ASEP: An Adaptive Sequential Prefetching Scheme for Second-level Storage System

Size: px
Start display at page:

Download "ASEP: An Adaptive Sequential Prefetching Scheme for Second-level Storage System"

Transcription

1 ASEP: An Adaptive Sequential Prefetching Scheme for Second-level Storage System Xiaodong Shi Dan Feng Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei , PR China Journal of Computers, Vol 7, No 8 (2012), , Aug 2012

2 OUTLINE INTRODUCTION MOTIVATION RELATED WORK THE ASEP SCHEME PERFORMANCE EVALUATION CONCLUSION

3 INTRODUCTION Buffer cache is widely used to bridge the performance gap between processor and mechanical disk Multilevel buffer cache are used to break the I/O bottleneck, for example: web page request proxy server database server client browser web server background storage server All these buffer cache form hierarchy and distinct buffer caches have difference access patterns

4 MOTIVATION(1/3) The pages referenced in Second-level buffer cache has some feature: Larger reused distance than in first-level buffer cache Active time point loss Larger reused distance The number of accesses between two accesses to the same block in a reference sequence Weak temporal locality 99% of references in second-level buffer caches have larger than 512 More sensitive to the changes of prefetching depth Marginal cache area becomes warmer than single level buffer cache Active time point at marginal cache area

5 MOTIVATION(2/3) Compare the number of I/O with two different prefetching A, B, C are random stream and X1, X2, X3 are sequential access Consider 4 th access and 8 th access These assumptions are based on access characteristics of second-level buffer

6 MOTIVATION(3/3) The lifetime of A, B, C are larger than their reuse distance, which conserve the active time points of these three If we want to achieve effective sequential prefetching Keep track of the accesses to a given size marginal cache area How many pages will reach their active time point Pages prefetch < Pages missed from active time point loss Prefetching is too aggressive, depth should be decrease

7 RELATED WORK(1/3) AMP adjust the prefetching depth to avoid the prematurely eviction of prefetched pages If prefetched page is evicted before accessed, we reduce the sequential prefetching request length Otherwise, heuristically increases the sequential request length STEP improve hit probability of prefetched pages Identifying the confidence sequential stream, more prefetched pages are requested Above solutions could not effective improve the performance of second-level buffer cache Due to ignoring the active time point loss

8 RELATED WORK(2/3) Cache management focus on prefetched pages LRU variations AMP(Adaptive Multistream Prefetching) SARC(Sequential prefetching in adaptive replacement cache) LRU-bottom Maintain a single LRU list Sequential data is inserted into LRU end Random access data is inserted into MRU end AMP Replacement policy based on LRU Sequential data is moved to the MRU end only on repeated access

9 RELATED WORK(3/3) SARC Optimize the cache space between sequential and random access Equalize their marginal utility Maintain a desired size for sequential list If bottom portion of sequential list is found to more valuable, desired size increase

10 THE ASEP SCHEME(1/7) A. Evaluate the active time point loss B. Inferring the prefetching accuracy C. Architecture overview D. Prefetching algorithm

11 THE ASEP SCHEME(2/7) A sequential prefetching request, if its depth is larger than 2 It will make this page lose its reaccess opportunity Evaluate the misses induced by aggressive sequential prefetching Access to the evicted pages Access to the active time point loss ASEP first identifies pages will be influenced on their lifetime A prefetching request with M pages is generated NUM=(L-M)*(1-HR)+M NUM=L*(1-HR)

12 THE ASEP SCHEME(3/7) Evaluated the number of pages of active time point loss Misses=NUM*(Q/P)=L*(1-HR)*(Q/P) Q is far less than P, ASEP need long time before update the value of misses We keep track marginal cache Marginal area is set to 2% of available cache capability Misses= L*(1-HR)*{[Q N /(N/M)]/P N }

13 THE ASEP SCHEME(4/7) Inferring the prefetching accuracy Growing sequential stream access We construct correlation graph Predecessor node Len: history access length Successor node Len: prefetched page length Weight edges Strength of correlation A sequential stream with X pages can support X(X 1) 2 correlations

14 THE ASEP SCHEME(5/7) For a node(len: X, Count: N) N=total number of accessed sequential stream that are consisted at least X pages Accuracy Two node(len: X, Count: R) node(len: Y, Count: S) A(X->Y)=T/R

15 THE ASEP SCHEME(6/7) Detector: If there is predecessor block founded, then sequential stream is detected After sequential current stream is extend or new sequential access is detected, it trigger sequential prefetching executor

16 THE ASEP SCHEME(7/7) Prefetching algorithm ASEP establishes and updates a GSA-CG model used to predict the accuracy(a) of expected prefetch request (M) ASEP generates size(m) is the maximum value A*M>Misses Size M can maximize without thrashing STEP computes the optimum value of sequential size (N), by cost benefit module Prefetche depth is determined by Min(M,N)

17 PERFORMANCE EVALUATION(1/10) Experimental setup Intel Xeon 3.o GHz processor 1GB memory 3 Seagate ST AS SATA disk, 250GB respectively Rational speed is 7200 RPM Average seek time is 8.5ms RAID-5 and set the stripping size 256KB We evaluate performance through the trace driven experiments Replay tool based on RAIDmeter RAID driver(md) embedded into the Linux Kernel Fedora core 4 Linux, kernel version EXT3 file system Cache memory 512MB

18 PERFORMANCE EVALUATION(2/10) Workload Storage performance council(oltp and Web) OLTP are characterized by the sequential access pattern obtained (financial institution) Web are collected from web search workload, which is more random Synthetic workload We decompose a trace into multiple sub-traces and set their start time at the same time Denote the traces as Finx-n or Webx-n, where -n represent the number of sub-traces replayed simultaneously

19 PERFORMANCE EVALUATION(3/10) ASEP can efficiently improve performance of storage system under FIN workload Under scare cache space, the active time point loss dominate the efficiency of sequential prefetching

20 PERFORMANCE EVALUATION(4/10) Small cache space deteriorates the active time point loss of pages

21 PERFORMANCE EVALUATION(5/10)

22 PERFORMANCE EVALUATION(6/10)

23 PERFORMANCE EVLUATION(7/10) If the algorithm is effective, its curve should be steadier than othes

24 PERFORMANCE EVALUATION(8/10) STEP: response time become large more quickly APP: too aggressive under light load

25 PERFORMANCE EVALUATION(9/10)

26 PERFORMANCE EVALUATION(10/10)

27 CONCLUSION In second-level buffer cache, the pages have large reuse distance, which tends to lead the pages to be prematurely evicted. The ASEP algorithm can balance between the accesses to prefetched pages and the misses of pages active time point loss induced by prefetching ASEP can significantly improve the performance by up to 49.7% and, at the same time, it only uses 55.6% cache space of other prefetching algorithms.

ASEP: An Adaptive Sequential Prefetching Scheme for Second-level Storage System

ASEP: An Adaptive Sequential Prefetching Scheme for Second-level Storage System JOURNAL OF COMPUTERS, VOL. 7, NO. 8, AUGUST 2012 1853 : An Adaptive Sequential Prefetching Scheme for Second-level Storage System Xiaodong Shi Computer College, Huazhong University of Science and Technology,

More information

SRM-Buffer: An OS Buffer Management SRM-Buffer: An OS Buffer Management Technique toprevent Last Level Cache from Thrashing in Multicores

SRM-Buffer: An OS Buffer Management SRM-Buffer: An OS Buffer Management Technique toprevent Last Level Cache from Thrashing in Multicores SRM-Buffer: An OS Buffer Management SRM-Buffer: An OS Buffer Management Technique toprevent Last Level Cache from Thrashing in Multicores Xiaoning Ding The Ohio State University dingxn@cse.ohiostate.edu

More information

SmartSaver: Turning Flash Drive into a Disk Energy Saver for Mobile Computers

SmartSaver: Turning Flash Drive into a Disk Energy Saver for Mobile Computers SmartSaver: Turning Flash Drive into a Disk Energy Saver for Mobile Computers Feng Chen 1 Song Jiang 2 Xiaodong Zhang 1 The Ohio State University, USA Wayne State University, USA Disks Cost High Energy

More information

Performance Modeling and Analysis of Flash based Storage Devices

Performance Modeling and Analysis of Flash based Storage Devices Performance Modeling and Analysis of Flash based Storage Devices H. Howie Huang, Shan Li George Washington University Alex Szalay, Andreas Terzis Johns Hopkins University MSST 11 May 26, 2011 NAND Flash

More information

Introduction to OpenMP. Lecture 10: Caches

Introduction to OpenMP. Lecture 10: Caches Introduction to OpenMP Lecture 10: Caches Overview Why caches are needed How caches work Cache design and performance. The memory speed gap Moore s Law: processors speed doubles every 18 months. True for

More information

I/O Characterization of Commercial Workloads

I/O Characterization of Commercial Workloads I/O Characterization of Commercial Workloads Kimberly Keeton, Alistair Veitch, Doug Obal, and John Wilkes Storage Systems Program Hewlett-Packard Laboratories www.hpl.hp.com/research/itc/csl/ssp kkeeton@hpl.hp.com

More information

Chunling Wang, Dandan Wang, Yunpeng Chai, Chuanwen Wang and Diansen Sun Renmin University of China

Chunling Wang, Dandan Wang, Yunpeng Chai, Chuanwen Wang and Diansen Sun Renmin University of China Chunling Wang, Dandan Wang, Yunpeng Chai, Chuanwen Wang and Diansen Sun Renmin University of China Data volume is growing 44ZB in 2020! How to store? Flash arrays, DRAM-based storage: high costs, reliability,

More information

and data combined) is equal to 7% of the number of instructions. Miss Rate with Second- Level Cache, Direct- Mapped Speed

and data combined) is equal to 7% of the number of instructions. Miss Rate with Second- Level Cache, Direct- Mapped Speed 5.3 By convention, a cache is named according to the amount of data it contains (i.e., a 4 KiB cache can hold 4 KiB of data); however, caches also require SRAM to store metadata such as tags and valid

More information

Feng Chen and Xiaodong Zhang Dept. of Computer Science and Engineering The Ohio State University

Feng Chen and Xiaodong Zhang Dept. of Computer Science and Engineering The Ohio State University Caching for Bursts (C-Burst): Let Hard Disks Sleep Well and Work Energetically Feng Chen and Xiaodong Zhang Dept. of Computer Science and Engineering The Ohio State University Power Management in Hard

More information

A Comparison of File. D. Roselli, J. R. Lorch, T. E. Anderson Proc USENIX Annual Technical Conference

A Comparison of File. D. Roselli, J. R. Lorch, T. E. Anderson Proc USENIX Annual Technical Conference A Comparison of File System Workloads D. Roselli, J. R. Lorch, T. E. Anderson Proc. 2000 USENIX Annual Technical Conference File System Performance Integral component of overall system performance Optimised

More information

Optimizing Flash-based Key-value Cache Systems

Optimizing Flash-based Key-value Cache Systems Optimizing Flash-based Key-value Cache Systems Zhaoyan Shen, Feng Chen, Yichen Jia, Zili Shao Department of Computing, Hong Kong Polytechnic University Computer Science & Engineering, Louisiana State University

More information

Correlation based File Prefetching Approach for Hadoop

Correlation based File Prefetching Approach for Hadoop IEEE 2nd International Conference on Cloud Computing Technology and Science Correlation based File Prefetching Approach for Hadoop Bo Dong 1, Xiao Zhong 2, Qinghua Zheng 1, Lirong Jian 2, Jian Liu 1, Jie

More information

Cray XE6 Performance Workshop

Cray XE6 Performance Workshop Cray XE6 Performance Workshop Mark Bull David Henty EPCC, University of Edinburgh Overview Why caches are needed How caches work Cache design and performance. 2 1 The memory speed gap Moore s Law: processors

More information

STORING DATA: DISK AND FILES

STORING DATA: DISK AND FILES STORING DATA: DISK AND FILES CS 564- Spring 2018 ACKs: Dan Suciu, Jignesh Patel, AnHai Doan WHAT IS THIS LECTURE ABOUT? How does a DBMS store data? disk, SSD, main memory The Buffer manager controls how

More information

RAID6L: A Log-Assisted RAID6 Storage Architecture with Improved Write Performance

RAID6L: A Log-Assisted RAID6 Storage Architecture with Improved Write Performance RAID6L: A Log-Assisted RAID6 Storage Architecture with Improved Write Performance Chao Jin, Dan Feng, Hong Jiang, Lei Tian School of Computer, Huazhong University of Science and Technology Wuhan National

More information

Cache Memories. From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6.

Cache Memories. From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6. Cache Memories From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6. Today Cache memory organization and operation Performance impact of caches The memory mountain Rearranging

More information

Memory - Paging. Copyright : University of Illinois CS 241 Staff 1

Memory - Paging. Copyright : University of Illinois CS 241 Staff 1 Memory - Paging Copyright : University of Illinois CS 241 Staff 1 Physical Frame Allocation How do we allocate physical memory across multiple processes? What if Process A needs to evict a page from Process

More information

Cooperating Write Buffer Cache and Virtual Memory Management for Flash Memory Based Systems

Cooperating Write Buffer Cache and Virtual Memory Management for Flash Memory Based Systems Cooperating Write Buffer Cache and Virtual Memory Management for Flash Memory Based Systems Liang Shi, Chun Jason Xue and Xuehai Zhou Joint Research Lab of Excellence, CityU-USTC Advanced Research Institute,

More information

CS356: Discussion #9 Memory Hierarchy and Caches. Marco Paolieri Illustrations from CS:APP3e textbook

CS356: Discussion #9 Memory Hierarchy and Caches. Marco Paolieri Illustrations from CS:APP3e textbook CS356: Discussion #9 Memory Hierarchy and Caches Marco Paolieri (paolieri@usc.edu) Illustrations from CS:APP3e textbook The Memory Hierarchy So far... We modeled the memory system as an abstract array

More information

Enhancements to Linux I/O Scheduling

Enhancements to Linux I/O Scheduling Enhancements to Linux I/O Scheduling Seetharami R. Seelam, UTEP Rodrigo Romero, UTEP Patricia J. Teller, UTEP William Buros, IBM-Austin 21 July 2005 Linux Symposium 2005 1 Introduction Dynamic Adaptability

More information

Cache memories are small, fast SRAM-based memories managed automatically in hardware. Hold frequently accessed blocks of main memory

Cache memories are small, fast SRAM-based memories managed automatically in hardware. Hold frequently accessed blocks of main memory Cache Memories Cache memories are small, fast SRAM-based memories managed automatically in hardware. Hold frequently accessed blocks of main memory CPU looks first for data in caches (e.g., L1, L2, and

More information

Presented by: Nafiseh Mahmoudi Spring 2017

Presented by: Nafiseh Mahmoudi Spring 2017 Presented by: Nafiseh Mahmoudi Spring 2017 Authors: Publication: Type: ACM Transactions on Storage (TOS), 2016 Research Paper 2 High speed data processing demands high storage I/O performance. Flash memory

More information

Deconstructing on-board Disk Cache by Using Block-level Real Traces

Deconstructing on-board Disk Cache by Using Block-level Real Traces Deconstructing on-board Disk Cache by Using Block-level Real Traces Yuhui Deng, Jipeng Zhou, Xiaohua Meng Department of Computer Science, Jinan University, 510632, P. R. China Email: tyhdeng@jnu.edu.cn;

More information

CFLRU:A A Replacement Algorithm for Flash Memory

CFLRU:A A Replacement Algorithm for Flash Memory CFLRU:A A Replacement Algorithm for Flash Memory CASES'06, October 23 25, 2006, Seoul, Korea. Copyright 2006 ACM 1-59593-543-6/06/0010 Yen-Ting Liu Outline Introduction CFLRU Algorithm Simulation Implementation

More information

Program-Counter-Based Pattern Classification in Buffer Caching

Program-Counter-Based Pattern Classification in Buffer Caching Program-Counter-Based Pattern Classification in Buffer Caching Chris Gniady Ali R. Butt Y. Charlie Hu Purdue University West Lafayette, IN 47907 {gniady, butta, ychu}@purdue.edu Abstract Program-counter-based

More information

Gecko: Contention-Oblivious Disk Arrays for Cloud Storage

Gecko: Contention-Oblivious Disk Arrays for Cloud Storage Gecko: Contention-Oblivious Disk Arrays for Cloud Storage Ji-Yong Shin Cornell University In collaboration with Mahesh Balakrishnan (MSR SVC), Tudor Marian (Google), and Hakim Weatherspoon (Cornell) FAST

More information

Comparing Performance of Solid State Devices and Mechanical Disks

Comparing Performance of Solid State Devices and Mechanical Disks Comparing Performance of Solid State Devices and Mechanical Disks Jiri Simsa Milo Polte, Garth Gibson PARALLEL DATA LABORATORY Carnegie Mellon University Motivation Performance gap [Pugh71] technology

More information

Memory Hierarchy. Slides contents from:

Memory Hierarchy. Slides contents from: Memory Hierarchy Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing, NPTEL Memory Performance Gap Memory

More information

Strip-oriented asynchronous prefetching for parallel disk systems

Strip-oriented asynchronous prefetching for parallel disk systems Liu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(11):799-815 799 Journal of Zhejiang University-SCIENCE C (Computers & Electronics) ISSN 1869-1951 (Print); ISSN 1869-196X (Online) www.zju.edu.cn/jzus;

More information

Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value Caching

Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value Caching Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value Caching Kefei Wang and Feng Chen Louisiana State University SoCC '18 Carlsbad, CA Key-value Systems in Internet Services Key-value

More information

Memory Management. Goals of this Lecture. Motivation for Memory Hierarchy

Memory Management. Goals of this Lecture. Motivation for Memory Hierarchy Memory Management Goals of this Lecture Help you learn about: The memory hierarchy Spatial and temporal locality of reference Caching, at multiple levels Virtual memory and thereby How the hardware and

More information

Analyzing Memory Access Patterns and Optimizing Through Spatial Memory Streaming. Ogün HEPER CmpE 511 Computer Architecture December 24th, 2009

Analyzing Memory Access Patterns and Optimizing Through Spatial Memory Streaming. Ogün HEPER CmpE 511 Computer Architecture December 24th, 2009 Analyzing Memory Access Patterns and Optimizing Through Spatial Memory Streaming Ogün HEPER CmpE 511 Computer Architecture December 24th, 2009 Agenda Introduction Memory Hierarchy Design CPU Speed vs.

More information

Chapter 6 Caches. Computer System. Alpha Chip Photo. Topics. Memory Hierarchy Locality of Reference SRAM Caches Direct Mapped Associative

Chapter 6 Caches. Computer System. Alpha Chip Photo. Topics. Memory Hierarchy Locality of Reference SRAM Caches Direct Mapped Associative Chapter 6 s Topics Memory Hierarchy Locality of Reference SRAM s Direct Mapped Associative Computer System Processor interrupt On-chip cache s s Memory-I/O bus bus Net cache Row cache Disk cache Memory

More information

Locality. CS429: Computer Organization and Architecture. Locality Example 2. Locality Example

Locality. CS429: Computer Organization and Architecture. Locality Example 2. Locality Example Locality CS429: Computer Organization and Architecture Dr Bill Young Department of Computer Sciences University of Texas at Austin Principle of Locality: Programs tend to reuse data and instructions near

More information

Caching less for better performance: Balancing cache size and update cost of flash memory cache in hybrid storage systems"

Caching less for better performance: Balancing cache size and update cost of flash memory cache in hybrid storage systems Caching less for better performance: Balancing cache size and update cost of flash memory cache in hybrid storage systems" Yongseok Oh" Jongmoo Choi! University of Seoul! {ysoh,dhl_express}@uos.ac.kr Donghee

More information

Memory Management! How the hardware and OS give application pgms:" The illusion of a large contiguous address space" Protection against each other"

Memory Management! How the hardware and OS give application pgms: The illusion of a large contiguous address space Protection against each other Memory Management! Goals of this Lecture! Help you learn about:" The memory hierarchy" Spatial and temporal locality of reference" Caching, at multiple levels" Virtual memory" and thereby " How the hardware

More information

L7: Performance. Frans Kaashoek Spring 2013

L7: Performance. Frans Kaashoek Spring 2013 L7: Performance Frans Kaashoek kaashoek@mit.edu 6.033 Spring 2013 Overview Technology fixes some performance problems Ride the technology curves if you can Some performance requirements require thinking

More information

DELL EMC DATA DOMAIN SISL SCALING ARCHITECTURE

DELL EMC DATA DOMAIN SISL SCALING ARCHITECTURE WHITEPAPER DELL EMC DATA DOMAIN SISL SCALING ARCHITECTURE A Detailed Review ABSTRACT While tape has been the dominant storage medium for data protection for decades because of its low cost, it is steadily

More information

Flash-Conscious Cache Population for Enterprise Database Workloads

Flash-Conscious Cache Population for Enterprise Database Workloads IBM Research ADMS 214 1 st September 214 Flash-Conscious Cache Population for Enterprise Database Workloads Hyojun Kim, Ioannis Koltsidas, Nikolas Ioannou, Sangeetha Seshadri, Paul Muench, Clem Dickey,

More information

Managing Prefetch Memory for Data-Intensive Online Servers

Managing Prefetch Memory for Data-Intensive Online Servers Managing Prefetch Memory for Data-Intensive Online Servers Chuanpeng Li and Kai Shen Department of Computer Science, University of Rochester {cli, kshen}@cs.rochester.edu Abstract Data-intensive online

More information

Advanced Database Systems

Advanced Database Systems Lecture II Storage Layer Kyumars Sheykh Esmaili Course s Syllabus Core Topics Storage Layer Query Processing and Optimization Transaction Management and Recovery Advanced Topics Cloud Computing and Web

More information

SSD Applications in the Enterprise Area

SSD Applications in the Enterprise Area SSD Applications in the Enterprise Area Tony Kim Samsung Semiconductor January 8, 2010 Outline Part I: SSD Market Outlook Application Trends Part II: Challenge of Enterprise MLC SSD Understanding SSD Lifetime

More information

Computer Systems Laboratory Sungkyunkwan University

Computer Systems Laboratory Sungkyunkwan University I/O System Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Introduction (1) I/O devices can be characterized by Behavior: input, output, storage

More information

Advanced Memory Organizations

Advanced Memory Organizations CSE 3421: Introduction to Computer Architecture Advanced Memory Organizations Study: 5.1, 5.2, 5.3, 5.4 (only parts) Gojko Babić 03-29-2018 1 Growth in Performance of DRAM & CPU Huge mismatch between CPU

More information

Memory Management! Goals of this Lecture!

Memory Management! Goals of this Lecture! Memory Management! Goals of this Lecture! Help you learn about:" The memory hierarchy" Why it works: locality of reference" Caching, at multiple levels" Virtual memory" and thereby " How the hardware and

More information

Memory Hierarchy. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Memory Hierarchy. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Memory Hierarchy Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Time (ns) The CPU-Memory Gap The gap widens between DRAM, disk, and CPU speeds

More information

CFDC A Flash-aware Replacement Policy for Database Buffer Management

CFDC A Flash-aware Replacement Policy for Database Buffer Management CFDC A Flash-aware Replacement Policy for Database Buffer Management Yi Ou University of Kaiserslautern Germany Theo Härder University of Kaiserslautern Germany Peiquan Jin University of Science and Technology

More information

Operating Systems Design Exam 2 Review: Spring 2012

Operating Systems Design Exam 2 Review: Spring 2012 Operating Systems Design Exam 2 Review: Spring 2012 Paul Krzyzanowski pxk@cs.rutgers.edu 1 Question 1 Under what conditions will you reach a point of diminishing returns where adding more memory may improve

More information

CMSC 424 Database design Lecture 12 Storage. Mihai Pop

CMSC 424 Database design Lecture 12 Storage. Mihai Pop CMSC 424 Database design Lecture 12 Storage Mihai Pop Administrative Office hours tomorrow @ 10 Midterms are in solutions for part C will be posted later this week Project partners I have an odd number

More information

Stupid File Systems Are Better

Stupid File Systems Are Better Stupid File Systems Are Better Lex Stein Harvard University Abstract File systems were originally designed for hosts with only one disk. Over the past 2 years, a number of increasingly complicated changes

More information

Outline 1 Motivation 2 Theory of a non-blocking benchmark 3 The benchmark and results 4 Future work

Outline 1 Motivation 2 Theory of a non-blocking benchmark 3 The benchmark and results 4 Future work Using Non-blocking Operations in HPC to Reduce Execution Times David Buettner, Julian Kunkel, Thomas Ludwig Euro PVM/MPI September 8th, 2009 Outline 1 Motivation 2 Theory of a non-blocking benchmark 3

More information

Warming up Storage-level Caches with Bonfire

Warming up Storage-level Caches with Bonfire Warming up Storage-level Caches with Bonfire Yiying Zhang Gokul Soundararajan Mark W. Storer Lakshmi N. Bairavasundaram Sethuraman Subbiah Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau 2 Does on-demand

More information

Page 1. Memory Hierarchies (Part 2)

Page 1. Memory Hierarchies (Part 2) Memory Hierarchies (Part ) Outline of Lectures on Memory Systems Memory Hierarchies Cache Memory 3 Virtual Memory 4 The future Increasing distance from the processor in access time Review: The Memory Hierarchy

More information

I/O Commercial Workloads. Scalable Disk Arrays. Scalable ICDA Performance. Outline of This Talk: Related Work on Disk Arrays.

I/O Commercial Workloads. Scalable Disk Arrays. Scalable ICDA Performance. Outline of This Talk: Related Work on Disk Arrays. Scalable Disk Arrays I/O Commercial Workloads David Kaeli Northeastern University Computer Architecture Research Laboratory Boston, MA Manpreet Singh William Zahavi EMC Corporation Hopkington, MA Industry

More information

Application agnostic, empirical modelling of end-to-end memory hierarchy

Application agnostic, empirical modelling of end-to-end memory hierarchy Application agnostic, empirical modelling of end-to-end memory hierarchy Dhishankar Sengupta, Dell Inc. Krishanu Dhar, Dell Inc. Pradip Mukhopadhyay, NetApp Inc. Abstract Modeling(Analytical/trace-based/simulation)

More information

Using Synology SSD Technology to Enhance System Performance Synology Inc.

Using Synology SSD Technology to Enhance System Performance Synology Inc. Using Synology SSD Technology to Enhance System Performance Synology Inc. Synology_WP_ 20121112 Table of Contents Chapter 1: Enterprise Challenges and SSD Cache as Solution Enterprise Challenges... 3 SSD

More information

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I)

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I) ECE7995 Caching and Prefetching Techniques in Computer Systems Lecture 8: Buffer Cache in Main Memory (I) 1 Review: The Memory Hierarchy Take advantage of the principle of locality to present the user

More information

An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance

An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance Authors: Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. Morley Mao, Subhabrata Sen, Oliver

More information

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY 1 Memories: Review SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: value is stored

More information

Operating Systems Design Exam 2 Review: Spring 2011

Operating Systems Design Exam 2 Review: Spring 2011 Operating Systems Design Exam 2 Review: Spring 2011 Paul Krzyzanowski pxk@cs.rutgers.edu 1 Question 1 CPU utilization tends to be lower when: a. There are more processes in memory. b. There are fewer processes

More information

An Efficient Memory-Mapped Key-Value Store for Flash Storage

An Efficient Memory-Mapped Key-Value Store for Flash Storage An Efficient Memory-Mapped Key-Value Store for Flash Storage Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and Angelos Bilas Institute of Computer Science (ICS) Foundation for Research

More information

CS 416: Opera-ng Systems Design March 23, 2012

CS 416: Opera-ng Systems Design March 23, 2012 Question 1 Operating Systems Design Exam 2 Review: Spring 2011 Paul Krzyzanowski pxk@cs.rutgers.edu CPU utilization tends to be lower when: a. There are more processes in memory. b. There are fewer processes

More information

Double-precision General Matrix Multiply (DGEMM)

Double-precision General Matrix Multiply (DGEMM) Double-precision General Matrix Multiply (DGEMM) Parallel Computation (CSE 0), Assignment Andrew Conegliano (A0) Matthias Springer (A00) GID G-- January, 0 0. Assumptions The following assumptions apply

More information

Computer Architecture and System Software Lecture 09: Memory Hierarchy. Instructor: Rob Bergen Applied Computer Science University of Winnipeg

Computer Architecture and System Software Lecture 09: Memory Hierarchy. Instructor: Rob Bergen Applied Computer Science University of Winnipeg Computer Architecture and System Software Lecture 09: Memory Hierarchy Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Midterm returned + solutions in class today SSD

More information

TEMPERATURE MANAGEMENT IN DATA CENTERS: WHY SOME (MIGHT) LIKE IT HOT

TEMPERATURE MANAGEMENT IN DATA CENTERS: WHY SOME (MIGHT) LIKE IT HOT TEMPERATURE MANAGEMENT IN DATA CENTERS: WHY SOME (MIGHT) LIKE IT HOT Nosayba El-Sayed, Ioan Stefanovici, George Amvrosiadis, Andy A. Hwang, Bianca Schroeder {nosayba, ioan, gamvrosi, hwang, bianca}@cs.toronto.edu

More information

Design of Flash-Based DBMS: An In-Page Logging Approach

Design of Flash-Based DBMS: An In-Page Logging Approach SIGMOD 07 Design of Flash-Based DBMS: An In-Page Logging Approach Sang-Won Lee School of Info & Comm Eng Sungkyunkwan University Suwon,, Korea 440-746 wonlee@ece.skku.ac.kr Bongki Moon Department of Computer

More information

Reducing The De-linearization of Data Placement to Improve Deduplication Performance

Reducing The De-linearization of Data Placement to Improve Deduplication Performance Reducing The De-linearization of Data Placement to Improve Deduplication Performance Yujuan Tan 1, Zhichao Yan 2, Dan Feng 2, E. H.-M. Sha 1,3 1 School of Computer Science & Technology, Chongqing University

More information

RAID4S: Improving RAID Performance with Solid State Drives

RAID4S: Improving RAID Performance with Solid State Drives RAID4S: Improving RAID Performance with Solid State Drives Rosie Wacha UCSC: Scott Brandt and Carlos Maltzahn LANL: John Bent, James Nunez, and Meghan Wingate SRL/ISSDM Symposium October 19, 2010 1 RAID:

More information

Tools for Social Networking Infrastructures

Tools for Social Networking Infrastructures Tools for Social Networking Infrastructures 1 Cassandra - a decentralised structured storage system Problem : Facebook Inbox Search hundreds of millions of users distributed infrastructure inbox changes

More information

Topics. File Buffer Cache for Performance. What to Cache? COS 318: Operating Systems. File Performance and Reliability

Topics. File Buffer Cache for Performance. What to Cache? COS 318: Operating Systems. File Performance and Reliability Topics COS 318: Operating Systems File Performance and Reliability File buffer cache Disk failure and recovery tools Consistent updates Transactions and logging 2 File Buffer Cache for Performance What

More information

Handout 4 Memory Hierarchy

Handout 4 Memory Hierarchy Handout 4 Memory Hierarchy Outline Memory hierarchy Locality Cache design Virtual address spaces Page table layout TLB design options (MMU Sub-system) Conclusion 2012/11/7 2 Since 1980, CPU has outpaced

More information

Using Transparent Compression to Improve SSD-based I/O Caches

Using Transparent Compression to Improve SSD-based I/O Caches Using Transparent Compression to Improve SSD-based I/O Caches Thanos Makatos, Yannis Klonatos, Manolis Marazakis, Michail D. Flouris, and Angelos Bilas {mcatos,klonatos,maraz,flouris,bilas}@ics.forth.gr

More information

Evaluating Block-level Optimization through the IO Path

Evaluating Block-level Optimization through the IO Path Evaluating Block-level Optimization through the IO Path Alma Riska Seagate Research 1251 Waterfront Place Pittsburgh, PA 15222 Alma.Riska@seagate.com James Larkby-Lahet Computer Science Dept. University

More information

A Buffer Replacement Algorithm Exploiting Multi-Chip Parallelism in Solid State Disks

A Buffer Replacement Algorithm Exploiting Multi-Chip Parallelism in Solid State Disks A Buffer Replacement Algorithm Exploiting Multi-Chip Parallelism in Solid State Disks Jinho Seol, Hyotaek Shim, Jaegeuk Kim, and Seungryoul Maeng Division of Computer Science School of Electrical Engineering

More information

Chapter 5 Large and Fast: Exploiting Memory Hierarchy (Part 1)

Chapter 5 Large and Fast: Exploiting Memory Hierarchy (Part 1) Department of Electr rical Eng ineering, Chapter 5 Large and Fast: Exploiting Memory Hierarchy (Part 1) 王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Depar rtment of Electr rical Engineering,

More information

ZBD: Using Transparent Compression at the Block Level to Increase Storage Space Efficiency

ZBD: Using Transparent Compression at the Block Level to Increase Storage Space Efficiency ZBD: Using Transparent Compression at the Block Level to Increase Storage Space Efficiency Thanos Makatos, Yannis Klonatos, Manolis Marazakis, Michail D. Flouris, and Angelos Bilas {mcatos,klonatos,maraz,flouris,bilas}@ics.forth.gr

More information

ECE 669 Parallel Computer Architecture

ECE 669 Parallel Computer Architecture ECE 669 Parallel Computer Architecture Lecture 9 Workload Evaluation Outline Evaluation of applications is important Simulation of sample data sets provides important information Working sets indicate

More information

!! What is virtual memory and when is it useful? !! What is demand paging? !! When should pages in memory be replaced?

!! What is virtual memory and when is it useful? !! What is demand paging? !! When should pages in memory be replaced? Chapter 10: Virtual Memory Questions? CSCI [4 6] 730 Operating Systems Virtual Memory!! What is virtual memory and when is it useful?!! What is demand paging?!! When should pages in memory be replaced?!!

More information

MODERN FILESYSTEM PERFORMANCE IN LOCAL MULTI-DISK STORAGE SPACE CONFIGURATION

MODERN FILESYSTEM PERFORMANCE IN LOCAL MULTI-DISK STORAGE SPACE CONFIGURATION INFORMATION SYSTEMS IN MANAGEMENT Information Systems in Management (2014) Vol. 3 (4) 273 283 MODERN FILESYSTEM PERFORMANCE IN LOCAL MULTI-DISK STORAGE SPACE CONFIGURATION MATEUSZ SMOLIŃSKI Institute of

More information

Seagate Enterprise SATA SSD with DuraWrite Technology Competitive Evaluation

Seagate Enterprise SATA SSD with DuraWrite Technology Competitive Evaluation August 2018 Seagate Enterprise SATA SSD with DuraWrite Technology Competitive Seagate Enterprise SATA SSDs with DuraWrite Technology have the best performance for compressible Database, Cloud, VDI Software

More information

Database Workload. from additional misses in this already memory-intensive databases? interference could be a problem) Key question:

Database Workload. from additional misses in this already memory-intensive databases? interference could be a problem) Key question: Database Workload + Low throughput (0.8 IPC on an 8-wide superscalar. 1/4 of SPEC) + Naturally threaded (and widely used) application - Already high cache miss rates on a single-threaded machine (destructive

More information

CSF Improving Cache Performance. [Adapted from Computer Organization and Design, Patterson & Hennessy, 2005]

CSF Improving Cache Performance. [Adapted from Computer Organization and Design, Patterson & Hennessy, 2005] CSF Improving Cache Performance [Adapted from Computer Organization and Design, Patterson & Hennessy, 2005] Review: The Memory Hierarchy Take advantage of the principle of locality to present the user

More information

Locality. Cache. Direct Mapped Cache. Direct Mapped Cache

Locality. Cache. Direct Mapped Cache. Direct Mapped Cache Locality A principle that makes having a memory hierarchy a good idea If an item is referenced, temporal locality: it will tend to be referenced again soon spatial locality: nearby items will tend to be

More information

White Paper. File System Throughput Performance on RedHawk Linux

White Paper. File System Throughput Performance on RedHawk Linux White Paper File System Throughput Performance on RedHawk Linux By: Nikhil Nanal Concurrent Computer Corporation August Introduction This paper reports the throughput performance of the,, and file systems

More information

Properly Sizing Processing and Memory for your AWMS Server

Properly Sizing Processing and Memory for your AWMS Server Overview This document provides guidelines for purchasing new hardware which will host the AirWave Wireless Management System. Your hardware should incorporate margin for WLAN expansion as well as future

More information

LSbM-tree: Re-enabling Buffer Caching in Data Management for Mixed Reads and Writes

LSbM-tree: Re-enabling Buffer Caching in Data Management for Mixed Reads and Writes 27 IEEE 37th International Conference on Distributed Computing Systems LSbM-tree: Re-enabling Buffer Caching in Data Management for Mixed Reads and Writes Dejun Teng, Lei Guo, Rubao Lee, Feng Chen, Siyuan

More information

SRM-Buffer: An OS Buffer Management Technique to Prevent Last Level Cache from Thrashing in Multicores

SRM-Buffer: An OS Buffer Management Technique to Prevent Last Level Cache from Thrashing in Multicores SRM-Buffer: An OS Buffer Management Technique to Prevent Last Level Cache from Thrashing in Multicores Xiaoning Ding et al. EuroSys 09 Presented by Kaige Yan 1 Introduction Background SRM buffer design

More information

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology 1 Multilevel Memories Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology Based on the material prepared by Krste Asanovic and Arvind CPU-Memory Bottleneck 6.823

More information

ECE 5730 Memory Systems

ECE 5730 Memory Systems ECE 5730 Memory Systems Spring 2009 Command Scheduling Disk Caching Lecture 23: 1 Announcements Quiz 12 I ll give credit for #4 if you answered (d) Quiz 13 (last one!) on Tuesday Make-up class #2 Thursday,

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Lecture 12 Mahadevan Gomathisankaran March 4, 2010 03/04/2010 Lecture 12 CSCE 4610/5610 1 Discussion: Assignment 2 03/04/2010 Lecture 12 CSCE 4610/5610 2 Increasing Fetch

More information

Design and Performance Evaluation of Networked Storage Architectures

Design and Performance Evaluation of Networked Storage Architectures Design and Performance Evaluation of Networked Storage Architectures Xubin He (Hexb@ele.uri.edu) July 25,2002 Dept. of Electrical and Computer Engineering University of Rhode Island Outline Introduction

More information

I/O Buffering and Streaming

I/O Buffering and Streaming I/O Buffering and Streaming I/O Buffering and Caching I/O accesses are reads or writes (e.g., to files) Application access is arbitary (offset, len) Convert accesses to read/write of fixed-size blocks

More information

Advanced Computer Architecture

Advanced Computer Architecture ECE 563 Advanced Computer Architecture Fall 2009 Lecture 3: Memory Hierarchy Review: Caches 563 L03.1 Fall 2010 Since 1980, CPU has outpaced DRAM... Four-issue 2GHz superscalar accessing 100ns DRAM could

More information

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili Virtual Memory Lecture notes from MKP and S. Yalamanchili Sections 5.4, 5.5, 5.6, 5.8, 5.10 Reading (2) 1 The Memory Hierarchy ALU registers Cache Memory Memory Memory Managed by the compiler Memory Managed

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 21: Memory Hierarchy Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Ideally, computer memory would be large and fast

More information

OASIS: Self-tuning Storage for Applications

OASIS: Self-tuning Storage for Applications OASIS: Self-tuning Storage for Applications Kostas Magoutis, Prasenjit Sarkar, Gauri Shah 14 th NASA Goddard- 23 rd IEEE Mass Storage Systems Technologies, College Park, MD, May 17, 2006 Outline Motivation

More information

Second-Tier Cache Management Using Write Hints

Second-Tier Cache Management Using Write Hints Second-Tier Cache Management Using Write Hints Xuhui Li University of Waterloo Aamer Sachedina IBM Toronto Lab Ashraf Aboulnaga University of Waterloo Shaobo Gao University of Waterloo Kenneth Salem University

More information

Caching and Demand-Paged Virtual Memory

Caching and Demand-Paged Virtual Memory Caching and Demand-Paged Virtual Memory Definitions Cache Copy of data that is faster to access than the original Hit: if cache has copy Miss: if cache does not have copy Cache block Unit of cache storage

More information

Computer Systems. Virtual Memory. Han, Hwansoo

Computer Systems. Virtual Memory. Han, Hwansoo Computer Systems Virtual Memory Han, Hwansoo A System Using Physical Addressing CPU Physical address (PA) 4 Main memory : : 2: 3: 4: 5: 6: 7: 8:... M-: Data word Used in simple systems like embedded microcontrollers

More information

Parallel Exact Inference on the Cell Broadband Engine Processor

Parallel Exact Inference on the Cell Broadband Engine Processor Parallel Exact Inference on the Cell Broadband Engine Processor Yinglong Xia and Viktor K. Prasanna {yinglonx, prasanna}@usc.edu University of Southern California http://ceng.usc.edu/~prasanna/ SC 08 Overview

More information