PRACTICAL SCALING TECHNIQUES. Ujval Kapasi Dec 9, 2017

Size: px
Start display at page:

Download "PRACTICAL SCALING TECHNIQUES. Ujval Kapasi Dec 9, 2017"

Transcription

1 PRACTICAL SCALING TECHNIQUES Ujval Kapasi Dec 9, 2017

2 DNN TRAINING ON MULTIPLE GPUS Making DL training times shorter 2

3 DNN TRAINING ON MULTIPLE GPUS Making DL training times shorter local local local Allreduce : Sum across GPUs local Data parallelism : split batch across multiple GPUs 3

4 DNN TRAINING ON MULTIPLE GPUS Making DL training times shorter local local local Allreduce : Sum across GPUs local Data parallelism : split batch across multiple GPUs 4

5 DNN TRAINING ON MULTIPLE GPUS Making DL training times shorter local local local Allreduce : Sum across GPUs local Data parallelism : split batch across multiple GPUs 5

6 DNN TRAINING ON MULTIPLE GPUS Making DL training times shorter local local local Allreduce : Sum across GPUs local Data parallelism : split batch across multiple GPUs 6

7 OPTIMIZE THE INPUT PIPELINE 7

8 Device/Training limited TYPICAL TRAINING PIPELINE Host Device read&decode train augment Host/IO limited Host Device 8

9 EXAMPLE: CNTK ON DGX-1 Device/Training limited (ResNet 50) Host/IO limited (AlexNet) Sync overhead 9

10 THROUGHPUT COMPARISON IMAGES/SECOND File I/O ~10, x550 images ~1600 MB/s with LMDB on DGX-1 V100 Image Decoding ~ 10,000 15, x550 images libjpeg-turbo, OMP_PROC_BIND=true on DGX-1 V100 Training >6,000 (Resnet-50) >14,000 (Resnet-18) Synthetic dataset, DGX-1 V100 10

11 ROOFLINE ANALYSIS Compute Bound I/O 352 I/O Horizontal lines show I/O pipeline throughputs 352: 9800 images/s 480: 4900 images/s Measurements collected using the Caffe2 framework Achieved Images/s RN-50 RN-34 RN-18 inception v3 RN-101 VGG 0 RN Training only Images/s 11

12 Optimize Image I/O: RECOMMENDATIONS Use fast data and file loading mechanisms such as LMDB or RecordIO When loading from files consider mmap instead of fopen/fread Use fast image decoding libraries such as libjpeg-turbo Using OpenCVs imread function relinquishes control over these optimizations and sacrifices performance Optimize Augmentation Allow augmentation on GPU for I/O limited networks Seconds JPEG read and decoding time for 1024 files (290x550) decoding time mmap+decode OpenCV imread Threads 12

13 OPTIMIZE COMMUNICATION 13

14 DATA PARALLEL AND NCCL NCCL uses rings to move data across all GPUs and perform reductions. Ring Allreduce is bandwidth optimal and adapts to many topologies DGX-1 : 4 unidirectional rings 14

15 NCCL 2 MULTI-NODE SCALING 15

16 16

17 TRAIN WITH LARGE BATCHES 17

18 18 DIFFICULTIES OF LARGE-BATCH TRAINING It s difficult to keep the test accuracy, while increasing batch size. Recipe from [Goyal, 2017]: a linear scaling of learning rate γγ as a function of batch size B a learning rate warm-up to prevent divergence during initial training phase Resnet-50 Optimization is not a problem if you get right hyper- Priya Goyal, Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour,

19 19 LARGE-BATCH TRAINING Sam Smith, et al. Don t Decay the Learning Rate, Increase the Batchsize Keskar, et al. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima Akiba, et al. Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes 19

20 LAYER-WISE ADAPTIVE RATE SCALING (LARS) Use local LR λλ ll for each layer ll ww ll tt = γγ λλ ll (ww ll tt ) where: γγ global LR, (ww ll ll tt ) stochastic gradient of loss function LL wrt ww tt λλ ll local LR for layer ll 20 20

21 21 RESNET-50 WITH LARS: B 32K More details on LARS: 21

22 22 SUMMARY 1) Larger batches allow scaling to larger number of nodes while maintaining high utilization of each GPU 2) The key difficulties in large batch training is numerical optimization 3) The existing approach, based on using large learning rates, can lead to divergence, especially during the initial phase, even with warm-up 4) With Layer-wise Adaptive Rate Scaling (LARS) we scaled up Resnet-50 to B=16K 22

23 23 FUTURE CHALLENGES Hybrid Model parallel and Data parallel Disk I/O for large datasets that can't fit in system memory or on-node SSDs 23

24

CafeGPI. Single-Sided Communication for Scalable Deep Learning

CafeGPI. Single-Sided Communication for Scalable Deep Learning CafeGPI Single-Sided Communication for Scalable Deep Learning Janis Keuper itwm.fraunhofer.de/ml Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany Deep Neural Networks

More information

Democratizing Machine Learning on Kubernetes

Democratizing Machine Learning on Kubernetes Democratizing Machine Learning on Kubernetes Joy Qiao, Senior Solution Architect - AI and Research Group, Microsoft Lachlan Evenson - Principal Program Manager AKS/ACS, Microsoft Who are we? The Data Scientist

More information

Evaluating On-Node GPU Interconnects for Deep Learning Workloads

Evaluating On-Node GPU Interconnects for Deep Learning Workloads Evaluating On-Node GPU Interconnects for Deep Learning Workloads NATHAN TALLENT, NITIN GAWANDE, CHARLES SIEGEL ABHINAV VISHNU, ADOLFY HOISIE Pacific Northwest National Lab PMBS 217 (@ SC) November 13,

More information

NCCL 2.0. Sylvain Jeaugey

NCCL 2.0. Sylvain Jeaugey NCCL 2.0 Sylvain Jeaugey DEE LEARNING ON GUS Making DL training times shorter Deeper neural networks, larger data sets training is a very, very long operation! CUDA NCCL 1 NCCL 2 Multi-core CU GU Multi-GU

More information

Distributed Training of Deep Neural Networks: Theoretical and Practical Limits of Parallel Scalability

Distributed Training of Deep Neural Networks: Theoretical and Practical Limits of Parallel Scalability Distributed Training of Deep Neural Networks: Theoretical and Practical Limits of Parallel Scalability Janis Keuper Itwm.fraunhofer.de/ml Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern,

More information

IBM Deep Learning Solutions

IBM Deep Learning Solutions IBM Deep Learning Solutions Reference Architecture for Deep Learning on POWER8, P100, and NVLink October, 2016 How do you teach a computer to Perceive? 2 Deep Learning: teaching Siri to recognize a bicycle

More information

MIXED PRECISION TRAINING: THEORY AND PRACTICE Paulius Micikevicius

MIXED PRECISION TRAINING: THEORY AND PRACTICE Paulius Micikevicius MIXED PRECISION TRAINING: THEORY AND PRACTICE Paulius Micikevicius What is Mixed Precision Training? Reduced precision tensor math with FP32 accumulation, FP16 storage Successfully used to train a variety

More information

TECHNICAL WHITE PAPER REAL-WORLD AI DEEP LEARNING PIPELINE POWERED BY FLASHBLADE

TECHNICAL WHITE PAPER REAL-WORLD AI DEEP LEARNING PIPELINE POWERED BY FLASHBLADE TECHNICAL WHITE PAPER REAL-WORLD AI DEEP LEARNING PIPELINE POWERED BY FLASHBLADE TABLE OF CONTENTS INTRODUCTION... 3 LIFECYCLE OF DATA... 3 THE DATA SCIENTIST WORKFLOW... 5 SCALABLE DATASETS... 6 WHY FLASHBLADE...

More information

A performance comparison of Deep Learning frameworks on KNL

A performance comparison of Deep Learning frameworks on KNL A performance comparison of Deep Learning frameworks on KNL R. Zanella, G. Fiameni, M. Rorro Middleware, Data Management - SCAI - CINECA IXPUG Bologna, March 5, 2018 Table of Contents 1. Problem description

More information

Exploiting InfiniBand and GPUDirect Technology for High Performance Collectives on GPU Clusters

Exploiting InfiniBand and GPUDirect Technology for High Performance Collectives on GPU Clusters Exploiting InfiniBand and Direct Technology for High Performance Collectives on Clusters Ching-Hsiang Chu chu.368@osu.edu Department of Computer Science and Engineering The Ohio State University OSU Booth

More information

NVIDIA DATA LOADING LIBRARY (DALI)

NVIDIA DATA LOADING LIBRARY (DALI) NVIDIA DATA LOADING LIBRARY (DALI) RN-09096-001 _v01 September 2018 Release Notes TABLE OF CONTENTS Chapter Chapter Chapter Chapter Chapter 1. 2. 3. 4. 5. DALI DALI DALI DALI DALI Overview...1 Release

More information

Tutorial on Keras CAP ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY

Tutorial on Keras CAP ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY Tutorial on Keras CAP 6412 - ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY Deep learning packages TensorFlow Google PyTorch Facebook AI research Keras Francois Chollet (now at Google) Chainer Company

More information

Towards Scalable Machine Learning

Towards Scalable Machine Learning Towards Scalable Machine Learning Janis Keuper itwm.fraunhofer.de/ml Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany Fraunhofer Center Machnine Larning Outline I Introduction

More information

MIXED PRECISION TRAINING OF NEURAL NETWORKS. Carl Case, Senior Architect, NVIDIA

MIXED PRECISION TRAINING OF NEURAL NETWORKS. Carl Case, Senior Architect, NVIDIA MIXED PRECISION TRAINING OF NEURAL NETWORKS Carl Case, Senior Architect, NVIDIA OUTLINE 1. What is mixed precision training with FP16? 2. Considerations and methodology for mixed precision training 3.

More information

Efficient Communication Library for Large-Scale Deep Learning

Efficient Communication Library for Large-Scale Deep Learning IBM Research AI Efficient Communication Library for Large-Scale Deep Learning Mar 26, 2018 Minsik Cho (minsikcho@us.ibm.com) Deep Learning changing Our Life Automotive/transportation Security/public safety

More information

Profiling DNN Workloads on a Volta-based DGX-1 System

Profiling DNN Workloads on a Volta-based DGX-1 System Profiling DNN Workloads on a Volta-based DGX-1 System Saiful A. Mojumder 1, Marcia S Louis 1, Yifan Sun 2, Amir Kavyan Ziabari 3, José L. Abellán 4, John Kim 5, David Kaeli 2, Ajay Joshi 1 1 ECE Department,

More information

High-Performance Broadcast for Streaming and Deep Learning

High-Performance Broadcast for Streaming and Deep Learning High-Performance Broadcast for Streaming and Deep Learning Ching-Hsiang Chu chu.368@osu.edu Department of Computer Science and Engineering The Ohio State University OSU Booth - SC17 2 Outline Introduction

More information

Defense Data Generation in Distributed Deep Learning System Se-Yoon Oh / ADD-IDAR

Defense Data Generation in Distributed Deep Learning System Se-Yoon Oh / ADD-IDAR Defense Data Generation in Distributed Deep Learning System Se-Yoon Oh / 2017. 10. 31 syoh@add.re.kr Page 1/36 Overview 1. Introduction 2. Data Generation Synthesis 3. Distributed Deep Learning 4. Conclusions

More information

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda 1 Motivation And Intro Programming Model Spark Data Transformation Model Construction Model Training Model Inference Execution Model Data Parallel Training

More information

Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning

Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning 5th ANNUAL WORKSHOP 209 Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning Hari Subramoni Dhabaleswar K. (DK) Panda The Ohio State University The Ohio State University E-mail:

More information

NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS

NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS TECHNICAL OVERVIEW NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS A Guide to the Optimized Framework Containers on NVIDIA GPU Cloud Introduction Artificial intelligence is helping to solve some of the most

More information

Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters

Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters Hao Zhang Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu, Jianliang Wei, Pengtao Xie,

More information

In partnership with. VelocityAI REFERENCE ARCHITECTURE WHITE PAPER

In partnership with. VelocityAI REFERENCE ARCHITECTURE WHITE PAPER In partnership with VelocityAI REFERENCE JULY // 2018 Contents Introduction 01 Challenges with Existing AI/ML/DL Solutions 01 Accelerate AI/ML/DL Workloads with Vexata VelocityAI 02 VelocityAI Reference

More information

Parallel Deep Network Training

Parallel Deep Network Training Lecture 19: Parallel Deep Network Training Parallel Computer Architecture and Programming How would you describe this professor? Easy? Mean? Boring? Nerdy? Professor classification task Classifies professors

More information

Scalable Distributed Training with Parameter Hub: a whirlwind tour

Scalable Distributed Training with Parameter Hub: a whirlwind tour Scalable Distributed Training with Parameter Hub: a whirlwind tour TVM Stack Optimization High-Level Differentiable IR Tensor Expression IR AutoTVM LLVM, CUDA, Metal VTA AutoVTA Edge FPGA Cloud FPGA ASIC

More information

Intelligent Hybrid Flash Management

Intelligent Hybrid Flash Management Intelligent Hybrid Flash Management Jérôme Gaysse Senior Technology&Market Analyst jerome.gaysse@silinnov-consulting.com Flash Memory Summit 2018 Santa Clara, CA 1 Research context Analysis of system &

More information

11. Neural Network Regularization

11. Neural Network Regularization 11. Neural Network Regularization CS 519 Deep Learning, Winter 2016 Fuxin Li With materials from Andrej Karpathy, Zsolt Kira Preventing overfitting Approach 1: Get more data! Always best if possible! If

More information

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky Ilya Sutskever Geoffrey Hinton University of Toronto Canada Paper with same name to appear in NIPS 2012 Main idea Architecture

More information

Characterizing and Benchmarking Deep Learning Systems on Modern Data Center Architectures

Characterizing and Benchmarking Deep Learning Systems on Modern Data Center Architectures Characterizing and Benchmarking Deep Learning Systems on Modern Data Center Architectures Talk at Bench 2018 by Xiaoyi Lu The Ohio State University E-mail: luxi@cse.ohio-state.edu http://www.cse.ohio-state.edu/~luxi

More information

Advanced Video Analysis & Imaging

Advanced Video Analysis & Imaging Advanced Video Analysis & Imaging (5LSH0), Module 09B Machine Learning with Convolutional Neural Networks (CNNs) - Workout Farhad G. Zanjani, Clint Sebastian, Egor Bondarev, Peter H.N. de With ( p.h.n.de.with@tue.nl

More information

HPE Deep Learning Cookbook: Recipes to Run Deep Learning Workloads. Natalia Vassilieva, Sergey Serebryakov

HPE Deep Learning Cookbook: Recipes to Run Deep Learning Workloads. Natalia Vassilieva, Sergey Serebryakov HPE Deep Learning Cookbook: Recipes to Run Deep Learning Workloads Natalia Vassilieva, Sergey Serebryakov Deep learning ecosystem today Software Hardware 2 HPE s portfolio for deep learning Government,

More information

Fuzzy Set Theory in Computer Vision: Example 3

Fuzzy Set Theory in Computer Vision: Example 3 Fuzzy Set Theory in Computer Vision: Example 3 Derek T. Anderson and James M. Keller FUZZ-IEEE, July 2017 Overview Purpose of these slides are to make you aware of a few of the different CNN architectures

More information

Multi-dimensional Parallel Training of Winograd Layer on Memory-Centric Architecture

Multi-dimensional Parallel Training of Winograd Layer on Memory-Centric Architecture The 51st Annual IEEE/ACM International Symposium on Microarchitecture Multi-dimensional Parallel Training of Winograd Layer on Memory-Centric Architecture Byungchul Hong Yeonju Ro John Kim FuriosaAI Samsung

More information

Convolutional Neural Networks

Convolutional Neural Networks NPFL114, Lecture 4 Convolutional Neural Networks Milan Straka March 25, 2019 Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics unless otherwise

More information

Training Deep Neural Networks (in parallel)

Training Deep Neural Networks (in parallel) Lecture 9: Training Deep Neural Networks (in parallel) Visual Computing Systems How would you describe this professor? Easy? Mean? Boring? Nerdy? Professor classification task Classifies professors as

More information

arxiv: v9 [cs.cv] 12 Dec 2017

arxiv: v9 [cs.cv] 12 Dec 2017 ImageNet Training in Minutes Yang You 1, Zhao Zhang 2, Cho-Jui Hsieh 3, James Demmel 1, Kurt Keutzer 1 UC Berkeley 1, TACC 2, UC Davis 3 {youyang, demmel, keutzer}@cs.berkeley.edu; zzhang@tacc.utexas.edu;

More information

arxiv: v1 [cs.dc] 8 Jun 2018

arxiv: v1 [cs.dc] 8 Jun 2018 PipeDream: Fast and Efficient Pipeline Parallel DNN Training Aaron Harlap Deepak Narayanan Amar Phanishayee Vivek Seshadri Nikhil Devanur Greg Ganger Phil Gibbons Microsoft Research Carnegie Mellon University

More information

Effectively Scaling Deep Learning Frameworks

Effectively Scaling Deep Learning Frameworks Effectively Scaling Deep Learning Frameworks (To 40 GPUs and Beyond) Welcome everyone! I m excited to be here today and get the opportunity to present some of the work that we ve been doing at SVAIL, the

More information

High-Performance Training for Deep Learning and Computer Vision HPC

High-Performance Training for Deep Learning and Computer Vision HPC High-Performance Training for Deep Learning and Computer Vision HPC Panel at CVPR-ECV 18 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

DEEP NEURAL NETWORKS CHANGING THE AUTONOMOUS VEHICLE LANDSCAPE. Dennis Lui August 2017

DEEP NEURAL NETWORKS CHANGING THE AUTONOMOUS VEHICLE LANDSCAPE. Dennis Lui August 2017 DEEP NEURAL NETWORKS CHANGING THE AUTONOMOUS VEHICLE LANDSCAPE Dennis Lui August 2017 THE RISE OF GPU COMPUTING APPLICATIONS 10 7 10 6 GPU-Computing perf 1.5X per year 1000X by 2025 ALGORITHMS 10 5 1.1X

More information

Entropy-Aware I/O Pipelining for Large-Scale Deep Learning on HPC Systems

Entropy-Aware I/O Pipelining for Large-Scale Deep Learning on HPC Systems Entropy-Aware I/O Pipelining for Large-Scale Deep Learning on HPC Systems Yue Zhu Fahim Chowdhury Huansong Fu Adam Moody Kathryn Mohror Kento Sato Weikuan Yu Florida State University Lawrence Livermore

More information

CS 179 Lecture 16. Logistic Regression & Parallel SGD

CS 179 Lecture 16. Logistic Regression & Parallel SGD CS 179 Lecture 16 Logistic Regression & Parallel SGD 1 Outline logistic regression (stochastic) gradient descent parallelizing SGD for neural nets (with emphasis on Google s distributed neural net implementation)

More information

GPU FOR DEEP LEARNING. 周国峰 Wuhan University 2017/10/13

GPU FOR DEEP LEARNING. 周国峰 Wuhan University 2017/10/13 GPU FOR DEEP LEARNING chandlerz@nvidia.com 周国峰 Wuhan University 2017/10/13 Why Deep Learning Boost Today? Nvidia SDK for Deep Learning? Agenda CUDA 8.0 cudnn TensorRT (GIE) NCCL DIGITS 2 Why Deep Learning

More information

arxiv: v6 [cs.cv] 7 Nov 2017

arxiv: v6 [cs.cv] 7 Nov 2017 ImageNet Training in Minutes Yang You 1, Zhao Zhang 2, Cho-Jui Hsieh 3, James Demmel 1, Kurt Keutzer 1 UC Berkeley 1, TACC 2, UC Davis 3 {youyang, demmel, keutzer}@cs.berkeley.edu; zzhang@tacc.utexas.edu;

More information

AIRI SCALE-OUT AI-READY INFRASTRUCTURE ARCHITECTED BY PURE STORAGE AND NVIDIA WITH ARISTA 7060X SWITCH REFERENCE ARCHITECTURE

AIRI SCALE-OUT AI-READY INFRASTRUCTURE ARCHITECTED BY PURE STORAGE AND NVIDIA WITH ARISTA 7060X SWITCH REFERENCE ARCHITECTURE REFERENCE ARCHITECTURE AIRI SCALE-OUT AI-READY INFRASTRUCTURE ARCHITECTED BY PURE STORAGE AND NVIDIA WITH ARISTA 7060X SWITCH TABLE OF CONTENTS INTRODUCTION... 3 Accelerating Computation: NVIDIA DGX-1...

More information

CNNS FROM THE BASICS TO RECENT ADVANCES. Dmytro Mishkin Center for Machine Perception Czech Technical University in Prague

CNNS FROM THE BASICS TO RECENT ADVANCES. Dmytro Mishkin Center for Machine Perception Czech Technical University in Prague CNNS FROM THE BASICS TO RECENT ADVANCES Dmytro Mishkin Center for Machine Perception Czech Technical University in Prague ducha.aiki@gmail.com OUTLINE Short review of the CNN design Architecture progress

More information

Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks

Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks Naveen Suda, Vikas Chandra *, Ganesh Dasika *, Abinash Mohanty, Yufei Ma, Sarma Vrudhula, Jae-sun Seo, Yu

More information

CNN optimization. Rassadin A

CNN optimization. Rassadin A CNN optimization Rassadin A. 01.2017-02.2017 What to optimize? Training stage time consumption (CPU / GPU) Inference stage time consumption (CPU / GPU) Training stage memory consumption Inference stage

More information

Two FPGA-DNN Projects: 1. Low Latency Multi-Layer Perceptrons using FPGAs 2. Acceleration of CNN Training on FPGA-based Clusters

Two FPGA-DNN Projects: 1. Low Latency Multi-Layer Perceptrons using FPGAs 2. Acceleration of CNN Training on FPGA-based Clusters Two FPGA-DNN Projects: 1. Low Latency Multi-Layer Perceptrons using FPGAs 2. Acceleration of CNN Training on FPGA-based Clusters *Argonne National Lab +BU & USTC Presented by Martin Herbordt Work by Ahmed

More information

In-Place Activated BatchNorm for Memory- Optimized Training of DNNs

In-Place Activated BatchNorm for Memory- Optimized Training of DNNs In-Place Activated BatchNorm for Memory- Optimized Training of DNNs Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder Mapillary Research Paper: https://arxiv.org/abs/1712.02616 Code: https://github.com/mapillary/inplace_abn

More information

TESLA V100 PERFORMANCE GUIDE. Life Sciences Applications

TESLA V100 PERFORMANCE GUIDE. Life Sciences Applications TESLA V100 PERFORMANCE GUIDE Life Sciences Applications NOVEMBER 2017 TESLA V100 PERFORMANCE GUIDE Modern high performance computing (HPC) data centers are key to solving some of the world s most important

More information

arxiv: v1 [cs.lg] 30 Jul 2018

arxiv: v1 [cs.lg] 30 Jul 2018 Highly Scalable Deep Learning Training System with Mixed-Precision: Training ImageNet in Four Minutes arxiv:187.1125v1 [cs.lg] 3 Jul 218 Xianyan Jia 1, Shutao Song 1, Wei He 1, Yangzihao Wang 1, Haidong

More information

Parallel Stochastic Gradient Descent: The case for native GPU-side GPI

Parallel Stochastic Gradient Descent: The case for native GPU-side GPI Parallel Stochastic Gradient Descent: The case for native GPU-side GPI J. Keuper Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany Mark Silberstein Accelerated Computer

More information

ChainerMN: Scalable Distributed Deep Learning Framework

ChainerMN: Scalable Distributed Deep Learning Framework ChainerMN: Scalable Distributed Deep Learning Framework Takuya Akiba Preferred Networks, Inc. akiba@preferred.jp Keisuke Fukuda Preferred Networks, Inc. kfukuda@preferred.jp Shuji Suzuki Preferred Networks,

More information

CENG 783. Special topics in. Deep Learning. AlchemyAPI. Week 11. Sinan Kalkan

CENG 783. Special topics in. Deep Learning. AlchemyAPI. Week 11. Sinan Kalkan CENG 783 Special topics in Deep Learning AlchemyAPI Week 11 Sinan Kalkan TRAINING A CNN Fig: http://www.robots.ox.ac.uk/~vgg/practicals/cnn/ Feed-forward pass Note that this is written in terms of the

More information

High Performance Computing

High Performance Computing High Performance Computing 9th Lecture 2016/10/28 YUKI ITO 1 Selected Paper: vdnn: Virtualized Deep Neural Networks for Scalable, MemoryEfficient Neural Network Design Minsoo Rhu, Natalia Gimelshein, Jason

More information

Gist: Efficient Data Encoding for Deep Neural Network Training

Gist: Efficient Data Encoding for Deep Neural Network Training Gist: Efficient Data Encoding for Deep Neural Network Training Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang and Gennady Pekhimenko Microsoft Research, Univerity of Michigan, Ann Arbor, University

More information

Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep Learning

Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep Learning Efficient and Scalable Multi-Source Streaming Broadcast on Clusters for Deep Learning Ching-Hsiang Chu 1, Xiaoyi Lu 1, Ammar A. Awan 1, Hari Subramoni 1, Jahanzeb Hashmi 1, Bracy Elton 2 and Dhabaleswar

More information

Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning

Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning Ammar Ahmad Awan, Khaled Hamidouche, Akshay Venkatesh, and Dhabaleswar K. Panda Network-Based Computing Laboratory Department

More information

Dell EMC Isilon and NVIDIA DGX-1 servers for deep learning

Dell EMC Isilon and NVIDIA DGX-1 servers for deep learning Dell EMC Isilon and NVIDIA DGX-1 servers for deep learning This document demonstrates how the Dell EMC Isilon F800 All-Flash Scale-out NAS and NVIDIA DGX-1 servers with NVIDIA Tesla V100 GPUs can be used

More information

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K.

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Panda Department of Computer Science and Engineering The Ohio

More information

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9-1 Administrative A2 due Wed May 2 Midterm: In-class Tue May 8. Covers material through Lecture 10 (Thu May 3). Sample midterm released on piazza. Midterm review session: Fri May 4 discussion

More information

Beyond Data and Model Parallelism for Deep Neural Networks

Beyond Data and Model Parallelism for Deep Neural Networks Beyond Data and Model Parallelism for Deep Neural Networks In this paper, we present FlexFlow, a deep learning framework that automatically finds fast parallelization strategies over a significantly broader

More information

Deep learning at Microsoft

Deep learning at Microsoft Deep learning at Services Skype Translator Cortana Bing HoloLens Research Services ImageNet: 2015 ResNet 28.2 25.8 ImageNet Classification top-5 error (%) 16.4 11.7 7.3 6.7 3.5 ILSVRC 2010 NEC America

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

IBM SpectrumAI with NVIDIA Converged Infrastructure Solutions for AI workloads

IBM SpectrumAI with NVIDIA Converged Infrastructure Solutions for AI workloads IBM SpectrumAI with NVIDIA Converged Infrastructure Solutions for AI workloads The engine to power your AI data pipeline Introduction: Artificial intelligence (AI) including deep learning (DL) and machine

More information

Research Faculty Summit Systems Fueling future disruptions

Research Faculty Summit Systems Fueling future disruptions Research Faculty Summit 2018 Systems Fueling future disruptions Wolong: A Back-end Optimizer for Deep Learning Computation Jilong Xue Researcher, Microsoft Research Asia System Challenge in Deep Learning

More information

Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations, and Hardware Implications

Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations, and Hardware Implications Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations, and Hardware Implications Jongsoo Park Facebook AI System SW/HW Co-design Team Sep-21 2018 Team Introduction

More information

HPC Advisory COUNCIL

HPC Advisory COUNCIL Inside AI HPC Advisory COUNCIL Lugano 2017 Scalable Systems for Distributed Deep Learning Benchmarking, Performance Optimization and Architectures Gaurav kaul SYSTEMS ARCHITECT, INTEL DATACENTRE GROUP

More information

arxiv: v1 [cs.lg] 28 Oct 2018

arxiv: v1 [cs.lg] 28 Oct 2018 A Hitchhiker s Guide On Distributed Training of Deep Neural Networks Karanbir Chahal 1, Manraj Singh Grover 2 and Kuntal Dey 3 arxiv:1810.11787v1 [cs.lg] 28 Oct 2018 Abstract Deep learning has led to tremendous

More information

A model-based approach to streamlining distributed training for asynchronous SGD

A model-based approach to streamlining distributed training for asynchronous SGD A model-based approach to streamlining distributed training for asynchronous SGD Sung-Han Lin, Marco Paolieri, Cheng-Fu Chou, Leana Golubchik Department of Computer Science, University of Southern California

More information

arxiv: v1 [cs.lg] 7 Dec 2018

arxiv: v1 [cs.lg] 7 Dec 2018 NONLINEAR CONJUGATE GRADIENTS FOR SCALING SYNCHRONOUS DISTRIBUTED DNN TRAINING Saurabh Adya 1 Vinay Palakkode 1 Oncel Tuzel 1 arxiv:1812.02886v1 [cs.lg] 7 Dec 2018 ABSTRACT Nonlinear conjugate gradient

More information

DEEP NEURAL NETWORKS FOR OBJECT DETECTION

DEEP NEURAL NETWORKS FOR OBJECT DETECTION DEEP NEURAL NETWORKS FOR OBJECT DETECTION Sergey Nikolenko Steklov Institute of Mathematics at St. Petersburg October 21, 2017, St. Petersburg, Russia Outline Bird s eye overview of deep learning Convolutional

More information

High-Performance Data Loading and Augmentation for Deep Neural Network Training

High-Performance Data Loading and Augmentation for Deep Neural Network Training High-Performance Data Loading and Augmentation for Deep Neural Network Training Trevor Gale tgale@ece.neu.edu Steven Eliuk steven.eliuk@gmail.com Cameron Upright c.upright@samsung.com Roadmap 1. The General-Purpose

More information

FUSION MODEL BASED ON CONVOLUTIONAL NEURAL NETWORKS WITH TWO FEATURES FOR ACOUSTIC SCENE CLASSIFICATION

FUSION MODEL BASED ON CONVOLUTIONAL NEURAL NETWORKS WITH TWO FEATURES FOR ACOUSTIC SCENE CLASSIFICATION Please contact the conference organizers at dcasechallenge@gmail.com if you require an accessible file, as the files provided by ConfTool Pro to reviewers are filtered to remove author information, and

More information

HENet: A Highly Efficient Convolutional Neural. Networks Optimized for Accuracy, Speed and Storage

HENet: A Highly Efficient Convolutional Neural. Networks Optimized for Accuracy, Speed and Storage HENet: A Highly Efficient Convolutional Neural Networks Optimized for Accuracy, Speed and Storage Qiuyu Zhu Shanghai University zhuqiuyu@staff.shu.edu.cn Ruixin Zhang Shanghai University chriszhang96@shu.edu.cn

More information

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 7. Image Processing COMP9444 17s2 Image Processing 1 Outline Image Datasets and Tasks Convolution in Detail AlexNet Weight Initialization Batch Normalization

More information

Solving the Non-Volatile Memory Conundrum for Deep Learning Workloads

Solving the Non-Volatile Memory Conundrum for Deep Learning Workloads Solving the Non-Volatile Memory Conundrum for Deep Learning Workloads Ahmet Inci and Diana Marculescu Department of Electrical and Computer Engineering Carnegie Mellon University ainci@andrew.cmu.edu Architectures

More information

Sayan Pathak Principal ML Scientist. Chris Basoglu Partner Dev Manager

Sayan Pathak Principal ML Scientist. Chris Basoglu Partner Dev Manager Sayan Pathak Principal ML Scientist Chris Basoglu Partner Dev Manager With many contributors: A. Agarwal, E. Akchurin, E. Barsoum, C. Basoglu, G. Chen, S. Cyphers, W. Darling, J. Droppo, K. Deng, A. Eversole,

More information

Gradient Descent Optimization Algorithms for Deep Learning Batch gradient descent Stochastic gradient descent Mini-batch gradient descent

Gradient Descent Optimization Algorithms for Deep Learning Batch gradient descent Stochastic gradient descent Mini-batch gradient descent Gradient Descent Optimization Algorithms for Deep Learning Batch gradient descent Stochastic gradient descent Mini-batch gradient descent Slide credit: http://sebastianruder.com/optimizing-gradient-descent/index.html#batchgradientdescent

More information

NVIDIA FOR DEEP LEARNING. Bill Veenhuis

NVIDIA FOR DEEP LEARNING. Bill Veenhuis NVIDIA FOR DEEP LEARNING Bill Veenhuis bveenhuis@nvidia.com Nvidia is the world s leading ai platform ONE ARCHITECTURE CUDA 2 GPU: Perfect Companion for Accelerating Apps & A.I. CPU GPU 3 Intro to AI AGENDA

More information

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta Encoder-Decoder Networks for Semantic Segmentation Sachin Mehta Outline > Overview of Semantic Segmentation > Encoder-Decoder Networks > Results What is Semantic Segmentation? Input: RGB Image Output:

More information

TOWARDS ACCELERATED DEEP LEARNING IN HPC AND HYPERSCALE ARCHITECTURES Environnement logiciel pour l apprentissage profond dans un contexte HPC

TOWARDS ACCELERATED DEEP LEARNING IN HPC AND HYPERSCALE ARCHITECTURES Environnement logiciel pour l apprentissage profond dans un contexte HPC TOWARDS ACCELERATED DEEP LEARNING IN HPC AND HYPERSCALE ARCHITECTURES Environnement logiciel pour l apprentissage profond dans un contexte HPC TERATECH Juin 2017 Gunter Roth, François Courteille DRAMATIC

More information

Accelerating your Embedded Vision / Machine Learning design with the revision Stack. Giles Peckham, Xilinx

Accelerating your Embedded Vision / Machine Learning design with the revision Stack. Giles Peckham, Xilinx Accelerating your Embedded Vision / Machine Learning design with the revision Stack Giles Peckham, Xilinx Xilinx Foundation at the Edge Vision Customers Using Xilinx >80 ADAS Models From 23 Makers >80

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

EFFICIENT INFERENCE WITH TENSORRT. Han Vanholder

EFFICIENT INFERENCE WITH TENSORRT. Han Vanholder EFFICIENT INFERENCE WITH TENSORRT Han Vanholder AI INFERENCING IS EXPLODING 2 Trillion Messages Per Day On LinkedIn 500M Daily active users of iflytek 140 Billion Words Per Day Translated by Google 60

More information

arxiv: v1 [cs.dc] 21 May 2018 Abstract

arxiv: v1 [cs.dc] 21 May 2018 Abstract Samples/s Parameter Hub: a Rack-Scale Parameter Server for Distributed Deep Neural Network Training Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee, Arvind Krishnamurthy University of Washington,

More information

Deep learning in MATLAB From Concept to CUDA Code

Deep learning in MATLAB From Concept to CUDA Code Deep learning in MATLAB From Concept to CUDA Code Roy Fahn Applications Engineer Systematics royf@systematics.co.il 03-7660111 Ram Kokku Principal Engineer MathWorks ram.kokku@mathworks.com 2017 The MathWorks,

More information

Building the Most Efficient Machine Learning System

Building the Most Efficient Machine Learning System Building the Most Efficient Machine Learning System Mellanox The Artificial Intelligence Interconnect Company June 2017 Mellanox Overview Company Headquarters Yokneam, Israel Sunnyvale, California Worldwide

More information

Implementing Deep Learning for Video Analytics on Tegra X1.

Implementing Deep Learning for Video Analytics on Tegra X1. Implementing Deep Learning for Video Analytics on Tegra X1 research@hertasecurity.com Index Who we are, what we do Video analytics pipeline Video decoding Facial detection and preprocessing DNN: learning

More information

Using CNN Across Intel Architecture

Using CNN Across Intel Architecture white paper Artificial Intelligence Object Classification Intel AI Builders Object Classification Using CNN Across Intel Architecture Table of Contents Abstract...1 1. Introduction...1 2. Setting up a

More information

Data-Centric Innovation Summit NAVEEN RAO CORPORATE VICE PRESIDENT & GENERAL MANAGER ARTIFICIAL INTELLIGENCE PRODUCTS GROUP

Data-Centric Innovation Summit NAVEEN RAO CORPORATE VICE PRESIDENT & GENERAL MANAGER ARTIFICIAL INTELLIGENCE PRODUCTS GROUP Data-Centric Innovation Summit NAVEEN RAO CORPORATE VICE PRESIDENT & GENERAL MANAGER ARTIFICIAL INTELLIGENCE PRODUCTS GROUP Data center logic silicon Tam ~30% cagr Ai is exploding $8-10B Emerging as a

More information

ShmCaffe: A Distributed Deep Learning Platform with Shared Memory Buffer for HPC Architecture

ShmCaffe: A Distributed Deep Learning Platform with Shared Memory Buffer for HPC Architecture ShmCaffe: A Distributed Deep Learning Platform with Shared Memory Buffer for HPC Architecture Shinyoung Ahn, Joongheon Kim, Eunji Lim, Wan Choi, Aziz Mohaisen, and Sungwon Kang Dept. Info. & Comm. Engineering,

More information

OBJECT DETECTION HYUNG IL KOO

OBJECT DETECTION HYUNG IL KOO OBJECT DETECTION HYUNG IL KOO INTRODUCTION Computer Vision Tasks Classification + Localization Classification: C-classes Input: image Output: class label Evaluation metric: accuracy Localization Input:

More information

A NEW COMPUTING ERA JENSEN HUANG, FOUNDER & CEO GTC CHINA 2017

A NEW COMPUTING ERA JENSEN HUANG, FOUNDER & CEO GTC CHINA 2017 A NEW COMPUTING ERA JENSEN HUANG, FOUNDER & CEO GTC CHINA 2017 TWO FORCES DRIVING THE FUTURE OF COMPUTING 10 7 Transistors (thousands) 10 6 10 5 1.1X per year 10 4 10 3 10 2 1.5X per year Single-threaded

More information

If you installed VM and Linux libraries as in the tutorial, you should not get any errors. Otherwise, you may need to install wget or gunzip.

If you installed VM and Linux libraries as in the tutorial, you should not get any errors. Otherwise, you may need to install wget or gunzip. MNIST 1- Prepare Dataset cd $CAFFE_ROOT./data/mnist/get_mnist.sh./examples/mnist/create_mnist.sh If you installed VM and Linux libraries as in the tutorial, you should not get any errors. Otherwise, you

More information

MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK. Wenjie Guan, YueXian Zou*, Xiaoqun Zhou

MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK. Wenjie Guan, YueXian Zou*, Xiaoqun Zhou MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK Wenjie Guan, YueXian Zou*, Xiaoqun Zhou ADSPLAB/Intelligent Lab, School of ECE, Peking University, Shenzhen,518055, China

More information

GPU-Accelerated Deep Learning

GPU-Accelerated Deep Learning GPU-Accelerated Deep Learning July 6 th, 2016. Greg Heinrich. Credits: Alison B. Lowndes, Julie Bernauer, Leo K. Tam. PRACTICAL DEEP LEARNING EXAMPLES Image Classification, Object Detection, Localization,

More information

Efficient Deep Learning Optimization Methods

Efficient Deep Learning Optimization Methods 11-785/ Spring 2019/ Recitation 3 Efficient Deep Learning Optimization Methods Josh Moavenzadeh, Kai Hu, and Cody Smith Outline 1 Review of optimization 2 Optimization practice 3 Training tips in PyTorch

More information

TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory

TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, Christos Kozyrakis Stanford University Platform Lab Review Feb 2017 Deep Neural

More information