Towards Load Balanced Distributed Transactional Memory

Size: px
Start display at page:

Download "Towards Load Balanced Distributed Transactional Memory"

Transcription

1 Towards Load Balanced Distributed Transactional Memory Gokarna Sharma and Costas Busch Louisiana State University Euro-Par 12, August 31, 2012

2 Distributed Transactional Memory (DTM) Transactions run on network nodes They ask for shared objects distributed over the network for either read or write The reads and writes on shared objects are supported through three operations: Publish Lookup Move

3 Suppose the object ξ is at node and is a requesting node Requesting node Predecessor node ξ Data-flow model: transactions are immobile and the objects are mobile

4 Lookup operation Read-only copy ξ Main copy ξ Replicates the object to the requesting node

5 Lookup operation Read-only copy ξ Read-only copy ξ Main copy ξ Replicates the object to the requesting nodes

6 Move operation Main copy ξ Invalidated ξ Relocates the object explicitly to the requesting node

7 Move operation Main copy ξ Invalidated ξ Invalidated ξ - Relocates the object explicitly to the requesting node - Invalidates also the read-only copies (if available)

8 General routing: choose paths from sources to destinations u 2 u 1 v 3 v 2 u 3 v 1 Routing in DTM: source node of the predecessor request in the total order is the destination of a successor request

9 Edge congestion Node congestion C edge C node maximum number of paths that use any edge maximum number of paths that use any node

10 Stretch = Length of chosen path Length of shortest path stretch u shortest path v chosen path

11 Oblivious Routing Each request path choice is independent of other request path choices

12 Problem Statement Given a d-dimensional mesh and a finite set of operations R ={r 0,r 1,,r l } on an object ξ Design a DTM algorithm that: Minimizes congestion C = max e {i : p i e} on any edge e Minimizes total communication cost A(R) = σ i=1 for all the operations l pi

13 Related Work Protocol Stretch Network Kind Runs on Arrow [DISC 98] Relay [OPODIS 09] Combine [SSS 10] Ballistic [DISC 05] Spiral [IPDPS 12] O(S ST )=O(D) General Spanning tree O(S ST )=O(D) General Spanning tree O(S OT )=O(D) General Overlay tree O(log D) Constant-doubling dimension Hierarchical directory with independent sets O(log 2 n log D) General Hierarchical directory with sparse covers D is the diameter of the network kind S * is the stretch of the tree used

14 Limitations and Motivations These protocols only minimize stretch and they cannot control congestion Congestion can also be a major bottleneck may affect the overall performance of the algorithm A natural question is whether stretch and congestion can be controlled simultaneously Congestion and stretch can not be minimized simultaneously in arbitrary networks

15 Our Contributions MultiBend DTM algorithm for mesh networks For 2-dimensional mesh, MultiBend has both stretch and (edge) congestion O(log n) For d-dimensional mesh, MultiBend has stretch O(d log n) and (edge) congestion O(d 2 log n) For fixed d, stretch is within O(log log n) factor and congestion is within O(1) factor far from optimal

16 In the Remaining Model General Approach Analogy to a Distributed Queue Hierarchical decomposition for MultiBend MultiBend Analysis Stretch Congestion Discussion

17 Model Mesh network G = (V,E) of n reliable nodes One shared object Nodes receive-compute-send atomically Nodes are uniquely identified Node u can send to node v if it knows v One node executes one request at a time

18 General Approach

19 Hierarchical clustering Network graph

20 Hierarchical clustering Alternative representation as a hierarchy tree with leader nodes

21 At the lowest level (level 0) every node is a cluster Directories at each level cluster, downward pointer if object locality known

22 A Publish operation root Owner node ξ ξ Assume that is the creator of which invokes the Publish operation Nodes know their parent in the hierarchy

23 Send request to the leader root

24 Continue up phase root Sets downward pointer while going up

25 Continue up phase root Sets downward pointer while going up

26 Root node found, stop up phase root

27 root Predecessor node ξ A successful Publish operation

28 Supporting a Move operation root Requesting node Predecessor node ξ Initially, nodes point downward to object owner (predecessor node) due to Publish operation Nodes know their parent in the hierarchy

29 Send request to leader node of the cluster upward in hierarchy root

30 Continue up phase until downward pointer found root Sets downward path while going up

31 Continue up phase root Sets downward path while going up

32 Continue up phase root Sets downward path while going up

33 Downward pointer found, start down phase root Discards path while going down

34 Continue down phase root Discards path while going down

35 Continue down phase root Discards path while going down

36 Predecessor reached, object is moved from node to node root Lookup is similar without change in the directory structure and only a read-only copy of the object is sent

37 Distributed Queue Analogy

38 Distributed Queue root u head tail u

39 Distributed Queue root u v head tail v u

40 Distributed Queue root u v w head tail v u w

41 Distributed Queue root v w head tail v u w

42 Distributed Queue root w head tail v u w

43 Results on Mesh Networks

44 Type-1 Mesh Decomposition 2-dimensional mesh

45 Type-1 Mesh Decomposition

46 Type-1 Mesh Decomposition

47 Type-2 Mesh Decomposition

48 Type-2 Mesh Decomposition

49 Decomposition for 2 3 x2 3 2-dimensional mesh (i+1,2) (i+1,1) (i,2) (i,1) Hierarchy levels

50 MultiBend Hierarchy Find a predecessor node via multi-bend paths for each leaf node u by visiting leaders of all the clusters that contain u from level 0 to the root level root u p(u) v p(v)

51 MultiBend Hierarchy (2) The hierarchy guarantees: (1) For any two nodes u,v, their multi-bend paths p(u) and p(v) meet at level min{h, log(dist(u,v))+2} root (2) length(p i (u)) is at most 2 i+3 u p(u) v p(v)

52 (Canonical) downward Paths root root u p(u) v p(v) u p(u) p(v) is a (canonical) downward path

53 Load Balancing Through a leader election procedure Every time we access the leader of a sub-mesh, we replace it with another leader chosen uniformly at random among its nodes The directory is updated appropriately by updating parent and child leaders Locking may needed in concurrent executions The update cost is low in comparison to the cost of serving requests This step is necessary to control congestion With fixed leader, edge congestion can be O(l), the number of requests If congestion requirement can be relaxed by a factor of ρ, the leader change is needed after every ρ requests

54 Analysis of MultiBend

55 Analysis on (move) Stretch Assume a sequential execution R of l+1 Move requests, where r 0 is an initial Publish request. A*(R) max 1 k h (S k -1) 2 k-1 A(R) σ h k=1 (Sk 1) 2 k+3 h... k Level r 0... r 0... r 0 r 0 r 0 r 1.. r 1 r 1 r 1 r 2 r 2 r 2.. r 2 r 2 r 2... r l-1 r l-1 r l-1 r 2.. r l... r l r l r l Thus, x u v y w request C(R)/C*(R) = σ h k=1 (Sk 1) 2 k+3 / max 1 k h (S k -1) 2 k-1 = 16 h max 1 k h (S k -1) 2 k-1 / max 1 k h (S k -1) 2 k-1 = O(log n)

56 Analysis on (Edge) Congestion A sub-path uses edge e with probability 2/m l P : set of paths from M 1 to M 2 or vice-versa C (e): Congestion caused by P on e M 2 E[C (e)] 2 P /m l B P /out(m 1 ) e M 1 out(m 1 ) 4m l C* B ==> E[C (e)] 8C* m l Assume M 1 is a type-1 submesh

57 Analysis on (Edge) Congestion (2) As M 1 at level (i,2) is always completely contained in M 2 at level (i+1,2) log n +2 levels E[C(e)] 8C*(log n + 2) Considering type-2 submeshes exactly one type-2 submesh between every two type-1 submeshes the type-2 submeshes may not be proper subset of type-1 submeshes 4 possible type-2 submesh choices (path may bend at most 2 times) Increases the load by a factor of 4 Thus, using standard Chernoff bound, C = O(C* log n), w.h.p.

58 d-dimensional Mesh

59 Extensions to d-dimensional mesh 2-dimesional decomposition can be directly generalized to a d-dimensional mesh Problem: the congestion become O(2 d log n) Another decomposition is used to control congestion in O(C* d 2 log n) and stretch O(d log n) We set appropriate λ and shift the type-1 submeshes by (j-1)λ nodes in each dimension to get type-j submeshes

60 Extensions to d-dimensional mesh (2) 3-dimensional mesh decomposition. Only 2 of the 3 dimensions are shown O(d)-types of submeshes on each level O(d) sub-levels in every level with type-1 submesh first and type-o(d) submesh last in the order

61 Summary First load balanced distributed directory protocol with both stretch and congestion O(log n) in 2-dimensional mesh In d-dimensional mesh, stretch O(d log n) and (edge) congestion O(d 2 log n) MultiBend is starvation-free and provides linearizability. Future work: extend the results to dynamic networks make it fault-tolerant

62 Thank you for your attention!

Distributed Transactional Memory for General Networks

Distributed Transactional Memory for General Networks Distributed Transactional Memory for General Networks Gokarna Sharma Costas Busch Srivathsan Srinivasagopalan Louisiana State University May 24, 2012 Distributed Transactional Memory Transactions run on

More information

Towards Load Balanced Distributed Transactional Memory

Towards Load Balanced Distributed Transactional Memory Towards Load Balanced Distributed Transactional Memory Gokarna Sharma and Costas Busch Department of Computer Science, Louisiana State University Baton Rouge, LA 70803, USA {gokarna,busch}@csc.lsu.edu

More information

Optimal Oblivious Path Selection on the Mesh

Optimal Oblivious Path Selection on the Mesh Optimal Oblivious Path Selection on the Mesh Costas Busch, Member, IEEE, Malik Magdon-Ismail, Member, IEEE, Jing Xi 1 Abstract In the oblivious path selection problem, each packet in the network independently

More information

Abstract of The Ballistic Protocol: Location-aware Distributed Cache Coherence in Metric-Space Networks by Ye Sun, Ph.D., Brown University, May 2006.

Abstract of The Ballistic Protocol: Location-aware Distributed Cache Coherence in Metric-Space Networks by Ye Sun, Ph.D., Brown University, May 2006. Abstract of The Ballistic Protocol: Location-aware Distributed Cache Coherence in Metric-Space Networks by Ye Sun, Ph.D., Brown University, May 2006. Distributed transactional memory (DTM), in contrast

More information

Oblivious Routing on Geometric Networks

Oblivious Routing on Geometric Networks Oblivious Routing on Geometric Networks Costas Busch, Malik Magdon-Ismail and Jing Xi {buschc,magdon,xij2}@cs.rpi.edu July 20, 2005. Outline Oblivious Routing: Background and Our Contribution The Algorithm:

More information

Self-Stabilizing Distributed Queuing

Self-Stabilizing Distributed Queuing Self-Stabilizing Distributed Queuing Srikanta Tirthapura Dept. of Electrical and Computer Engg. Iowa State University Ames, IA, USA, 50011 snt@iastate.edu Maurice Herlihy Computer Science Department Brown

More information

9 Distributed Data Management II Caching

9 Distributed Data Management II Caching 9 Distributed Data Management II Caching In this section we will study the approach of using caching for the management of data in distributed systems. Caching always tries to keep data at the place where

More information

Welcome to the course Algorithm Design

Welcome to the course Algorithm Design Welcome to the course Algorithm Design Summer Term 2011 Friedhelm Meyer auf der Heide Lecture 13, 15.7.2011 Friedhelm Meyer auf der Heide 1 Topics - Divide & conquer - Dynamic programming - Greedy Algorithms

More information

Distributed Coloring in. Kishore Kothapalli Department of Computer Science Johns Hopkins University Baltimore, MD USA

Distributed Coloring in. Kishore Kothapalli Department of Computer Science Johns Hopkins University Baltimore, MD USA Distributed Coloring in Bit Rounds Kishore Kothapalli Department of Computer Science Johns Hopkins University Baltimore, MD USA Vertex Coloring Proper coloring Not a Proper coloring 1 Coloring a Cycle

More information

Data Management in Networks: Experimental Evaluation of a Provably Good Strategy

Data Management in Networks: Experimental Evaluation of a Provably Good Strategy Data Management in Networks: Experimental Evaluation of a Provably Good Strategy Christof Krick Friedhelm Meyer auf der Heide Harald Räcke Berthold Vöcking Matthias Westermann Abstract This paper deals

More information

Distributed Algorithms 6.046J, Spring, 2015 Part 2. Nancy Lynch

Distributed Algorithms 6.046J, Spring, 2015 Part 2. Nancy Lynch Distributed Algorithms 6.046J, Spring, 2015 Part 2 Nancy Lynch 1 This Week Synchronous distributed algorithms: Leader Election Maximal Independent Set Breadth-First Spanning Trees Shortest Paths Trees

More information

A Comparison of Two Fully-Dynamic Delaunay Triangulation Methods

A Comparison of Two Fully-Dynamic Delaunay Triangulation Methods A Comparison of Two Fully-Dynamic Delaunay Triangulation Methods Michael D Adams Department of Electrical and Computer Engineering University of Victoria Victoria, BC, V8W 3P6, Canada Web: http://wwweceuvicca/

More information

7 Distributed Data Management II Caching

7 Distributed Data Management II Caching 7 Distributed Data Management II Caching In this section we will study the approach of using caching for the management of data in distributed systems. Caching always tries to keep data at the place where

More information

Efficient Bufferless Packet Switching on Trees and Leveled Networks

Efficient Bufferless Packet Switching on Trees and Leveled Networks Efficient Bufferless Packet Switching on Trees and Leveled Networks Costas Busch Malik Magdon-Ismail Marios Mavronicolas Abstract In bufferless networks the packets cannot be buffered while they are in

More information

Cache Coherency and Interconnection Networks

Cache Coherency and Interconnection Networks Cache Coherency and Interconnection Networks Cluster and Grid Computing Autumn Semester (2006-2007) 7 th August 2006 Umang Jain Kumar Puspesh Pankaj Jajoo Amar Kumar Dani 03CS3004 03CS3025 03CS3024 03CS304

More information

Abstract Data Structures IB Computer Science. Content developed by Dartford Grammar School Computer Science Department

Abstract Data Structures IB Computer Science. Content developed by Dartford Grammar School Computer Science Department Abstract Data Structures IB Computer Science Content developed by Dartford Grammar School Computer Science Department HL Topics 1-7, D1-4 1: System design 2: Computer Organisation 3: Networks 4: Computational

More information

Ferianakademie 2010 Course 2: Distance Problems: Theory and Praxis. Distance Labelings. Stepahn M. Günther. September 23, 2010

Ferianakademie 2010 Course 2: Distance Problems: Theory and Praxis. Distance Labelings. Stepahn M. Günther. September 23, 2010 Ferianakademie 00 Course : Distance Problems: Theory and Praxis Distance Labelings Stepahn M. Günther September, 00 Abstract Distance labels allow to infer the shortest distance between any two vertices

More information

Lecture 9: (Semi-)bandits and experts with linear costs (part I)

Lecture 9: (Semi-)bandits and experts with linear costs (part I) CMSC 858G: Bandits, Experts and Games 11/03/16 Lecture 9: (Semi-)bandits and experts with linear costs (part I) Instructor: Alex Slivkins Scribed by: Amr Sharaf In this lecture, we will study bandit problems

More information

ADHOC SYSTEMSS ABSTRACT. the system. The diagnosis strategy. is an initiator of. can in the hierarchy. paper include. this. than.

ADHOC SYSTEMSS ABSTRACT. the system. The diagnosis strategy. is an initiator of. can in the hierarchy. paper include. this. than. Journal of Theoretical and Applied Information Technology 2005-2007 JATIT. All rights reserved. www.jatit.org A HIERARCHICAL APPROACH TO FAULT DIAGNOSIS IN LARGE S CALE SELF-DIAGNOSABLE WIRELESS ADHOC

More information

GIAN Course on Distributed Network Algorithms. Distributed Objects

GIAN Course on Distributed Network Algorithms. Distributed Objects GIAN Course on Distributed Network Algorithms Distributed Objects Stefan Schmid @ T-Labs, 2011 GIAN Course on Distributed Network Algorithms Distributed Objects How to access and manipulate data in an

More information

Material You Need to Know

Material You Need to Know Review Quiz 2 Material You Need to Know Normalization Storage and Disk File Layout Indexing B-trees and B+ Trees Extensible Hashing Linear Hashing Decomposition Goals: Lossless Joins, Dependency preservation

More information

Direct Addressing Hash table: Collision resolution how handle collisions Hash Functions:

Direct Addressing Hash table: Collision resolution how handle collisions Hash Functions: Direct Addressing - key is index into array => O(1) lookup Hash table: -hash function maps key to index in table -if universe of keys > # table entries then hash functions collision are guaranteed => need

More information

Network-on-chip (NOC) Topologies

Network-on-chip (NOC) Topologies Network-on-chip (NOC) Topologies 1 Network Topology Static arrangement of channels and nodes in an interconnection network The roads over which packets travel Topology chosen based on cost and performance

More information

F. THOMSON LEIGHTON INTRODUCTION TO PARALLEL ALGORITHMS AND ARCHITECTURES: ARRAYS TREES HYPERCUBES

F. THOMSON LEIGHTON INTRODUCTION TO PARALLEL ALGORITHMS AND ARCHITECTURES: ARRAYS TREES HYPERCUBES F. THOMSON LEIGHTON INTRODUCTION TO PARALLEL ALGORITHMS AND ARCHITECTURES: ARRAYS TREES HYPERCUBES MORGAN KAUFMANN PUBLISHERS SAN MATEO, CALIFORNIA Contents Preface Organization of the Material Teaching

More information

CARNEGIE MELLON UNIVERSITY DEPT. OF COMPUTER SCIENCE DATABASE APPLICATIONS

CARNEGIE MELLON UNIVERSITY DEPT. OF COMPUTER SCIENCE DATABASE APPLICATIONS CARNEGIE MELLON UNIVERSITY DEPT. OF COMPUTER SCIENCE 15-415 DATABASE APPLICATIONS C. Faloutsos Indexing and Hashing 15-415 Database Applications http://www.cs.cmu.edu/~christos/courses/dbms.s00/ general

More information

Fast and Lock-Free Concurrent Priority Queues for Multi-Thread Systems

Fast and Lock-Free Concurrent Priority Queues for Multi-Thread Systems Fast and Lock-Free Concurrent Priority Queues for Multi-Thread Systems Håkan Sundell Philippas Tsigas Outline Synchronization Methods Priority Queues Concurrent Priority Queues Lock-Free Algorithm: Problems

More information

Lecture 5 Using Data Structures to Improve Dijkstra s Algorithm. (AM&O Sections and Appendix A)

Lecture 5 Using Data Structures to Improve Dijkstra s Algorithm. (AM&O Sections and Appendix A) Lecture Using Data Structures to Improve Dijkstra s Algorithm (AM&O Sections 4.6 4.8 and Appendix A) Manipulating the Data in Dijkstra s Algorithm The bottleneck operation in Dijkstra s Algorithm is that

More information

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006 Operating Systems Comprehensive Exam Spring 2006 Student ID # 3/16/2006 You must complete all of part I (60%) You must complete two of the three sections in part II (20% each) In Part I, circle or select

More information

Bottleneck Routing Games on Grids. Costas Busch Rajgopal Kannan Alfred Samman Department of Computer Science Louisiana State University

Bottleneck Routing Games on Grids. Costas Busch Rajgopal Kannan Alfred Samman Department of Computer Science Louisiana State University Bottleneck Routing Games on Grids ostas Busch Rajgopal Kannan Alfred Samman Department of omputer Science Louisiana State University 1 Talk Outline Introduction Basic Game hannel Game xtensions 2 2-d Grid:

More information

Distributed Algorithms 6.046J, Spring, Nancy Lynch

Distributed Algorithms 6.046J, Spring, Nancy Lynch Distributed Algorithms 6.046J, Spring, 205 Nancy Lynch What are Distributed Algorithms? Algorithms that run on networked processors, or on multiprocessors that share memory. They solve many kinds of problems:

More information

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University CS 571 Operating Systems Midterm Review Angelos Stavrou, George Mason University Class Midterm: Grading 2 Grading Midterm: 25% Theory Part 60% (1h 30m) Programming Part 40% (1h) Theory Part (Closed Books):

More information

CSE 613: Parallel Programming. Lecture 11 ( Graph Algorithms: Connected Components )

CSE 613: Parallel Programming. Lecture 11 ( Graph Algorithms: Connected Components ) CSE 61: Parallel Programming Lecture ( Graph Algorithms: Connected Components ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 01 Graph Connectivity 1 1 1 6 5 Connected Components:

More information

GIAN Course on Distributed Network Algorithms. Spanning Tree Constructions

GIAN Course on Distributed Network Algorithms. Spanning Tree Constructions GIAN Course on Distributed Network Algorithms Spanning Tree Constructions Stefan Schmid @ T-Labs, 2011 Spanning Trees Attactive infrastructure : sparse subgraph ( loop-free backbone ) connecting all nodes.

More information

Operations on Heap Tree The major operations required to be performed on a heap tree are Insertion, Deletion, and Merging.

Operations on Heap Tree The major operations required to be performed on a heap tree are Insertion, Deletion, and Merging. Priority Queue, Heap and Heap Sort In this time, we will study Priority queue, heap and heap sort. Heap is a data structure, which permits one to insert elements into a set and also to find the largest

More information

Computational Geometry

Computational Geometry Windowing queries Windowing Windowing queries Zoom in; re-center and zoom in; select by outlining Windowing Windowing queries Windowing Windowing queries Given a set of n axis-parallel line segments, preprocess

More information

Lecture 32. No computer use today. Reminders: Homework 11 is due today. Project 6 is due next Friday. Questions?

Lecture 32. No computer use today. Reminders: Homework 11 is due today. Project 6 is due next Friday. Questions? Lecture 32 No computer use today. Reminders: Homework 11 is due today. Project 6 is due next Friday. Questions? Friday, April 1 CS 215 Fundamentals of Programming II - Lecture 32 1 Outline Introduction

More information

Scheduling Transactions in Replicated Distributed Transactional Memory

Scheduling Transactions in Replicated Distributed Transactional Memory Scheduling Transactions in Replicated Distributed Transactional Memory Junwhan Kim and Binoy Ravindran Virginia Tech USA {junwhan,binoy}@vt.edu CCGrid 2013 Concurrency control on chip multiprocessors significantly

More information

Distributed Systems. Basic Algorithms. Rik Sarkar. University of Edinburgh 2015/2016

Distributed Systems. Basic Algorithms. Rik Sarkar. University of Edinburgh 2015/2016 Distributed Systems Basic Algorithms Rik Sarkar University of Edinburgh 2015/2016 Distributed ComputaEon Ref: NL How to send messages to all nodes efficiently How to compute sums of values at all nodes

More information

4.1 COMPUTATIONAL THINKING AND PROBLEM-SOLVING

4.1 COMPUTATIONAL THINKING AND PROBLEM-SOLVING 4.1 COMPUTATIONAL THINKING AND PROBLEM-SOLVING 4.1.2 ALGORITHMS ALGORITHM An Algorithm is a procedure or formula for solving a problem. It is a step-by-step set of operations to be performed. It is almost

More information

Organizing Spatial Data

Organizing Spatial Data Organizing Spatial Data Spatial data records include a sense of location as an attribute. Typically location is represented by coordinate data (in 2D or 3D). 1 If we are to search spatial data using the

More information

CSE 241 Class 17. Jeremy Buhler. October 28, Ordered collections supported both, plus total ordering operations (pred and succ)

CSE 241 Class 17. Jeremy Buhler. October 28, Ordered collections supported both, plus total ordering operations (pred and succ) CSE 241 Class 17 Jeremy Buhler October 28, 2015 And now for something completely different! 1 A New Abstract Data Type So far, we ve described ordered and unordered collections. Unordered collections didn

More information

Distributed Systems. Basic Algorithms. Rik Sarkar. University of Edinburgh 2016/2017

Distributed Systems. Basic Algorithms. Rik Sarkar. University of Edinburgh 2016/2017 Distributed Systems Basic Algorithms Rik Sarkar University of Edinburgh 2016/2017 Distributed ComputaEon Ref: NL How to send messages to all nodes efficiently How to compute sums of values at all nodes

More information

Chapter 17 Indexing Structures for Files and Physical Database Design

Chapter 17 Indexing Structures for Files and Physical Database Design Chapter 17 Indexing Structures for Files and Physical Database Design We assume that a file already exists with some primary organization unordered, ordered or hash. The index provides alternate ways to

More information

SE Assignment III. 1. List and explain primitive symbols used for constructing DFDs. Illustrate the use of these symbols with the help of an example.

SE Assignment III. 1. List and explain primitive symbols used for constructing DFDs. Illustrate the use of these symbols with the help of an example. SE Assignment III 1. List and explain primitive symbols used for constructing DFDs. Illustrate the use of these symbols with the help of an example. There are essentially 5 different types of symbols used

More information

The Round Complexity of Distributed Sorting

The Round Complexity of Distributed Sorting The Round Complexity of Distributed Sorting by Boaz Patt-Shamir Marat Teplitsky Tel Aviv University 1 Motivation Distributed sorting Infrastructure is more and more distributed Cloud Smartphones 2 CONGEST

More information

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl Graph Theory ICT Theory Excerpt from various sources by Robert Pergl What can graphs model? Cost of wiring electronic components together. Shortest route between two cities. Finding the shortest distance

More information

Chapter 6 Heapsort 1

Chapter 6 Heapsort 1 Chapter 6 Heapsort 1 Introduce Heap About this lecture Shape Property and Heap Property Heap Operations Heapsort: Use Heap to Sort Fixing heap property for all nodes Use Array to represent Heap Introduce

More information

Arvind Krishnamurthy Fall 2003

Arvind Krishnamurthy Fall 2003 Overlay Networks Arvind Krishnamurthy Fall 003 Internet Routing Internet routing is inefficient: Does not always pick the lowest latency paths Does not always pick paths with low drop rates Experimental

More information

1 The comparison of QC, SC and LIN

1 The comparison of QC, SC and LIN Com S 611 Spring Semester 2009 Algorithms for Multiprocessor Synchronization Lecture 5: Tuesday, 3rd February 2009 Instructor: Soma Chaudhuri Scribe: Jianrong Dong 1 The comparison of QC, SC and LIN Pi

More information

Interconnection topologies (cont.) [ ] In meshes and hypercubes, the average distance increases with the dth root of N.

Interconnection topologies (cont.) [ ] In meshes and hypercubes, the average distance increases with the dth root of N. Interconnection topologies (cont.) [ 10.4.4] In meshes and hypercubes, the average distance increases with the dth root of N. In a tree, the average distance grows only logarithmically. A simple tree structure,

More information

Lecture 9: Group Communication Operations. Shantanu Dutt ECE Dept. UIC

Lecture 9: Group Communication Operations. Shantanu Dutt ECE Dept. UIC Lecture 9: Group Communication Operations Shantanu Dutt ECE Dept. UIC Acknowledgement Adapted from Chapter 4 slides of the text, by A. Grama w/ a few changes, augmentations and corrections Topic Overview

More information

Bigtable: A Distributed Storage System for Structured Data By Fay Chang, et al. OSDI Presented by Xiang Gao

Bigtable: A Distributed Storage System for Structured Data By Fay Chang, et al. OSDI Presented by Xiang Gao Bigtable: A Distributed Storage System for Structured Data By Fay Chang, et al. OSDI 2006 Presented by Xiang Gao 2014-11-05 Outline Motivation Data Model APIs Building Blocks Implementation Refinement

More information

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs Computational Optimization ISE 407 Lecture 16 Dr. Ted Ralphs ISE 407 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms in

More information

Patterns for! Parallel Programming II!

Patterns for! Parallel Programming II! Lecture 4! Patterns for! Parallel Programming II! John Cavazos! Dept of Computer & Information Sciences! University of Delaware! www.cis.udel.edu/~cavazos/cisc879! Task Decomposition Also known as functional

More information

Lecture 4: Principles of Parallel Algorithm Design (part 4)

Lecture 4: Principles of Parallel Algorithm Design (part 4) Lecture 4: Principles of Parallel Algorithm Design (part 4) 1 Mapping Technique for Load Balancing Minimize execution time Reduce overheads of execution Sources of overheads: Inter-process interaction

More information

Distributed Meta-data Servers: Architecture and Design. Sarah Sharafkandi David H.C. Du DISC

Distributed Meta-data Servers: Architecture and Design. Sarah Sharafkandi David H.C. Du DISC Distributed Meta-data Servers: Architecture and Design Sarah Sharafkandi David H.C. Du DISC 5/22/07 1 Outline Meta-Data Server (MDS) functions Why a distributed and global Architecture? Problem description

More information

Data Structures and Algorithms (DSA) Course 9 Lists / Graphs / Trees. Iulian Năstac

Data Structures and Algorithms (DSA) Course 9 Lists / Graphs / Trees. Iulian Năstac Data Structures and Algorithms (DSA) Course 9 Lists / Graphs / Trees Iulian Năstac Recapitulation It is considered the following type: typedef struct nod { ; struct nod *next; } NOD; 2 Circular

More information

Direct Routing: Algorithms and Complexity

Direct Routing: Algorithms and Complexity Direct Routing: Algorithms and Complexity Costas Busch Malik Magdon-Ismail Marios Mavronicolas Paul Spirakis December 13, 2004 Abstract Direct routing is the special case of bufferless routing where N

More information

THE EULER TOUR TECHNIQUE: EVALUATION OF TREE FUNCTIONS

THE EULER TOUR TECHNIQUE: EVALUATION OF TREE FUNCTIONS PARALLEL AND DISTRIBUTED ALGORITHMS BY DEBDEEP MUKHOPADHYAY AND ABHISHEK SOMANI http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/palgo/index.htm THE EULER TOUR TECHNIQUE: EVALUATION OF TREE FUNCTIONS 2

More information

l Heaps very popular abstract data structure, where each object has a key value (the priority), and the operations are:

l Heaps very popular abstract data structure, where each object has a key value (the priority), and the operations are: DDS-Heaps 1 Heaps - basics l Heaps very popular abstract data structure, where each object has a key value (the priority), and the operations are: l insert an object, find the object of minimum key (find

More information

BigTable: A Distributed Storage System for Structured Data (2006) Slides adapted by Tyler Davis

BigTable: A Distributed Storage System for Structured Data (2006) Slides adapted by Tyler Davis BigTable: A Distributed Storage System for Structured Data (2006) Slides adapted by Tyler Davis Motivation Lots of (semi-)structured data at Google URLs: Contents, crawl metadata, links, anchors, pagerank,

More information

Operating Systems. Week 9 Recitation: Exam 2 Preview Review of Exam 2, Spring Paul Krzyzanowski. Rutgers University.

Operating Systems. Week 9 Recitation: Exam 2 Preview Review of Exam 2, Spring Paul Krzyzanowski. Rutgers University. Operating Systems Week 9 Recitation: Exam 2 Preview Review of Exam 2, Spring 2014 Paul Krzyzanowski Rutgers University Spring 2015 March 27, 2015 2015 Paul Krzyzanowski 1 Exam 2 2012 Question 2a One of

More information

GIAN Course on Distributed Network Algorithms. Spanning Tree Constructions

GIAN Course on Distributed Network Algorithms. Spanning Tree Constructions GIAN Course on Distributed Network Algorithms Spanning Tree Constructions Stefan Schmid @ T-Labs, 2011 Spanning Trees Attactive infrastructure : sparse subgraph ( loop-free backbone ) connecting all nodes.

More information

Disk Scheduling COMPSCI 386

Disk Scheduling COMPSCI 386 Disk Scheduling COMPSCI 386 Topics Disk Structure (9.1 9.2) Disk Scheduling (9.4) Allocation Methods (11.4) Free Space Management (11.5) Hard Disk Platter diameter ranges from 1.8 to 3.5 inches. Both sides

More information

Flat Parallelization. V. Aksenov, ITMO University P. Kuznetsov, ParisTech. July 4, / 53

Flat Parallelization. V. Aksenov, ITMO University P. Kuznetsov, ParisTech. July 4, / 53 Flat Parallelization V. Aksenov, ITMO University P. Kuznetsov, ParisTech July 4, 2017 1 / 53 Outline Flat-combining PRAM and Flat parallelization PRAM binary heap with Flat parallelization ExtractMin Insert

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees 1 Minimum- Spanning Trees 1. Concrete example: computer connection. Definition of a Minimum- Spanning Tree Concrete example Imagine: You wish to connect all the computers in an office

More information

8 Supervised Overlay Networks

8 Supervised Overlay Networks 8 Supervised Overlay Networks Every application run on multiple machines needs a mechanism that allows the machines to exchange information. An easy way of solving this problem is that every machine knows

More information

Algorithm 23 works. Instead of a spanning tree, one can use routing.

Algorithm 23 works. Instead of a spanning tree, one can use routing. Chapter 5 Shared Objects 5.1 Introduction Assume that there is a common resource (e.g. a common variable or data structure), which different nodes in a network need to access from time to time. If the

More information

Dynamic Access Binary Search Trees

Dynamic Access Binary Search Trees Dynamic Access Binary Search Trees 1 * are self-adjusting binary search trees in which the shape of the tree is changed based upon the accesses performed upon the elements. When an element of a splay tree

More information

Self Stabilization. CS553 Distributed Algorithms Prof. Ajay Kshemkalyani. by Islam Ismailov & Mohamed M. Ali

Self Stabilization. CS553 Distributed Algorithms Prof. Ajay Kshemkalyani. by Islam Ismailov & Mohamed M. Ali Self Stabilization CS553 Distributed Algorithms Prof. Ajay Kshemkalyani by Islam Ismailov & Mohamed M. Ali Introduction There is a possibility for a distributed system to go into an illegitimate state,

More information

B-Trees. Version of October 2, B-Trees Version of October 2, / 22

B-Trees. Version of October 2, B-Trees Version of October 2, / 22 B-Trees Version of October 2, 2014 B-Trees Version of October 2, 2014 1 / 22 Motivation An AVL tree can be an excellent data structure for implementing dictionary search, insertion and deletion Each operation

More information

l So unlike the search trees, there are neither arbitrary find operations nor arbitrary delete operations possible.

l So unlike the search trees, there are neither arbitrary find operations nor arbitrary delete operations possible. DDS-Heaps 1 Heaps - basics l Heaps an abstract structure where each object has a key value (the priority), and the operations are: insert an object, find the object of minimum key (find min), and delete

More information

Abstract Relaxed balancing has become a commonly used concept in the design of concurrent search tree algorithms. The idea of relaxed balancing is to

Abstract Relaxed balancing has become a commonly used concept in the design of concurrent search tree algorithms. The idea of relaxed balancing is to The Performance of Concurrent Red-Black Tree Algorithms Institut fur Informatik Report 5 Sabine Hanke Institut fur Informatik, Universitat Freiburg Am Flughafen 7, 79 Freiburg, Germany Email: hanke@informatik.uni-freiburg.de

More information

CSCI2100B Data Structures Trees

CSCI2100B Data Structures Trees CSCI2100B Data Structures Trees Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Introduction General Tree

More information

1 Digraphs. Definition 1

1 Digraphs. Definition 1 1 Digraphs Definition 1 Adigraphordirected graphgisatriplecomprisedofavertex set V(G), edge set E(G), and a function assigning each edge an ordered pair of vertices (tail, head); these vertices together

More information

Parallel Graph Algorithms

Parallel Graph Algorithms Parallel Graph Algorithms Design and Analysis of Parallel Algorithms 5DV050/VT3 Part I Introduction Overview Graphs definitions & representations Minimal Spanning Tree (MST) Prim s algorithm Single Source

More information

On Application of Structural Decomposition for Process Model Abstraction. Artem Polyvyanyy Sergey Smirnov Mathias Weske

On Application of Structural Decomposition for Process Model Abstraction. Artem Polyvyanyy Sergey Smirnov Mathias Weske On Application of Structural Decomposition for Process Model Abstraction Artem Polyvyanyy Sergey Smirnov Mathias Weske BPSC 2009 24 March 2009 Motivation 2 Research project with AOK Brandenburg Goal: detailed

More information

THE EULER TOUR TECHNIQUE: EVALUATION OF TREE FUNCTIONS

THE EULER TOUR TECHNIQUE: EVALUATION OF TREE FUNCTIONS PARALLEL AND DISTRIBUTED ALGORITHMS BY DEBDEEP MUKHOPADHYAY AND ABHISHEK SOMANI http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/palgo/index.htm THE EULER TOUR TECHNIQUE: EVALUATION OF TREE FUNCTIONS 2

More information

CSE 530A. B+ Trees. Washington University Fall 2013

CSE 530A. B+ Trees. Washington University Fall 2013 CSE 530A B+ Trees Washington University Fall 2013 B Trees A B tree is an ordered (non-binary) tree where the internal nodes can have a varying number of child nodes (within some range) B Trees When a key

More information

Approximation and Heuristic Algorithms for Minimum Delay Application-Layer Multicast Trees

Approximation and Heuristic Algorithms for Minimum Delay Application-Layer Multicast Trees THE IBY AND ALADAR FLEISCHMAN FACULTY OF ENGINEERING Approximation and Heuristic Algorithms for Minimum Delay Application-Layer Multicast Trees A thesis submitted toward the degree of Master of Science

More information

A New Approach to the Dynamic Maintenance of Maximal Points in a Plane*

A New Approach to the Dynamic Maintenance of Maximal Points in a Plane* Discrete Comput Geom 5:365-374 (1990) 1990 Springer-Verlag New York~Inc.~ A New Approach to the Dynamic Maintenance of Maximal Points in a Plane* Greg N. Frederickson and Susan Rodger Department of Computer

More information

COMP Parallel Computing. PRAM (3) PRAM algorithm design techniques

COMP Parallel Computing. PRAM (3) PRAM algorithm design techniques COMP 633 - Parallel Computing Lecture 4 August 30, 2018 PRAM algorithm design techniques Reading for next class PRAM handout section 5 1 Topics Parallel connected components algorithm representation of

More information

Sorting and Searching

Sorting and Searching Sorting and Searching Lecture 2: Priority Queues, Heaps, and Heapsort Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 1 / 24 Priority Queue: Motivating Example 3 jobs have been submitted

More information

B + -Trees. Fundamentals of Database Systems Elmasri/Navathe Chapter 6 (6.3) Database System Concepts Silberschatz/Korth/Sudarshan Chapter 11 (11.

B + -Trees. Fundamentals of Database Systems Elmasri/Navathe Chapter 6 (6.3) Database System Concepts Silberschatz/Korth/Sudarshan Chapter 11 (11. B + -Trees Fundamentals of Database Systems Elmasri/Navathe Chapter 6 (6.3) Database System Concepts Silberschatz/Korth/Sudarshan Chapter 11 (11.3) The Art of Computer Programming Sorting and Searching,

More information

Direct Routing: Algorithms and Complexity

Direct Routing: Algorithms and Complexity Direct Routing: Algorithms and Complexity Costas Busch, RPI Malik Magdon-Ismail, RPI Marios Mavronicolas, Univ. Cyprus Paul Spirakis, Univ. Patras 1 Outline 1. Direct Routing. 2. Direct Routing is Hard.

More information

Friday Four Square! 4:15PM, Outside Gates

Friday Four Square! 4:15PM, Outside Gates Binary Search Trees Friday Four Square! 4:15PM, Outside Gates Implementing Set On Monday and Wednesday, we saw how to implement the Map and Lexicon, respectively. Let's now turn our attention to the Set.

More information

Multi-way Search Trees

Multi-way Search Trees Multi-way Search Trees Kuan-Yu Chen ( 陳冠宇 ) 2018/10/24 @ TR-212, NTUST Review Red-Black Trees Splay Trees Huffman Trees 2 Multi-way Search Trees. Every node in a binary search tree contains one value and

More information

Graph Algorithms. Many problems in networks can be modeled as graph problems.

Graph Algorithms. Many problems in networks can be modeled as graph problems. Graph Algorithms Many problems in networks can be modeled as graph problems. - The topology of a distributed system is a graph. - Routing table computation uses the shortest path algorithm - Efficient

More information

Files. File Structure. File Systems. Structure Terms. File Management System. Chapter 12 File Management 12/6/2018

Files. File Structure. File Systems. Structure Terms. File Management System. Chapter 12 File Management 12/6/2018 Operating Systems: Internals and Design Principles Chapter 2 Management Ninth Edition By William Stallings s collections created by users The System is one of the most important parts of the OS to a user

More information

Distributed Systems Final Exam

Distributed Systems Final Exam 15-440 Distributed Systems Final Exam Name: Andrew: ID December 12, 2011 Please write your name and Andrew ID above before starting this exam. This exam has 14 pages, including this title page. Please

More information

quiz heapsort intuition overview Is an algorithm with a worst-case time complexity in O(n) data structures and algorithms lecture 3

quiz heapsort intuition overview Is an algorithm with a worst-case time complexity in O(n) data structures and algorithms lecture 3 quiz data structures and algorithms 2018 09 10 lecture 3 Is an algorithm with a worst-case time complexity in O(n) always faster than an algorithm with a worst-case time complexity in O(n 2 )? intuition

More information

Chapter 8: Data Abstractions

Chapter 8: Data Abstractions Chapter 8: Data Abstractions Computer Science: An Overview Tenth Edition by J. Glenn Brookshear Presentation files modified by Farn Wang Copyright 28 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

More information

Λέων-Χαράλαμπος Σταματάρης

Λέων-Χαράλαμπος Σταματάρης Λέων-Χαράλαμπος Σταματάρης INTRODUCTION Two classical problems of information dissemination in computer networks: The broadcasting problem: Distributing a particular message from a distinguished source

More information

L3S Research Center, University of Hannover

L3S Research Center, University of Hannover , University of Hannover Dynamics of Wolf-Tilo Balke and Wolf Siberski 21.11.2007 *Original slides provided by S. Rieche, H. Niedermayer, S. Götz, K. Wehrle (University of Tübingen) and A. Datta, K. Aberer

More information

8. Write an example for expression tree. [A/M 10] (A+B)*((C-D)/(E^F))

8. Write an example for expression tree. [A/M 10] (A+B)*((C-D)/(E^F)) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING EC6301 OBJECT ORIENTED PROGRAMMING AND DATA STRUCTURES UNIT IV NONLINEAR DATA STRUCTURES Part A 1. Define Tree [N/D 08]

More information

Parallel Systems Prof. James L. Frankel Harvard University. Version of 6:50 PM 4-Dec-2018 Copyright 2018, 2017 James L. Frankel. All rights reserved.

Parallel Systems Prof. James L. Frankel Harvard University. Version of 6:50 PM 4-Dec-2018 Copyright 2018, 2017 James L. Frankel. All rights reserved. Parallel Systems Prof. James L. Frankel Harvard University Version of 6:50 PM 4-Dec-2018 Copyright 2018, 2017 James L. Frankel. All rights reserved. Architectures SISD (Single Instruction, Single Data)

More information

8. Binary Search Tree

8. Binary Search Tree 8 Binary Search Tree Searching Basic Search Sequential Search : Unordered Lists Binary Search : Ordered Lists Tree Search Binary Search Tree Balanced Search Trees (Skipped) Sequential Search int Seq-Search

More information

Sorting and Searching

Sorting and Searching Sorting and Searching Lecture 2: Priority Queues, Heaps, and Heapsort Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 1 / 24 Priority Queue: Motivating Example 3 jobs have been submitted

More information

08 Distributed Hash Tables

08 Distributed Hash Tables 08 Distributed Hash Tables 2/59 Chord Lookup Algorithm Properties Interface: lookup(key) IP address Efficient: O(log N) messages per lookup N is the total number of servers Scalable: O(log N) state per

More information

Cpt S 122 Data Structures. Data Structures Trees

Cpt S 122 Data Structures. Data Structures Trees Cpt S 122 Data Structures Data Structures Trees Nirmalya Roy School of Electrical Engineering and Computer Science Washington State University Motivation Trees are one of the most important and extensively

More information