HPC for AI Workflows: The Differences, Gaps and Opportunities with Data Management

AI for HPC and HPC for AI Workflows: The Differences, Gaps and Opportunities with Data Management AI for HPC and HPC for AI Workflows: The Differences, Gaps and Opportunities with Data Management @SC Asia 2018 Rangan Sukumar, PhD Office of the CTO, Cray Inc. Safe Harbor Statement This presentation

More information

Deep Residual Learning

Deep Residual Learning Deep Residual Learning MSRA @ ILSVRC & COCO 2015 competitions Kaiming He with Xiangyu Zhang, Shaoqing Ren, Jifeng Dai, & Jian Sun Microsoft Research Asia (MSRA) MSRA @ ILSVRC & COCO 2015 Competitions 1st

More information

TECHNICAL WHITE PAPER REAL-WORLD AI DEEP LEARNING PIPELINE POWERED BY FLASHBLADE

TECHNICAL WHITE PAPER REAL-WORLD AI DEEP LEARNING PIPELINE POWERED BY FLASHBLADE TECHNICAL WHITE PAPER REAL-WORLD AI DEEP LEARNING PIPELINE POWERED BY FLASHBLADE TABLE OF CONTENTS INTRODUCTION... 3 LIFECYCLE OF DATA... 3 THE DATA SCIENTIST WORKFLOW... 5 SCALABLE DATASETS... 6 WHY FLASHBLADE...

More information

Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters

Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters Designing High Performance Heterogeneous Broadcast for Streaming Applications on Clusters 1 Ching-Hsiang Chu, 1 Khaled Hamidouche, 1 Hari Subramoni, 1 Akshay Venkatesh, 2 Bracy Elton and 1 Dhabaleswar

More information

Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters

Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters Hao Zhang Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu, Jianliang Wei, Pengtao Xie,

More information

MACHINE LEARNING WITH NVIDIA AND IBM POWER AI

MACHINE LEARNING WITH NVIDIA AND IBM POWER AI MACHINE LEARNING WITH NVIDIA AND IBM POWER AI July 2017 Joerg Krall Sr. Business Ddevelopment Manager MFG EMEA jkrall@nvidia.com A NEW ERA OF COMPUTING AI & IOT Deep Learning, GPU 100s of billions of devices

More information

Scaling Neural Network Acceleration using Coarse-Grained Parallelism

Scaling Neural Network Acceleration using Coarse-Grained Parallelism Scaling Neural Network Acceleration using Coarse-Grained Parallelism Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, Christos Kozyrakis Stanford University Platform Lab Review Feb 2018 Neural Networks (NNs)

More information

POINT CLOUD DEEP LEARNING

POINT CLOUD DEEP LEARNING POINT CLOUD DEEP LEARNING Innfarn Yoo, 3/29/28 / 57 Introduction AGENDA Previous Work Method Result Conclusion 2 / 57 INTRODUCTION 3 / 57 2D OBJECT CLASSIFICATION Deep Learning for 2D Object Classification

More information

DIAMOND RINGS ACKNOWLEDGED EVENT PROPAGATION IN MANY-CORE PROCESSORS

DIAMOND RINGS ACKNOWLEDGED EVENT PROPAGATION IN MANY-CORE PROCESSORS th August DIAMOND RINGS ACKNOWLEDGED EVENT PROPAGATION IN MANY-CORE PROCESSORS Stefan Nürnberger, Randolf Rotta, Gabor Drescher, Daniel Danner, Jörg Nolte ACKNOWLEDGED EVENT PROPAGATION What does it do?

More information

Performance and Power Co-Design of Exascale Systems and Applications

Performance and Power Co-Design of Exascale Systems and Applications Performance and Power Co-Design of Exascale Systems and Applications Adolfy Hoisie Work with Kevin Barker, Darren Kerbyson, Abhinav Vishnu Performance and Architecture Lab (PAL) Pacific Northwest National

More information

Beyond Training The next steps of Machine Learning. Chris /in/chrisparsonsdev

Beyond Training The next steps of Machine Learning. Chris /in/chrisparsonsdev Beyond Training The next steps of Machine Learning Chris Parsons chrisparsons@uk.ibm.com @chrisparsonsdev /in/chrisparsonsdev What is this talk? Part 1 What is Machine Learning? AI Infrastructure PowerAI

More information

Deep Learning mit PowerAI - Ein Überblick

Deep Learning mit PowerAI - Ein Überblick Stephen Lutz Deep Learning mit PowerAI - Open Group Master Certified IT Specialist Technical Sales IBM Cognitive Infrastructure IBM Germany Ein Überblick Stephen.Lutz@de.ibm.com What s that? and what s

More information

TESLA P100 PERFORMANCE GUIDE. Deep Learning and HPC Applications

TESLA P100 PERFORMANCE GUIDE. Deep Learning and HPC Applications TESLA P PERFORMANCE GUIDE Deep Learning and HPC Applications SEPTEMBER 217 TESLA P PERFORMANCE GUIDE Modern high performance computing (HPC) data centers are key to solving some of the world s most important

More information

Designing Shared Address Space MPI libraries in the Many-core Era

Designing Shared Address Space MPI libraries in the Many-core Era Designing Shared Address Space MPI libraries in the Many-core Era Jahanzeb Hashmi hashmi.29@osu.edu (NBCL) The Ohio State University Outline Introduction and Motivation Background Shared-memory Communication

More information

Maximizing Server Efficiency from μarch to ML accelerators. Michael Ferdman

Maximizing Server Efficiency from μarch to ML accelerators. Michael Ferdman Maximizing Server Efficiency from μarch to ML accelerators Michael Ferdman Maximizing Server Efficiency from μarch to ML accelerators Michael Ferdman Maximizing Server Efficiency with ML accelerators Michael

More information

Architectures for Scalable Media Object Search

Architectures for Scalable Media Object Search Architectures for Scalable Media Object Search Dennis Sng Deputy Director & Principal Scientist NVIDIA GPU Technology Workshop 10 July 2014 ROSE LAB OVERVIEW 2 Large Database of Media Objects Next- Generation

More information

ABySS Performance Benchmark and Profiling. May 2010

ABySS Performance Benchmark and Profiling. May 2010 ABySS Performance Benchmark and Profiling May 2010 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource - HPC

More information

Intelligent System for AI. 清大資工周志遠 AII Workshop

Intelligent System for AI. 清大資工周志遠 AII Workshop Intelligent System for AI 清大資工周志遠 2018/5/19 @ AII Workshop 周志遠 (Jerry Chou) Email: jchou@cs.nthu.edu.tw Large-scaled System Architecture (LSA) Lab 經歷 清華大學資工系 副教授 2016~現今 清華大學資工系 助理教授 2011~2016 美國勞倫斯國家實驗室

More information