Layer 1 Physical Layer. Transmission Media. Twisted Pair

Size: px
Start display at page:

Download "Layer 1 Physical Layer. Transmission Media. Twisted Pair"

Transcription

1 Layer Physical Layer Chapter 2: Computer Networks 2.: Physical Layer and Data Link Layer 2.2: Examples for Local Area Networks 2.3: Examples for Wide Area Networks 2.4: Wireless Networks Chapter 4: Application Protocols Chapter 3: Internet Protocols Computer Networks OSI Reference Model Application Layer Presentation Layer Session Layer Transport Layer Network Layer Data Link Layer Physical Layer Connection parameters mechanical electric and electronic functional and procedural More detailed: Physical transmission medium (Copper cable, optical fiber, radio,...) Pin usage in network connectors Representation of raw bits (Code, voltage, etc.) Data rate Control of bit flow: serial or parallel transmission of bits synchronous or asynchronous transmission simplex, half-duplex or full-duplex transmission mode Page Page 2 Transmission Media Twisted Pair Twisted Pair Copper conductor Several media, varying in transmission technology, capacity, and bit error rate (BER) Satellites Interior insulation Radio connections Braided outer conductor Glass core Coaxial cable Protective outer insulation Optical fiber Glass cladding Plastic Characteristics: Data transmission through electrical signals Problem: electromagnetic signals of the environment can disturb the transmission within copper cables Solution: two insulated, twisted copper cables Twisting reduces electromagnetic interference with environmental disturbances Simple principle (costs and maintenance) Well known (e.g. telephony) Can be used for digital as well as analogous signals Bit error rate ~ -5 Twisted Pair: 4 pairs of twisted copper cables in one outer insulation are named Twisted Pair cable! Insulation Copper core Page 3 Page 4

2 Coaxial Cable Structure Insulated copper cable as center conductor Braided outer conductor reduces environmental disturbances Interior insulation separates center and outer conductor Braided outer conductor Copper conductor Interior insulation Protective outer insulation Characteristics: Higher data rates over larger distances than twisted pair: -2 GBit/sec up to km Better shielding than for twisted pair, resulting in better signal quality Bit Error Rate ~ -9 Optical Fiber Characteristics: Nearly unlimited data rate (theoretically up to 5. GBit/s) over very large distances Wavelength in the range of microns (determined by availability of light emitters and attenuation of electromagnetic waves: range of the wavelength around.85µm,.3µm and.55µm are used) Insensitive to electromagnetic disturbances Good signal-to-noise-ratio Bit Error Rate: ~ -2 Early networks were build with coaxial cable, in the last ten years however it was more and more replaced by twisted pair. Page 5 Page 6 Optical Transmission Optical Fiber Structure of an optical transmission system Optical source (converts electrical into optical signals; normally in the form light pulse ; no light pulse ) Communication medium (optical fiber) Detector (converts optical into electrical signals) electrical signal optical source optical signal optical fiber optical detector Physical principle: Total reflection of light at another medium electrical signal Structure of a fiber Core: optical glass (extremely thin) Internal glass cladding Protective plastic covering The transmission takes place in the core of the cable: Core has higher refractive index, therefore the light remains in the core Ray of light is reflected instead of transiting from medium to medium 2 Refractive index is material dependent A cable consists of many fibers Medium 2 Medium Refractive index: Indicates refraction effect relatively to air optical source (LED, Laser) Medium 2 Medium (core) Medium 2 Page 7 Page 8

3 Problems with Optical Fiber The ray of light is increasingly weakened by the medium! Absorption can weaken a ray of light gradually Impurities in the medium can deflect individual rays Dispersion (less bad, but transmission range is limited) Rays of light are spreading in the medium with different speed: - Ways (modes) of the rays of light have different length (depending on the angle of incidence) - Rays have slightly different wavelengths (and propagation speed) Refractive index in the medium is not constant (effect on speed) Here only a better quality of radiation source and/or optical fiber helps! kurzes, Electrical starkes input signal Signal Optical Glasfaser Fiber langes, Electrical schwaches output signal Signal Page 9 Encoding of Information Shannon: The fundamental problem of communication consists of reproducing on one side exactly or approximated a message selected on the other side. Objective: useful representation (encoding) of the information to be transmitted Encoding categories Source encoding (Layer 6 and 7) Channel encoding (Layer 2 and 4) Cable encoding (Layer ) Encoding of the original message E.g. ASCII-Code (text), tiff (pictures), PCM (speech), MPEG (video), Representation of the transmitted data in code words, which are adapted to the characteristics of the transmission channel (redundancy). Protection against transmission errors through error-detecting and/or -correcting codes Physical representation of digital signals Page Baseband and Broadband The transmission of information can take place either on the baseband or on broadband. This means: Baseband The digital information is transmitted over the medium as it is. For this, encoding procedures are necessary, which specify the representation of resp. (cable codes). Broadband The information is transmitted analogous (thereby: larger range), by modulating it onto a carrier signal. By the use of different carrier signals (frequencies), several information can be transferred at the same time. While having some advantages in data communications, broadband networks are rarely used baseband networks are easier to realize. But in optical networks and radio networks as well as for Cable TV this technology is used. Cable Code: Requirements How can digital signals be represented electrically? As high robustness against distortion as possible T 2T 3T 4T 5T 6T 7T t Transmission T 2T 3T 4T 5T 6T 7T Efficiency: as high data transmission rates as possible by using code words binary code: +5V/- 5V? ternary code: +5 V/V/- 5V? quaternary code: 4 states (coding of 2 bits at the same time) Synchronization with the receiver, achieved by frequent changes of voltage level regarding to a fixed cycle Avoiding direct current: positive and negative signals should alternatively arise t Page Page 2

4 NRZ: Non Return to Zero Simple approach: Encode as positive tension (+5V) Encode as negative tension (- 5V) Differential NRZ Differential NRZ: similar principle to NRZ Encode as tension level change Encode as missing tension level change +5V +5V -5V -5V Advantage: Very simple principle The smaller the clock pulse period, the higher the data rate Disadvantage: Loss of clock synchronization as well as direct current within long sequences of or Very similar to NRZ, but disadvantages only hold for sequences of zeros. Remark: In some implementations (e.g. CISCO) the level change is effected in the middle of the bit (not at the beginning of the bit) but this is no principal difference. Page 3 Page 4 Manchester Code Differential Manchester Code For automatic synchronization, with each code element the clock pulse is transferred. Used is a tension level change in the middle of each bit: encode as tension level change of positive (+5V) to negative (-5V) encode as tension level change of negative (- 5V) to positive (+5V) +5V -5V Advantages Clock synchronization with each bit, no direct current End of the transmission easily recognizable Disadvantage Capacity is used only half! Variant of the Manchester Code. Similar as it is the case for the Manchester code, a tension level change takes place in the bit center, additionally a second change is made: Encode as missing level change between two bits Encode as level change between two bits +5V -5V Page 5 Page 6

5 Sicherungsebene 4B/5B Code 4B/5B Code Table Disadvantage of the Manchester code: 5% efficiency, i.e. B/2B Code (one bit is coded into two bits) An improvement is given with the 4B/5B Code: four bits are coded in five bits: 8% efficiency Functionality: Level change with, no level change with (differential NRZ code) Coding of hexadecimal characters:,,, 9, A, B,, F (4 bits) in 5 bits, so that long zero blocks are avoided Selection of the most favorable 6 of the possible 32 code words (maximally 3 zeros in sequence) Further 5 bit combinations for control information Expandable to B/B Codes? Page 7 Decimal Data Transmitted Symbol Assignment Quiet -line state (status) Invalid 2 Invalid 3 Invalid 4 Halt -line state (status) 5 Invalid 6 Invalid 7 R-Reset (logical )-control (control) 8 Invalid 9 Data Data Data 2 Invalid 3 T-Ending delimiter (control) 4 Data 5 Data Worst case: 6 Invalid 7 K-starting delimiter (control) 8 Data 9 Data 2 Data 3 Zeros 2 Data 22 Data 23 Data 24 J-starting delimiter (control) 25 S - set (logical ) - control (control) 26 Data 27 Data 28 Data 29 Data 3 Data Chapter 2.: Physical 3 Layer and Data Link Layer Idle-line state (status) Page 8 Layer 2: Division into two Parts LLC: Frame Construction Logical Link Control (LLC) (Layer 2b) Organization of the data to be sent into frames Guarantee (if possible) an error free transmission between neighboring nodes through: Detection (and recovery) of transfer errors Flow Control (avoidance of overloading the receiver) Buffer Management Medium Access Control (MAC) (Layer 2a) Control of the access to the communication channel in broadcast networks Data Link Layer LLC MAC (Medium MAC Access Control) ISO/OSI 82.3 CSMA/CD (Ethernet) 82.4 Token Bus IEEE 82.2 Logical Link Control 82.5 Token Ring 82.6 DQDB Existing Reale Networks Netze ANSI X3T9.5 FDDI... ATM Forum... ATM LAN Emulation Page 9 Organization of a message into uniform units (for simpler transmission) Well-defined interface to the upper layer (layer 3) Marking of the units: Error check Header Data Trailer (checking sequence for the frame) Control information (addresses, frame numbers, ) (Physical) mark the frame by: Start and end flags Start flag and length Code injuries FCS = Frame Checking Sequence Next task of the LLC layer: protected transmission of the frames to the communication partner. The transmission over layer is not necessarily free of errors! Question: how can errors be recognized and repaired? Page 2

6 Error-detecting and -correcting Codes From the data, compute a short checksum and send it together with the data to the receiver. The receiver also computes a checksum from the received data and compares it with those of the sender. Simplest procedure - parity bit: count the number of s: Sender: PB: sends: -Bit errors are detected Receiver: PB computes: 2-Bit errors are not detected Corrections are not possible! Variant: double parity Improvement of the parity bit procedure by further parity bits. For this, several blocks of bits are grouped and treated together: Sender: Receiver: An incorrect bit can be identified and corrected by this procedure. Error-correcting Codes Error correction Error correction generally means: Transmission of redundancies: Length of the transmission: n bit (2 n possible binary sequences) Message length: m (<n) bit (2 m permissible code words) k parity bits (k = n - m) Form a sphere of code words around each message Hamming Distance D: Number of places, in which two binary sequences differ Then: D 2t + code is t-error-correcting D t + code is t-error-detecting That means: for error-correction, a relatively large overhead has to be transmitted and it is not guaranteed, that the identified correction really is the right one. Page 2 Page 22 Hamming Code Hamming Code Goal: Use of several parity bits, each of them considering several bits (overlapping). Errors can be identified and corrected by combining the parity bits. The Hamming code is the minimal code of this category. Idea: Representation of each natural number by sum of powers to two. In a code word w = z,, z n the parity bits are placed exactly at the k positions, for them the index is a power of two. At the remaining m = n - k positions the data bits are placed. Each of the k additional bits is a parity bit for all places, for which the representation in powers of two contains the position of the additional bit. Page 23 ASCII-Code H A M M I N G Parity bit : Data bit 3, 5, 7, 9, 3 = + 2 Parity bit 2: Data bit 3, 6, 7,, 5 = + 4 Parity bit 4: Data bit 5, 6, 7 6 = Parity bit 8: Data bit 9,, 7 = = + 8 Problem with Hamming code: errors involving several following bits are usually wrongly corrected = = Codeword Receiver: examine parity bits if necessary, sum up indices of the incorrect parity bits index of the incorrect bit -bit errors can definitely be identified and corrected Page 24

7 Hamming Code Error Detection with Cyclic Codes Transmission error Receiver computes parity bits: Summing up the indizes, 2 and 4, bit 7 is detected as false Problem: how to recognize errors in several bits, especially sequences of bit errors? The use of simple parity bits is not suitable. However, in data communication (modem, telephone cables) such errors arise frequently. Weaknesses: 2-bit errors are not corrected (or wrongly corrected!) 3-bit errors are not recognized a) Bit 4 and bit inverted: parity bits, 2, 4, 8 are wrong bit 5 is to be corrected, but does not exist b) Bit 2 and bit 4 inverted parity bits 2, 4 wrong bit 6 is falsely recognized as incorrect c) Bits, 8, 9 inverted all parity bits are correct no error is recognized Page 25 Most often used: Polynomial Codes Idea: a k-bit PDU (a k-,, a ) is seen as a polynomial a k- x k- + + a with the coefficients and. Example: is seen as x 6... x x = x 6 + x 5 + x 2 + For computations, polynomial arithmetic modulo 2 is used, i.e. addition and subtraction without carriage. Both operations become Exclusive-OR operations. Page 26 Error Detection with Cyclic Codes CRC - Example Idea for error detection: Sender and receiver agree upon a generator polynomial G(x) = x r + + x. The first and the last coefficient have to be. The sender interprets a data block of length m as polynomial M(x). The sender extends M(x), i.e. adds redundant bits in a way that the extended polynomial M (x) is divisible by G(x). (Redundancy = remainder R(x) by division of the sequence with G(x)) The receiver divides the received extended M(x) by G(x). If the remainder is, there was (probably!) no error, otherwise some error occurred. Name: Cyclic Redundancy Checksum (CRC) Note: also the parity bit can be seen as CRC, with generator polynomial x +! Data to be transmitted: Generator polynomial: x 4 + x + Sender: : = = x 3 + = R(x) CRC =, sending Receiver: Note: usually, the extra positions are preset with zeros but in some cases, e.g. Ethernet, uses the inverted bits as presets. : = Data received correctly Page 27 Page 28

8 Computation of CRC: Shift Registers Implementation by Shift Registers: XOR for substraction AND for applying substraction: first register = : no substraction first register = : substraction Generator polynomial x 4 + x +: R R R R R Shift Registers - Example Data to be transmitted: Generator polynomial: x 4 + x + Simplified realization: R R R R R When no more input is given in the leftmost register, the other registers contain the CRC result. Page 29 Page 3 Shift Registers - Example Shift Registers - Example Page 3 Page 32

9 Shift Registers - Example Shift Registers - Example x x x x x x x x x x x x x x x Page 33 Page 34 CRC is not perfect CRC: Characteristics Receiver: : = Error detected Receiver: : = Error not detected Common generator polynomials: CRC-6: G(x) = x 6 + x 5 + x 2 + CRC CCITT: G(x) = x 6 + x 2 + x 5 + Ethernet: G(x) = x 32 + x 26 + x 23 + x 22 + x 6 + x 2 + x + x + x 8 + x 7 + x 5 + x 4 + x 2 + x + Error detection (for 6-bit generator polynomials): all single bit errors all double bit errors all three-bit errors all error samples with odd number of bit errors all error bursts with 6 or fewer bits % of all 7-bit error bursts % of all error bursts with length 8 bits Remaining error rate <.5 * -5 block error rate Page 35 Page 36

10 CRC is not perfect CRC: Error Correction.) There are still remaining some error-combinations which can occur undetected the probability is very small, but in principle it is possible 2.) Assume, the receiver only gets part of the original message: Header / Data FCS Header / Data The receiver interprets the end of the message as FCS and tries to check the rest of the received bits as sent data. Probability for assumed FCS = FCS for assumed data : /2 r for r-bit FCS, because each of the r bits is correct with probability ½. This problem can be eliminated by using a fixed byte structure for the data frame or a length field in the header. 3.) An error could consist of adding a multiple of G(x) to M (x) In exceptional cases even errors are correctable by CRCs. Example: ATM (Asynchronous Transfer Mode) Data units have fixed length 5 byte header + 48 byte data The last header byte is a checksum for the header Generator polynomial G(x) = x 8 + x 2 + x + It is even possible to correct a -bit error, due to: there are 4 possible -bit errors in the 4-bit header and those lead on 4 different non-zero remainders. Correction is not assigned with e.g. Ethernet: an Ethernet frame has a length between 64 and 52 byte. Page 37 Page 38 Error Protection Mechanisms Flow Control: Send and Wait Error correction: FEC (Forward Error Correction) Use of error-correcting codes Falsified data in most cases can be corrected. Uncorrectable data are simply dismissed. Feedback from the receiver to the sender is not necessary. Suitable for transmissions tolerating no transmission delays (video, audio) as well as for coding resp. protecting data on CDs or DVDs. Error detection: ARQ (Automatic Repeat Request) Use of error-detecting codes (CRC) Errors are detected, but cannot be corrected. Therefore, falsified data must be requested again. Introduction of flow control: number the data blocks to be sent acknowledgement of blocks by the receiver incorrectly transferred blocks are repeated Suitable for transmissions which do not tolerate errors (files). Page 39 Simple procedure: The sender sends a data block and waits, until an acknowledgement of the receiver arrives or a timeout is reached. Incorrect blocks are repeated, otherwise the next block is sent. Disadvantage: large waiting periods between the transmission of single blocks. Thus much transmission capacity is wasted. Transmitter Receiver Waiting period ACK 2 F time out ACK: Acknowledgment, i.e. everything ok 2 2 ACK 3 3 Page 4

11 Flow control: Sliding Window Introduction of a transmission window Common procedure to avoid long waiting periods of the sender Sender and receiver agree upon a transmission window. If W is the window size, it means: the sender may send maximally W messages without an acknowledgement of the receiver. The messages are sequentially numbered in the frame header (,, 2,, MODULUS-,, ; whereby W < MODULUS). The sender may send sequentially numbered messages up to W, without getting an acknowledgement for the first frame. The receiver confirms by acknowledgements (ACK). The sender moves the window as soon as an ACK arrives. Advantages of the procedure: The sender can take advantage of the network capacity A sender who is too fast for the receiver is slowed down (the receiver only can read data from the network slowly, thus it rarely sends ACKs) Sending and receiving speed are adapted Page 4 Sliding Window Example (for 3-bit sequence/acknowledgement number) with 3 bits for sequence/acknowledgement number, m = 8 possible combinations Stations agree upon a window size W with W < m, e.g. W = 7 The window limits the number of unconfirmed frames allowed at one time (here max. 7, because of W = 7) With receipt of an acknowledgement, the window is shifted accordingly Frames are numbered sequentially modulo m (for m = 8 thus numbers from to 7) 7 7 ACK 6 ACK 2 ACK Station Station sendet sends Station Station receives erhält Station Station verschiebt slides Station Station receives erhält Station Station verschiebt slides Frames - Quittung Fenster um, Quittung, 2 Fenster um 2, frames - 6 acknowledgement sendet window Frame by 7 acknowledgement sendet window Frame by, 2 Time and sends,2 and sends frame 7 frames, Page Maximum Window Size with Sliding Window There is a reason why window size W has to be smaller than MODULUS: Sequence numbers e.g. have 3 bits: 2 3 = 8 sequence numbers (,, 7) I.e. MODULUS = 8 Assume the window size to be W = 8. A sends frames to B. A has recently received an ACK for frame 2; A is allowed to send 8 more frames Elimination of Errors: Go-back-n The sender sends data blocks continuously (within the transmission window). The receiver answers: ACK j : everything up to block j is correct REJ j /NACK j : up to block j- everything is correct, block j is incorrect Go-back-n: with a REJ j, starting from block j everything is transferred again Disadvantage: With a REJ j the transmitter must repeat all blocks starting from j Advantage: the receiver needs only one buffer place A receives ACK 2. There are two possibilities: Case : B only has received 2 and retransmits the (old) number ACK number. Everything in between has been lost. Example of W = 5; MODULUS = 8 Source Case 2: B has received and confirms the (new) number 2 (all ACKs may have been lost or forgotten in between) A does not know whether case or 2 holds: the ACK is ambiguous! W must be less than 8 (W < MODULUS in general). Destination ACK ACK REJ 2 ACK 2 Page 43 Page 44

12 High Level Data Link Control (HDLC) Protocol for layer 2: HDLC Frame identification: mark the beginning and end with a flag: Flag may never occur within a frame Used for this purpose: Bitstuffing Sender inserts a zero after each sequence of five ones. The receiver removes this zero. Sender: Receiver: Page 45 HDLC Frame For synchronization on layer Header Data Trailer (6) 6 8 Address Control DATA FCS Flag D/C N(S) P/F N(R) Flag In the idle state, only s are sent. The receiver recognizes a transmission with the first. Address contains an identifier to inform the receiver about what to do, e.g. means IP protocol used for processing the data. The checksum is computed by using a CRC. Since CRC conducts no error correction, flow control is necessary. Control contains the sequence number N(S) for the message; at the same time, in the opposite direction a message can be acknowledged using the acknowledgement number N(R) ( Piggybacking ). Bits D/C: DATA () resp. control () P/F: Poll/final for the coordination of several senders Page 46 Medium Access Control (MAC) MAC - Reservation Protocols Controlling the competitive access of several users to a shared medium Simplest procedures: firm assignment of a limited capacity Time Division Multiple Access (TDMA) Frequency Frequency Division Multiple Access (FDMA) Frequency User User 2 User 3 Time Time Each user gets the entire transmission capacity for fixed time intervals (Baseband transmission) Each user gets a fixed portion of the transmission capacity (a frequency range) for the whole time (Broadband transmission) Page 47 Communication follows a two-phase schema (alternating phases): In the reservation phase the sender makes a reservation by indicating the wish to send data (or even the length of the data to be sent) In the transmission phase the data communication takes place (after successful reservation) Advantage: very efficient use of the capacity Disadvantage: Delay by two-phase procedure; further, often a master station is needed, which cyclically queries all other stations whether they have to send data. This master station assigns sending rights. Techniques for easy reservation without master station: Explicit reservation Implicit reservation Page 48

13 Explicit Reservation Uses two frame types: reservation frame (very small) in the first phase data frame (constant length) in the second phase Variant : without contention Only suitable for small number of users Each user i is assigned the i-th slot in the reservation frame. If it wants to send data, it sets the i-th bit in the reservation frame to. After the reservation phase, all stations having set their reservation bit can send their data in the order of their bits in the reservation frame. reservation frame data frames of stations having reserved Explicit Reservation Uses two frame types: reservation frame (very small) in the first phase data frame (constant length) in the second phase Variant 2: with contention For higher number of users The reservation frame consists of a limited number of contention slots (smaller than the number of participating stations) Users try to get a contention slot (and by that make a reservation for a data slot) by random choice, writing their station number into a slot If there is no collision in the reservation phase, a station may send. reservation frame with contention slots data frames of stations having reserved This procedure is called Bitmap Protocol Page 49 Page 5 Implicit Reservation Implicit Reservation No reservation slots, only data slots of certain length. A window consists of N data slots, windows a cyclically repeated The duration of the window must be longer than the round-trip time Procedure: A station which wants to send observes N slots without doing anything and marks the slots as follows:, if the slot if empty or collided, if the slot is used by somebody else In the following window the station randomly chooses one of the slots marked with (Simplification: choose the first slot marked with ) Two cases: conflict: try again successful transmission: slot reserved for the station as long as it sends data. If the station is not using its slot in one window, the reservation is dismissed. Example: 8 data slots, Stations A - F Reservation Slots: Window Window 2 A C D A B A B/D F ACDABA-F Window 3 A C A B A AC-ABA-- Window 4 A B/F B A F A---BAF- Window 5 A B A F D A---BAFD Window 6 A C E E B A F D t Stations observing 8 slots Collision within slot 7; the other slots are reserved Page 5 Page 52

14 MAC Decentralized Protocols Best known protocol has the name ALOHA Developed on the Hawaiian islands: stations are connected by satellite Very simple principle, no coordination: Stations are sending completely uncoordinated, all using the same frequencies When two (or more) stations are sending at the same time, a collision occurs: both messages are destroyed. Problem: collisions occur even with very small overlaps! Vulnerability period: 2 times the length of a frame When a collision occurs, frames are repeated after a random time Problem: since traffic runs over a satellite, a sender only hears after very long time, whether the transmission was successful or not. Collision MAC Decentralized Protocols Problem with ALOHA: even small laps already lead to transmission conflicts. Therefore often collisions arise, causing many repetitions: No guaranteed response times Low throughput Improvement: Slotted ALOHA (first version was pure ALOHA ) The whole time axis is divided into time slots (similar to TDMA, but time slots are not firmly assigned to stations) The transmission of a block starts at the beginning of a time slot fewer collisions, vulnerability period of one frame length But: the stations must be synchronized! Collision Sender A Sender A Sender B Sender B Sender C t Sender C t Page 53 Page 54 How to estimate the Efficiency of ALOHA? Randomness Which possible states do we have in ALOHA? thinking users backlogged users common channel total traffic G no conflict conflict G: average number of frames per time unit S: throughput, i.e. rate of successful transmissions Relation between G and S? Depends significantly on the traffic structure. Model A: only one sender. No collisions, so S = G is possible Model B: many users, each of them inactive most time new arrivals are totally random Suppose that the total traffic is absolutely random. What is the biggest randomness possible? arrival Random arrivals: t consider time interval of length h. Observe arrivals in that interval. h Arrivals have a certain intensity G (average rate per time unit) Randomness : probability of an arrival in a (small) time interval h is proportional o(h): disturbance function with to the intensity G o( h) for h to h h... to G h For very small h, only or arrivals are possible: Prob(exactly one arrival within interval length h) = G h + o(h) Prob(no arrivals within interval length h) = G h + o(h) Page 55 Page 56

15 Application for ALOHA access protocol Throughput vs. Offered Traffic These conditions/requirements lead to the Poisson distribution. Consider the total number i of events in an interval of length T i ( G T) G T Prob(exactly i arrivals in [;T]) = e Back to ALOHA: relation between S and G Suppose that G follows the poisson distribution, i.e. G is totally random. i! S = G Prob(no collision occurs) = G Prob(nobody else started in my vulnerability period) = G Prob(no arrival in interval of length T = 2) for pure ALOHA G Prob(no arrival in interval of length T = ) for slotted ALOHA Prob( arrivals in [;T]) = e -G T = G e -2G for pure ALOHA G e -G for slotted ALOHA Note: randomness (i.e. Poisson) is not valid for high traffic and if waiting time after retransmission is short Page 57 Analytical computation: Both, Pure ALOHA and Slotted ALOHA cannot achieve a high throughput But: simple principle, no coordination necessary between the stations Page 58 MAC Decentralized Protocols MAC Coordination by using a Token Variant of ALOHA for networks with small range exists Similar to ALOHA: no coordination of the stations But: each station which wants to send first examines whether already another station is sending If no sending takes place, the station begins to send (Carrier Sense Multiple Access, CSMA, see chapter 2.2) Note: this principle only works within networks having a short transmission delay using the principle within satellite systems is not possible because there would be no chance to know whether a conflict occurred before end of the transmission Advantages: simple, because no master station and no tokens are needed; nevertheless good utilization of the network capacity Disadvantage: no guaranteed medium access, a large delay up to beginning a transmission is possible Introduction of a token (determined bit sequence) Only the holder of the token is allowed to send Token is cyclically passed on between all stations particularly suitable for ring topologies Token Ring (4/6/ Mbit/s, see chapter 2.2) Characteristics: Guaranteed accesses, no collisions Very good utilization of the network capacity, high efficiency Fair, guaranteed response times Possible: multiple tokens But: complex and expensive Passing on of the token Page 59 Page 6

OSI Reference Model. Application Layer. Presentation Layer. Session Layer. Chapter 4: Application Protocols. Transport Layer.

OSI Reference Model. Application Layer. Presentation Layer. Session Layer. Chapter 4: Application Protocols. Transport Layer. Chapter 2: Computer Networks 2.1: Physical Layer: representation of digital signals 2.2: Data Link Layer: error protection and access control 2.3: Network infrastructure 2.4 2.5: Local Area Network examples

More information

2.1 CHANNEL ALLOCATION 2.2 MULTIPLE ACCESS PROTOCOLS Collision Free Protocols 2.3 FDDI 2.4 DATA LINK LAYER DESIGN ISSUES 2.5 FRAMING & STUFFING

2.1 CHANNEL ALLOCATION 2.2 MULTIPLE ACCESS PROTOCOLS Collision Free Protocols 2.3 FDDI 2.4 DATA LINK LAYER DESIGN ISSUES 2.5 FRAMING & STUFFING UNIT-2 2.1 CHANNEL ALLOCATION 2.2 MULTIPLE ACCESS PROTOCOLS 2.2.1 Pure ALOHA 2.2.2 Slotted ALOHA 2.2.3 Carrier Sense Multiple Access 2.2.4 CSMA with Collision Detection 2.2.5 Collision Free Protocols 2.2.5.1

More information

Chapter 3. The Data Link Layer. Wesam A. Hatamleh

Chapter 3. The Data Link Layer. Wesam A. Hatamleh Chapter 3 The Data Link Layer The Data Link Layer Data Link Layer Design Issues Error Detection and Correction Elementary Data Link Protocols Sliding Window Protocols Example Data Link Protocols The Data

More information

3. Data Link Layer 3-2

3. Data Link Layer 3-2 3. Data Link Layer 3.1 Transmission Errors 3.2 Error Detecting and Error Correcting Codes 3.3 Bit Stuffing 3.4 Acknowledgments and Sequence Numbers 3.5 Flow Control 3.6 Examples: HDLC, PPP 3. Data Link

More information

Links. CS125 - mylinks 1 1/22/14

Links. CS125 - mylinks 1 1/22/14 Links 1 Goals of Today s Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared media Channel partitioning Taking turns Random access Shared

More information

The Link Layer and LANs. Chapter 6: Link layer and LANs

The Link Layer and LANs. Chapter 6: Link layer and LANs The Link Layer and LANs EECS3214 2018-03-14 4-1 Chapter 6: Link layer and LANs our goals: understand principles behind link layer services: error detection, correction sharing a broadcast channel: multiple

More information

Overview. Data Link Technology. Role of the data-link layer. Role of the data-link layer. Function of the physical layer

Overview. Data Link Technology. Role of the data-link layer. Role of the data-link layer. Function of the physical layer Overview Data Link Technology Functions of the data link layer Technologies concept and design error control flow control fundamental protocols Suguru Yamaguchi Nara Institute of Science and Technology

More information

CS 455/555 Intro to Networks and Communications. Link Layer

CS 455/555 Intro to Networks and Communications. Link Layer CS 455/555 Intro to Networks and Communications Link Layer Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu http://www.cs.odu.edu/~mweigle/cs455-s13 1 Link Layer

More information

Data Link Technology. Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science

Data Link Technology. Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science Data Link Technology Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science Agenda Functions of the data link layer Technologies concept and design error control flow

More information

Jaringan Komputer. Broadcast Network. Outline. MAC (Medium Access Control) Channel Allocation Problem. Dynamic Channel Allocation

Jaringan Komputer. Broadcast Network. Outline. MAC (Medium Access Control) Channel Allocation Problem. Dynamic Channel Allocation Broadcast Network Jaringan Komputer Medium Access Control Sublayer 2 network categories: point-to-point connections broadcast channels Key issue in broadcast network: how to determine who gets to use the

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Link Layer: Intro, Errors, Multiple Access Sec 6.1, 6.2, 6.3 Prof. Lina Battestilli Fall 2017 Chapter 6: Link layer Goals: understand principles behind

More information

Link Layer and LANs 안상현서울시립대학교컴퓨터 통계학과.

Link Layer and LANs 안상현서울시립대학교컴퓨터 통계학과. Link Layer and LANs 안상현서울시립대학교컴퓨터 통계학과 ahn@venus.uos.ac.kr Data Link Layer Goals: understand principles behind data link layer services: error detection, correction sharing a broadcast channel: multiple

More information

I. INTRODUCTION. each station (i.e., computer, telephone, etc.) directly connected to all other stations

I. INTRODUCTION. each station (i.e., computer, telephone, etc.) directly connected to all other stations I. INTRODUCTION (a) Network Topologies (i) point-to-point communication each station (i.e., computer, telephone, etc.) directly connected to all other stations (ii) switched networks (1) circuit switched

More information

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame Links Reading: Chapter 2 CS 375: Computer Networks Thomas Bressoud 1 Goals of Todayʼs Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared

More information

Chapter 5 Link Layer and LANs

Chapter 5 Link Layer and LANs Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007. All material copyright 1996-2007 J.F Kurose and K.W. Ross, All Rights

More information

Computer and Network Security

Computer and Network Security CIS 551 / TCOM 401 Computer and Network Security Spring 2009 Lecture 6 Announcements First project: Due: 6 Feb. 2009 at 11:59 p.m. http://www.cis.upenn.edu/~cis551/project1.html Plan for Today: Networks:

More information

Link layer, LANs: outline. Chapter 5-1 Link Layer. Link layer: introduction. Link layer services

Link layer, LANs: outline. Chapter 5-1 Link Layer. Link layer: introduction. Link layer services Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link layer, LANs: outline 5.1 introduction, services 5.2 error detection, correction

More information

CS 4453 Computer Networks Winter

CS 4453 Computer Networks Winter CS 4453 Computer Networks Chapter 2 OSI Network Model 2015 Winter OSI model defines 7 layers Figure 1: OSI model Computer Networks R. Wei 2 The seven layers are as follows: Application Presentation Session

More information

Physical and Data Link layers

Physical and Data Link layers Physical and Data Link layers Youki Kadobayashi Graduate School of Science Nara Institute of Science and Technology Physical Layer All rights reserved. 2 Types of transmission medium! Cables Optical fiber

More information

Data Link Networks. Hardware Building Blocks. Nodes & Links. CS565 Data Link Networks 1

Data Link Networks. Hardware Building Blocks. Nodes & Links. CS565 Data Link Networks 1 Data Link Networks Hardware Building Blocks Nodes & Links CS565 Data Link Networks 1 PROBLEM: Physically connecting Hosts 5 Issues 4 Technologies Encoding - encoding for physical medium Framing - delineation

More information

CIS 551 / TCOM 401 Computer and Network Security. Spring 2007 Lecture 7

CIS 551 / TCOM 401 Computer and Network Security. Spring 2007 Lecture 7 CIS 551 / TCOM 401 Computer and Network Security Spring 2007 Lecture 7 Announcements Reminder: Project 1 is due on Thursday. 2/1/07 CIS/TCOM 551 2 Network Architecture General blueprints that guide the

More information

Department of Computer and IT Engineering University of Kurdistan. Data Communication Netwotks (Graduate level) Data Link Layer

Department of Computer and IT Engineering University of Kurdistan. Data Communication Netwotks (Graduate level) Data Link Layer Department of Computer and IT Engineering University of Kurdistan Data Communication Netwotks (Graduate level) Data Link Layer By: Dr. Alireza Abdollahpouri Data Link Layer 2 Data Link Layer Application

More information

Data Link Layer: Overview, operations

Data Link Layer: Overview, operations Data Link Layer: Overview, operations Chapter 3 1 Outlines 1. Data Link Layer Functions. Data Link Services 3. Framing 4. Error Detection/Correction. Flow Control 6. Medium Access 1 1. Data Link Layer

More information

Lecture 6 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 6 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 6 The Data Link Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Link Layer: setting the context two physically connected devices: host-router, router-router, host-host,

More information

Lecture 8 The Data Link Layer part I. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 8 The Data Link Layer part I. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 8 The Data Link Layer part I Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Link Layer: setting the context two physically connected devices: host-router, router-router,

More information

PSD2A Computer Networks. Unit : I-V

PSD2A Computer Networks. Unit : I-V PSD2A Computer Networks Unit : I-V 1 UNIT 1 Introduction Network Hardware Software Reference Models OSI and TCP/IP models Example networks: Internet, ATM, Ethernet and Wireless LANs Physical layer Theoretical

More information

Data and Computer Communications

Data and Computer Communications Data and Computer Communications Chapter 16 High Speed LANs Eighth Edition by William Stallings Why High Speed LANs? speed and power of PCs has risen graphics-intensive applications and GUIs see LANs as

More information

Chapter 5 Data-Link Layer: Wired Networks

Chapter 5 Data-Link Layer: Wired Networks Sungkyunkwan University Chapter 5 Data-Link Layer: Wired Networks Prepared by Syed M. Raza and H. Choo 2018-Fall Computer Networks Copyright 2000-2018 Networking Laboratory Chapter 5 Outline 5.1 Introduction

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 5.1: Link Layer Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527 Computer

More information

Data Link Layer, Part 5. Medium Access Control

Data Link Layer, Part 5. Medium Access Control CS 455 Medium Access Control, Page 1 Data Link Layer, Part 5 Medium Access Control These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang s courses at GMU

More information

Computer Network. Direct Link Networks Reliable Transmission. rev /2/2004 1

Computer Network. Direct Link Networks Reliable Transmission. rev /2/2004 1 Computer Network Direct Link Networks Reliable Transmission rev 1.01 24/2/2004 1 Outline Direct link networks (Ch. 2) Encoding Framing Error detection Reliable delivery Media access control Network Adapter

More information

Problem Set Name the 7 OSI layers and give the corresponding functionalities for each layer.

Problem Set Name the 7 OSI layers and give the corresponding functionalities for each layer. Problem Set 1 1. Why do we use layering in computer networks? 2. Name the 7 OSI layers and give the corresponding functionalities for each layer. 3. Compare the network performance of the 3 Multiple Access

More information

Data link layer functions. 2 Computer Networks Data Communications. Framing (1) Framing (2) Parity Checking (1) Error Detection

Data link layer functions. 2 Computer Networks Data Communications. Framing (1) Framing (2) Parity Checking (1) Error Detection 2 Computer Networks Data Communications Part 6 Data Link Control Data link layer functions Framing Needed to synchronise TX and RX Account for all bits sent Error control Detect and correct errors Flow

More information

CS 43: Computer Networks. 27: Media Access Contd. December 3, 2018

CS 43: Computer Networks. 27: Media Access Contd. December 3, 2018 CS 43: Computer Networks 27: Media Access Contd. December 3, 2018 Last Class The link layer provides lots of functionality: addressing, framing, media access, error checking could be used independently

More information

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala Set 4. September 09 CMSC417 Set 4 1

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala Set 4. September 09 CMSC417 Set 4 1 CSMC 417 Computer Networks Prof. Ashok K Agrawala 2009 Ashok Agrawala Set 4 1 The Data Link Layer 2 Data Link Layer Design Issues Services Provided to the Network Layer Framing Error Control Flow Control

More information

Goals of Today s Lecture. Adaptors Communicating

Goals of Today s Lecture. Adaptors Communicating Goals of Today s Lecture EE 122: Link Layer Ion Stoica TAs: Junda Liu, DK Moon, David Zats http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues

More information

Chapter Six. Errors, Error Detection, and Error Control. Data Communications and Computer Networks: A Business User s Approach Seventh Edition

Chapter Six. Errors, Error Detection, and Error Control. Data Communications and Computer Networks: A Business User s Approach Seventh Edition Chapter Six Errors, Error Detection, and Error Control Data Communications and Computer Networks: A Business User s Approach Seventh Edition After reading this chapter, you should be able to: Identify

More information

Computer Networks Medium Access Control. Mostafa Salehi Fall 2008

Computer Networks Medium Access Control. Mostafa Salehi Fall 2008 Computer Networks Medium Access Control Mostafa Salehi Fall 2008 2008 1 Outline Issues ALOHA Network Ethernet Token Ring Wireless 2 Main Issues Local Area Network (LAN) : Three or more machines are physically

More information

CHAPTER 7 MAC LAYER PROTOCOLS. Dr. Bhargavi Goswami Associate Professor & Head Department of Computer Science Garden City College

CHAPTER 7 MAC LAYER PROTOCOLS. Dr. Bhargavi Goswami Associate Professor & Head Department of Computer Science Garden City College CHAPTER 7 MAC LAYER PROTOCOLS Dr. Bhargavi Goswami Associate Professor & Head Department of Computer Science Garden City College MEDIUM ACCESS CONTROL - MAC PROTOCOLS When the two stations transmit data

More information

COMPUTER NETWORKS UNIT I. 1. What are the three criteria necessary for an effective and efficient networks?

COMPUTER NETWORKS UNIT I. 1. What are the three criteria necessary for an effective and efficient networks? Question Bank COMPUTER NETWORKS Short answer type questions. UNIT I 1. What are the three criteria necessary for an effective and efficient networks? The most important criteria are performance, reliability

More information

CSC 4900 Computer Networks: The Link Layer

CSC 4900 Computer Networks: The Link Layer CSC 4900 Computer Networks: The Link Layer Professor Henry Carter Fall 2017 Last Time We talked about intra-as routing protocols: Which routing algorithm is used in RIP? OSPF? What techniques allow OSPF

More information

Transmission SIGNALs

Transmission SIGNALs Chapter 6 Digital Communications Basics 6.1 Introduction 6.2 Transmission media 6.3 Source of signal impairment 6.4 Asynchronous Transmission 6.5 Synchronous Transmission 6.6 Error Detection Methods 6.7

More information

Chapter 6 Medium Access Control Protocols and Local Area Networks

Chapter 6 Medium Access Control Protocols and Local Area Networks Chapter 6 Medium Access Control Protocols and Local Area Networks Part I: Medium Access Control Part II: Local Area Networks CSE 3213, Winter 2010 Instructor: Foroohar Foroozan Chapter Overview Broadcast

More information

Telecom Systems Chae Y. Lee. Contents. Flow Control Error Detection/Correction Link Control (Error Control) Link Performance (Utility)

Telecom Systems Chae Y. Lee. Contents. Flow Control Error Detection/Correction Link Control (Error Control) Link Performance (Utility) Data Link Control Contents Flow Control Error Detection/Correction Link Control (Error Control) Link Performance (Utility) 2 Flow Control Flow control is a technique for assuring that a transmitting entity

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 16

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 16 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 16 1 Final project demo Please do the demo next week to the TAs. So basically you may need

More information

Multiple Access Protocols

Multiple Access Protocols Multiple Access Protocols Computer Networks Lecture 2 http://goo.gl/pze5o8 Multiple Access to a Shared Channel The medium (or its sub-channel) may be shared by multiple stations (dynamic allocation) just

More information

Local Networks. Lecture 4 6-Apr-2016

Local Networks. Lecture 4 6-Apr-2016 Local Networks Lecture 4 6-Apr-2016 Roadmap of the Course So far Basic telecom concepts General study of LANs LAN topologies Flow and error control Today we continue the general study of LANs Medium access

More information

DCN Questions CHAPTER 1:- NETWORKING FUNDAMENTALS

DCN Questions CHAPTER 1:- NETWORKING FUNDAMENTALS DCN Questions CHAPTER 1:- NETWORKING FUNDAMENTALS Q1. What are the four fundamental Characteristics of Data Communication? On which effectiveness of data communication is depended? Q2. Define data communication?

More information

TYPES OF ERRORS. Data can be corrupted during transmission. Some applications require that errors be detected and corrected.

TYPES OF ERRORS. Data can be corrupted during transmission. Some applications require that errors be detected and corrected. Data can be corrupted during transmission. Some applications require that errors be detected and corrected. TYPES OF ERRORS There are two types of errors, 1. Single Bit Error The term single-bit error

More information

Message, Segment, Packet, and Frame Link-layer services Encoding, framing, error detection, transmission control Error correction and flow control

Message, Segment, Packet, and Frame Link-layer services Encoding, framing, error detection, transmission control Error correction and flow control Links EE 122: Intro to Communication Networks Fall 2007 (WF 4-5:30 in Cory 277) Vern Paxson TAs: Lisa Fowler, Daniel Killebrew & Jorge Ortiz http://inst.eecs.berkeley.edu/~ee122/ Announcements Homework

More information

ET3110 Networking and Communications UNIT 2: Communication Techniques and Data Link Control Protocol skong@itt-tech.edutech.edu Learning Objectives Identify methods of detecting errors. Use Hamming code

More information

Contention Protocols and Networks

Contention Protocols and Networks 4/13/2005 314 Lecture Contention Protocols and Networks 1 Contention Protocols and Networks Contention Protocols CSMA/CD Network Topologies Ethernet 4/13/2005 314 Lecture Contention Protocols and Networks

More information

Topics. Link Layer Services (more) Link Layer Services LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS. flow control: error detection:

Topics. Link Layer Services (more) Link Layer Services LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS. flow control: error detection: 1 Topics 2 LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS Multiple access: CSMA/CD, CSMA/CA, token passing, channelization LAN: characteristics, i basic principles i Protocol architecture Topologies

More information

Chapter 3. The Data Link Layer

Chapter 3. The Data Link Layer Chapter 3 The Data Link Layer 1 Data Link Layer Algorithms for achieving reliable, efficient communication between two adjacent machines. Adjacent means two machines are physically connected by a communication

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 5.4: Multiple Access Protocols Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527

More information

Aloha and slotted aloha

Aloha and slotted aloha CSMA 2/13/06 Aloha and slotted aloha Slotted aloha: transmissions are synchronized and only start at the beginning of a time slot. Aloha sender A sender B collision sender C t Slotted Aloha collision sender

More information

Data Link Layer Technologies

Data Link Layer Technologies Chapter 2.2 La 2 Data Link La Technologies 1 Content Introduction La 2: Frames Error Handling 2 Media Access Control General approaches and terms Aloha Principles CSMA, CSMA/CD, CSMA / CA Master-Slave

More information

Data Link Layer Overview

Data Link Layer Overview Data Link Layer Overview First of four classes on the data link layer Internet Architecture Bottom up: Physical: electromagnetic signals on the wire Link: data transfer between neighboring network elements

More information

Outline: Connecting Many Computers

Outline: Connecting Many Computers Outline: Connecting Many Computers Last lecture: sending data between two computers This lecture: link-level network protocols (from last lecture) sending data among many computers 1 Review: A simple point-to-point

More information

Physical and Data Link layers. Youki Kadobayashi Graduate School of Information Science Nara Institute of Science and Technology

Physical and Data Link layers. Youki Kadobayashi Graduate School of Information Science Nara Institute of Science and Technology Physical and Data Link layers Youki Kadobayashi Graduate School of Information Science Nara Institute of Science and Technology Physical Layer Copyright(C)2016 Youki Kadobayashi. All rights reserved. 2

More information

CSE 461: Multiple Access Networks. This Lecture

CSE 461: Multiple Access Networks. This Lecture CSE 461: Multiple Access Networks This Lecture Key Focus: How do multiple parties share a wire? This is the Medium Access Control (MAC) portion of the Link Layer Randomized access protocols: 1. Aloha 2.

More information

CS 43: Computer Networks Media Access. Kevin Webb Swarthmore College November 30, 2017

CS 43: Computer Networks Media Access. Kevin Webb Swarthmore College November 30, 2017 CS 43: Computer Networks Media Access Kevin Webb Swarthmore College November 30, 2017 Multiple Access Links & Protocols Two classes of links : point-to-point dial-up access link between Ethernet switch,

More information

CCNA Exploration1 Chapter 7: OSI Data Link Layer

CCNA Exploration1 Chapter 7: OSI Data Link Layer CCNA Exploration1 Chapter 7: OSI Data Link Layer LOCAL CISCO ACADEMY ELSYS TU INSTRUCTOR: STELA STEFANOVA 1 Explain the role of Data Link layer protocols in data transmission; Objectives Describe how the

More information

LANs. Local Area Networks. via the Media Access Control (MAC) SubLayer. Networks: Local Area Networks

LANs. Local Area Networks. via the Media Access Control (MAC) SubLayer. Networks: Local Area Networks LANs Local Area Networks via the Media Access Control (MAC) SubLayer 1 Local Area Networks Aloha Slotted Aloha CSMA (non-persistent, 1-persistent, p-persistent) CSMA/CD Ethernet Token Ring 2 Network Layer

More information

Computer Network Fundamentals Spring Week 3 MAC Layer Andreas Terzis

Computer Network Fundamentals Spring Week 3 MAC Layer Andreas Terzis Computer Network Fundamentals Spring 2008 Week 3 MAC Layer Andreas Terzis Outline MAC Protocols MAC Protocol Examples Channel Partitioning TDMA/FDMA Token Ring Random Access Protocols Aloha and Slotted

More information

SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY COMPUTER NETWORKS UNIT - II DATA LINK LAYER

SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY COMPUTER NETWORKS UNIT - II DATA LINK LAYER SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY COMPUTER NETWORKS UNIT - II DATA LINK LAYER 1. What are the responsibilities of data link layer? Specific responsibilities of

More information

Data Link Layer Overview

Data Link Layer Overview Data Link Layer Overview First of four classes on the data link layer Internet Architecture Bottom up: Physical: electromagnetic signals on the wire Link: data transfer between neighboring network elements

More information

CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online

CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online 1 CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online Solutions 1. General Networking a. In traditional client-server communication using TCP, a new socket is created.

More information

Goals. Fundamentals of Network Media. More topics. Topics. Multiple access communication. Multiple access solutions

Goals. Fundamentals of Network Media. More topics. Topics. Multiple access communication. Multiple access solutions Fundamentals of Network Media Local Area Networks Ursula Holmström Goals Learn the basic concepts related to LAN technologies, for example use of shared media medium access control topologies Know the

More information

Direct Link Networks: Building Blocks (2.1), Encoding (2.2), Framing (2.3)

Direct Link Networks: Building Blocks (2.1), Encoding (2.2), Framing (2.3) Direct Link Networks: Building Blocks (2.1), Encoding (2.2), Framing (2.3) ECPE/CS 5516: Computer Networks Originally by Scott F. Midkiff (ECpE) Modified by Marc Abrams (CS) Virginia Tech courses.cs.vt.edu/~cs5516

More information

Monash University SAMPLE EXAM. Faculty Of Information Technology. Computer Facilities and Network Management

Monash University SAMPLE EXAM. Faculty Of Information Technology. Computer Facilities and Network Management Official Use Only Monash University SAMPLE EXAM Faculty Of Information Technology EXAM CODES: TITLE OF PAPER: EXAM DURATION: READING TIME: BUS3150 Computer Facilities and Network Management 2 hours writing

More information

Token Bus. Message Exchange in Token Bus. Example. Problems with Token Bus

Token Bus. Message Exchange in Token Bus. Example. Problems with Token Bus Token us Token -procedure: Only someone who possesses a certain ken (= bit sequence), may send. One example for a ken network: IEEE 80. Token us All s should be treated equally, i.e. they have pass on

More information

Data Link Layer Overview

Data Link Layer Overview Data Link Layer Overview : 9/7/2007 CSC 257/457 - Fall 2007 1 Internet Architecture Bottom-up: physical: electromagnetic signals on the wire link: data transfer between neighboring network elements network:

More information

Inst: Chris Davison

Inst: Chris Davison ICS 153 Introduction to Computer Networks Inst: Chris Davison cbdaviso@uci.edu ICS 153 Data Link Layer Contents Simplex and Duplex Communication Frame Creation Flow Control Error Control Performance of

More information

PART III. Data Link Layer MGH T MGH C I 204

PART III. Data Link Layer MGH T MGH C I 204 PART III Data Link Layer Position of the data-link layer Data link layer duties LLC and MAC sublayers IEEE standards for LANs Chapters Chapter 10 Error Detection and Correction Chapter 11 Data Link Control

More information

William Stallings Data and Computer Communications. Chapter 7 Data Link Control

William Stallings Data and Computer Communications. Chapter 7 Data Link Control William Stallings Data and Computer Communications Chapter 7 Data Link Control Flow Control Ensuring the sending entity does not overwhelm the receiving entity Preventing buffer overflow Transmission time

More information

Redes de Computadores. Medium Access Control

Redes de Computadores. Medium Access Control Redes de Computadores Medium Access Control Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto 1 » How to control the access of computers to a communication medium?» What is the ideal Medium

More information

(Refer Slide Time: 2:20)

(Refer Slide Time: 2:20) Data Communications Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture-15 Error Detection and Correction Hello viewers welcome to today s lecture

More information

Data Link Layer. Overview. Links. Shivkumar Kalyanaraman

Data Link Layer. Overview. Links. Shivkumar Kalyanaraman Data Link Layer shivkuma@ecse.rpi.edu http://www.ecse.rpi.edu/homepages/shivkuma 1-1 Based in part upon the slides of Prof. Raj Jain (OSU) Overview The data link layer problem Error detection and correction

More information

CSE 461: Framing, Error Detection and Correction

CSE 461: Framing, Error Detection and Correction CSE 461: Framing, Error Detection and Correction Next Topics Framing Focus: How does a receiver know where a message begins/ends Error detection and correction Focus: How do we detect and correct messages

More information

The Medium Access Control Scheme (MAC Layer) Reference: Andrew S. Tanenbaum, Computer Networks, 3rd Edition, Prentice Hall, 1996.

The Medium Access Control Scheme (MAC Layer) Reference: Andrew S. Tanenbaum, Computer Networks, 3rd Edition, Prentice Hall, 1996. The Medium Access Control Scheme (MAC Layer) Reference: Andrew S. Tanenbaum, Computer Networks, 3rd Edition, Prentice Hall, 1996. 1 Table of Contents Introduction ALOHA Carrier Sense Multiple Sense (CSMA)

More information

Lecture 6. Data Link Layer (cont d) Data Link Layer 1-1

Lecture 6. Data Link Layer (cont d) Data Link Layer 1-1 Lecture 6 Data Link Layer (cont d) Data Link Layer 1-1 Agenda Continue the Data Link Layer Multiple Access Links and Protocols Addressing Data Link Layer 1-2 Multiple Access Links and Protocols Two types

More information

Data Link Layer, Part 3 Medium Access Control. Preface

Data Link Layer, Part 3 Medium Access Control. Preface Data Link Layer, Part 3 Medium Access Control These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable

More information

Chapter 5: Link layer

Chapter 5: Link layer Chapter 5: Link layer our goals: v understand principles behind link layer services: error detection, correction sharing a broadcast channel: multiple access link layer addressing local area networks:

More information

Data Link Layer Overview

Data Link Layer Overview Data Link Layer Overview First of four classes on the data link layer 9/9/2009 CSC 257/457 - Fall 2009 1 Internet Architecture Bottom-up: physical: electromagnetic signals on the wire link: data transfer

More information

Chapter V: Link Layer

Chapter V: Link Layer Chapter V: Link Layer UG3 Computer Communications & Networks (COMN) Myungjin Lee myungjin.lee@ed.ac.uk Slides copyright of Kurose and Ross Link layer services framing, link access: encapsulate datagram

More information

Chapter 4 Data Link Layer

Chapter 4 Data Link Layer Chapter 4 Data Link Layer Data Link Layer Objectives: understand principles behind data link layer services: error detection and correction ( by the receiver) reliable data transfer link access by sharing

More information

Computer Facilities and Network Management BUS3150 Tutorial - Week 13

Computer Facilities and Network Management BUS3150 Tutorial - Week 13 Computer Facilities and Network Management BUS3150 Tutorial - Week 13 *** FOR TUTORS ONLY *** The answers provided here are only brief guides. If you have any comments or suggestions for improvement to

More information

Outline. Introduction to Networked Embedded Systems - Embedded systems Networked embedded systems Embedded Internet - Network properties

Outline. Introduction to Networked Embedded Systems - Embedded systems Networked embedded systems Embedded Internet - Network properties Outline Introduction to Networked Embedded Systems - Embedded systems Networked embedded systems Embedded Internet - Network properties Layered Network Architectures - OSI framework descriptions of layers

More information

Data Link Layer. Goals of This Lecture. Engineering Questions. Outline of the Class

Data Link Layer. Goals of This Lecture. Engineering Questions. Outline of the Class Data Link Layer Kuang Chiu Huang TCM NCKU Goals of This Lecture Through the lecture and in-class discussion, students are enabled to describe role and functions of the link layer, and compare different

More information

1999, Scott F. Midkiff

1999, Scott F. Midkiff Lecture Topics Direct Link Networks: Multiaccess Protocols (.7) Multiaccess control IEEE 80.5 Token Ring and FDDI CS/ECpE 556: Computer Networks Originally by Scott F. Midkiff (ECpE) Modified by Marc Abrams

More information

Lecture 5 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 5 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 5 The Data Link Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Link Layer: setting the context two physically connected devices: host-router, router-router, host-host,

More information

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur Module 5 Broadcast Communication Networks Lesson 5 High Speed LANs Token Ring Based Specific Instructional Objectives On completion, the student will be able to: Explain different categories of High Speed

More information

Data Link Control Protocols

Data Link Control Protocols Data Link Control Protocols need layer of logic above Physical to manage exchange of data over a link frame synchronization flow control error control addressing control and data link management Flow Control

More information

Advanced Computer Networks. Rab Nawaz Jadoon DCS. Assistant Professor COMSATS University, Lahore Pakistan. Department of Computer Science

Advanced Computer Networks. Rab Nawaz Jadoon DCS. Assistant Professor COMSATS University, Lahore Pakistan. Department of Computer Science Advanced Computer Networks Department of Computer Science DCS COMSATS Institute of Information Technology Rab Nawaz Jadoon Assistant Professor COMSATS University, Lahore Pakistan Advanced Computer Networks

More information

Telematics. 5rd Tutorial - LLC vs. MAC, HDLC, Flow Control, E2E-Arguments

Telematics. 5rd Tutorial - LLC vs. MAC, HDLC, Flow Control, E2E-Arguments 19540 - Telematics 5rd Tutorial - LLC vs. MAC, HDLC, Flow Control, E2E-Arguments Matthias Wa hlisch Department of Mathematics and Computer Science Institute of Computer Science 19. November, 2009 Institute

More information

CARRIER SENSE MULTIPLE ACCESS (CSMA):

CARRIER SENSE MULTIPLE ACCESS (CSMA): Lecture Handout Computer Networks Lecture No. 8 CARRIER SENSE MULTIPLE ACCESS (CSMA): There is no central control management when computers transmit on Ethernet. For this purpose the Ethernet employs CSMA

More information

Data Link Control Protocols

Data Link Control Protocols Protocols : Introduction to Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 23 May 2012 Y12S1L07, Steve/Courses/2012/s1/its323/lectures/datalink.tex,

More information

Local Area Networks (LANs) SMU CSE 5344 /

Local Area Networks (LANs) SMU CSE 5344 / Local Area Networks (LANs) SMU CSE 5344 / 7344 1 LAN/MAN Technology Factors Topology Transmission Medium Medium Access Control Techniques SMU CSE 5344 / 7344 2 Topologies Topology: the shape of a communication

More information

LANs Local Area Networks LANs provide an efficient network solution : To support a large number of stations Over moderately high speed

LANs Local Area Networks LANs provide an efficient network solution : To support a large number of stations Over moderately high speed Local Area Networks LANs provide an efficient network solution : To support a large number of stations Over moderately high speed With relatively small bit errors Multiaccess Protocols Communication among

More information