ASIP LDPC DESIGN FOR AD AND AC

Size: px
Start display at page:

Download "ASIP LDPC DESIGN FOR AD AND AC"

Transcription

1 ASIP LDPC DESIGN FOR AD AND AC MENG LI CSI DEPARTMENT 3/NOV/2014 TELECOM BRETAGNE BREST FRANCE

2 OUTLINES 1. Introduction of IMEC and CSI department 2. ASIP design flow 3. Template of the high speed LDPC decoding processor 4. Instantiation for the ad and ac standard 2

3 BRIEF INTRODUCTION OF IMEC in 2013: 2086 people 383 residents 289 PhD students 71 nationalities 3

4 Strong expertise and track record in high-speed and low-power architectures and circuits for multi-gbps communication DIGITAL BB LOW POWER ARCHITECTURES SYSTEM AND ALGORITHMS DEMONSTRATION AND TEST RF AND ANALOG IC AND MODULE DESIGN IMEC 2013 CONFIDENTIAL

5 Energy efficiency 5 to 10X higher energy efficiency DIGITAL CASE: IMEC BASEBAND CORES PROGRAMMABILITY WITH HIGH ENERGY EFFICIENCY ASICs BLO X BLO X BLO X High duty cycle and/or complex function ~ specialized data (co)-processor BOADRE S Low duty cycle and/or simple function ~ power efficient DSP DSP Flexibility

6 FULL MODELING IN TARGET COMMERCIAL TOOL FLOW Typical users: ASIC/SoC design teams

7 HIGH SPEED LDPC ASIP: TEMPLATE Configurable memory Compiled firmware, for given set of modes, compaction can be done through synthesis tool MIN SIGN 8 parallel slices Cross-slice operations OUTPUT Syndrome detection

8 INSTRUCTION SET AND MAPPING 8

9 HIGH SPEED LDPC ASIP: TEMPLATE Configurable memory Available instances MIN SIGN ad Horizontal layered decoding ac Check node processing using normalized/offset min-sum Flexible quantization scheme Multiple slices implementation OUTPUT Offset permutation (only rotation during read of data) Early stop & Max iteration configuration Target Toolsuite based Syndrome detection Assembly programmable

10 Number of slices Quantization LLR Max iteration number Early stop Check node algorithm INSTANTIATION AND IMPLEMENTATION ad 8 slices flexibility Template/ processor High throughput instances ac 8 slices ac 4 slices CLAUDE DESSET, MENG LI - CSI 10

11 BER/PER AD REQUIREMENTS Decoder input rate Modes MCS 0-24 Block size Up to Gbps (MCS 22-24) 672bits Coding rates 1/2,5/8,3/4,13/16 Quantization Min 4 bits R3/4 QPSK (MCS8) BER Performance with maximum iteration number 5 SC Multi indoor channel BER floating offset min-sum BER Q5 offset min-sum BER Q4 offset min-sum PER floating offset min-sum PER Q5 offset min-sum PER Q4 offset min-sum E b /N 0 (db) 11

12 Feature Algorithm ad Quantization AD RESULTS FACT SHEET Value Normalized/Offset Min-sum, layered decoding APP: 7/6-bits & UPD: 5/4-bits Parallelization Check-node FUs: 42 Bit-node FUs: 42x8 (half layer in parallel) Functional support Technology 1/2,5/8,3/4,13/16 (all ad modes) 28HPM physical synthesis Clock [MHz] 440 Quantization Average #cycles/layer 4 Throughput [Gbps for 1 iter for 1 core] Latency [ns] Area [sqmm] Power [mw] Energy Efficiency [pj/bit/it] 2 cores + 3 iterations HW/SW early stop 4 bits 25.8 (R=13/16) 0.269(4bits) [core-level] QPSK R13/16 [core-level]; [core-level]; [wrapper-level] Parallel layer decoding Early stop Back-rotation 12

13 SOA COMPARISON Berkeley[1] EPFL[2] Imec s[3] Imec s Decoding algo. Two phases layered layered layered LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8 Pipeline scheme frame level X half layer half layer Early stop YES NO NO YES Number of cores Single Single Single Multi-cores ASIC vs. ASIP ASIC ASIC ASIC ASIP Tech node[nm] G 28HPM Working freq. [MHz] Throughput [Gbps] Area [mm^2] Energy eff.[pj/bit/iter] 6.18 N/A [1] 2011, LDPC decoder architecture for high-data rate personal-area networks, Weiner, M., ect. from UC Berkeley [2] 2013, A parallelized layered QC-LDPC decoder for IEEE ad, Alexios B., ect. from EPFL [3] 2013, AN AREA AND ENERGY EFFICIENT HALF-ROW-PARALLELED LAYER LDPC DECODER FOR THE AD STANDARD, Meng L. from IMEC 13

14 802.11AC REQUIREMENTS Decoder input rate Up to 6.93 Gbps (8 spatial streams, 160 MHz, 256- QAM) Modes MCS 0-9 Block size Coding rates Quantization 648, 1296 or 1944bits 4 coding rates Min 5 bits 14

15 MAPPING TO AC 8 slices solution 4 slices solution Average #cycles/iter: 74 Average #cycles/iter: slices solution is more efficient than for low coding rates 15

16 Feature Algorithm Quantization Parallelization Technology ac Clock [MHz] AC RESULTS FACT SHEET Value Normalized/Offset Min-sum, layered decoding APP: 7-bits & UPD: 5-bits Check-node FUs: Z=81/54/27 Bit-node FUs: Zx8 or Zx4 orzx2 28HPM physical synthesis 500MHz Instances 8 slices 4 slices Average #cycles/layer 7 10 Area [sqmm] Throughput [Gbps for1iter (R5/6)~13.1(R1/2) 23.7(R5/6)~8.4(R1/2) Latency [ns] Energy Efficiency [pj/bit/it] Functional support all ac modes (1/2,2/3,3/4,5/6) Functional completeness Parallel layer decoding Back-rotation Demapper (R5/6,Z81) 16

17 SOA COMPARISON Zurich[1] Waseda[2] Rice[3] Imec s Decoding algo. layered layered Multi-layered layered LLR quan. 5 bits 5 bits 5 bits 5 bits Parallelism Z Z*2 Z*4 Z*4 Pipeline scheme NO NO 1/12 layer 1/6 layer Early stop NO NO NO NO ASIC vs. ASIP ASIC ASIC ASIC ASIP Tech node[nm] HPM Size Z & rate Z=81&R=5/6 Z=48&R=? Z=81 & R=5/6 Z=81 & R=5/6 Working freq. [MHz] Throughput [Mbps] it 2370@10it Area [mm^2] 1.77* 3.36* Energy eff.[pj/bit/iter] 15.8* 10.9* N/A 7.1 * tape out results [1] 2010, A 15.8 pj/bit/iter quasi-cyclic LDPC decoder for IEEE n in 90 nm CMOS, Roth. C., etc. from ETH Zurich [2] 2011, A 115mW 1Gbps QC-LDPC decoder ASIC for WiMAX in 65nm CMOS, Xiao P., etc. from UC Waseda [3] 2011, Multi-layer parallel decoding algorithm and VLSI architecture for quasi-cyclic LDPC codes, Yang S., ect. from UC Rice 17

18 802.11AC REQUIREMENTS 8 slices solution 4 slices solution Multi-layer decoding 4 slices solution 18

19 Heading for ultra-high throughput FEC

20

Cost efficient FPGA implementations of Min- Sum and Self-Corrected-Min-Sum decoders

Cost efficient FPGA implementations of Min- Sum and Self-Corrected-Min-Sum decoders Cost efficient FPGA implementations of Min- Sum and Self-Corrected-Min-Sum decoders Oana Boncalo (1), Alexandru Amaricai (1), Valentin Savin (2) (1) University Politehnica Timisoara, Romania (2) CEA-LETI,

More information

Are Polar Codes Practical?

Are Polar Codes Practical? Are Polar Codes Practical? Prof. Warren J. Gross McGill University, Montreal, QC. Coding: from Practice to Theory Berkeley, CA. Feb. 10 th, 2015. Achieving the Channel Capacity Successive cancellation

More information

doc.: IEEE thz

doc.: IEEE thz doc.: IEEE 802.15 15-18-0207-00-0thz Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: A Preliminary 7nm implementation and communication performance study

More information

HIGH-THROUGHPUT MULTI-RATE LDPC DECODER BASED ON ARCHITECTURE-ORIENTED PARITY CHECK MATRICES

HIGH-THROUGHPUT MULTI-RATE LDPC DECODER BASED ON ARCHITECTURE-ORIENTED PARITY CHECK MATRICES HIGH-THROUGHPUT MULTI-RATE LDPC DECODER BASED ON ARCHITECTURE-ORIENTED PARITY CHECK MATRICES Predrag Radosavljevic, Alexandre de Baynast, Marjan Karkooti, Joseph R. Cavallaro ECE Department, Rice University

More information

MULTI-RATE HIGH-THROUGHPUT LDPC DECODER: TRADEOFF ANALYSIS BETWEEN DECODING THROUGHPUT AND AREA

MULTI-RATE HIGH-THROUGHPUT LDPC DECODER: TRADEOFF ANALYSIS BETWEEN DECODING THROUGHPUT AND AREA MULTI-RATE HIGH-THROUGHPUT LDPC DECODER: TRADEOFF ANALYSIS BETWEEN DECODING THROUGHPUT AND AREA Predrag Radosavljevic, Alexandre de Baynast, Marjan Karkooti, and Joseph R. Cavallaro Department of Electrical

More information

MPSOC 2011 BEAUNE, FRANCE

MPSOC 2011 BEAUNE, FRANCE MPSOC 2011 BEAUNE, FRANCE BOADRES: A SCALABLE BASEBAND PROCESSOR TEMPLATE FOR Gbps RADIOS VICE PRESIDENT, CHAIRMAN OF THE TECHNOLOGY OFFICE PROFESSOR AT THE KATHOLIEKE UNIVERSITEIT LEUVEN STATUS SDR BASEBAND

More information

LOW-POWER IMPLEMENTATION OF A HIGH-THROUGHPUT LDPC DECODER FOR IEEE N STANDARD. Naresh R. Shanbhag

LOW-POWER IMPLEMENTATION OF A HIGH-THROUGHPUT LDPC DECODER FOR IEEE N STANDARD. Naresh R. Shanbhag LOW-POWER IMPLEMENTATION OF A HIGH-THROUGHPUT LDPC DECODER FOR IEEE 802.11N STANDARD Junho Cho Department of Electrical Engineering, Seoul National University, Seoul, 151-744, Korea Naresh R. Shanbhag

More information

Tradeoff Analysis and Architecture Design of High Throughput Irregular LDPC Decoders

Tradeoff Analysis and Architecture Design of High Throughput Irregular LDPC Decoders IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 1, NO. 1, NOVEMBER 2006 1 Tradeoff Analysis and Architecture Design of High Throughput Irregular LDPC Decoders Predrag Radosavljevic, Student

More information

MULTI-RATE HIGH-THROUGHPUT LDPC DECODER: TRADEOFF ANALYSIS BETWEEN DECODING THROUGHPUT AND AREA

MULTI-RATE HIGH-THROUGHPUT LDPC DECODER: TRADEOFF ANALYSIS BETWEEN DECODING THROUGHPUT AND AREA MULTIRATE HIGHTHROUGHPUT LDPC DECODER: TRADEOFF ANALYSIS BETWEEN DECODING THROUGHPUT AND AREA Predrag Radosavljevic, Alexandre de Baynast, Marjan Karkooti, and Joseph R. Cavallaro Department of Electrical

More information

PERFORMANCE ANALYSIS OF HIGH EFFICIENCY LOW DENSITY PARITY-CHECK CODE DECODER FOR LOW POWER APPLICATIONS

PERFORMANCE ANALYSIS OF HIGH EFFICIENCY LOW DENSITY PARITY-CHECK CODE DECODER FOR LOW POWER APPLICATIONS American Journal of Applied Sciences 11 (4): 558-563, 2014 ISSN: 1546-9239 2014 Science Publication doi:10.3844/ajassp.2014.558.563 Published Online 11 (4) 2014 (http://www.thescipub.com/ajas.toc) PERFORMANCE

More information

23. Digital Baseband Design

23. Digital Baseband Design 23. Digital Baseband Design Algorithm-to-VLSI Circuit Refinement (Floating Point) Tradeoff (SNR Loss, BER) (Fixed Point) VHDL, Verilog VHDL, Verilog Memory Control For I=0 to I=15 Sum = Sum + array[i]

More information

A 167-processor Computational Array for Highly-Efficient DSP and Embedded Application Processing

A 167-processor Computational Array for Highly-Efficient DSP and Embedded Application Processing A 167-processor Computational Array for Highly-Efficient DSP and Embedded Application Processing Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu, Toney Jacobson, Gouri Landge, Michael Meeuwsen, Christine

More information

Design of a Low Density Parity Check Iterative Decoder

Design of a Low Density Parity Check Iterative Decoder 1 Design of a Low Density Parity Check Iterative Decoder Jean Nguyen, Computer Engineer, University of Wisconsin Madison Dr. Borivoje Nikolic, Faculty Advisor, Electrical Engineer, University of California,

More information

Algorithm-Architecture Co- Design for Efficient SDR Signal Processing

Algorithm-Architecture Co- Design for Efficient SDR Signal Processing Algorithm-Architecture Co- Design for Efficient SDR Signal Processing Min Li, limin@imec.be Wireless Research, IMEC Introduction SDR Baseband Platforms Today are Usually Based on ILP + DLP + MP Massive

More information

Gated-Demultiplexer Tree Buffer for Low Power Using Clock Tree Based Gated Driver

Gated-Demultiplexer Tree Buffer for Low Power Using Clock Tree Based Gated Driver Gated-Demultiplexer Tree Buffer for Low Power Using Clock Tree Based Gated Driver E.Kanniga 1, N. Imocha Singh 2,K.Selva Rama Rathnam 3 Professor Department of Electronics and Telecommunication, Bharath

More information

Low Complexity Quasi-Cyclic LDPC Decoder Architecture for IEEE n

Low Complexity Quasi-Cyclic LDPC Decoder Architecture for IEEE n Low Complexity Quasi-Cyclic LDPC Decoder Architecture for IEEE 802.11n Sherif Abou Zied 1, Ahmed Tarek Sayed 1, and Rafik Guindi 2 1 Varkon Semiconductors, Cairo, Egypt 2 Nile University, Giza, Egypt Abstract

More information

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes.

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes. HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes Ian Glendinning Outline NVIDIA GPU cards CUDA & OpenCL Parallel Implementation

More information

Energy-efficient Reconfigurable FEC Processor for Multi-standard Wireless Communication Systems

Energy-efficient Reconfigurable FEC Processor for Multi-standard Wireless Communication Systems JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.3, JUNE, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.3.333 ISSN(Online) 2233-4866 Energy-efficient Reconfigurable FEC Processor

More information

FLASH RELIABILITY, BEYOND DATA MANAGEMENT AND ECC. Hooman Parizi, PHD Proton Digital Systems Aug 15, 2013

FLASH RELIABILITY, BEYOND DATA MANAGEMENT AND ECC. Hooman Parizi, PHD Proton Digital Systems Aug 15, 2013 FLASH RELIABILITY, BEYOND DATA MANAGEMENT AND ECC Hooman Parizi, PHD Proton Digital Systems Aug 15, 2013 AGENDA Section 1: Flash Reliability Section 2: Components to Improve Flash Reliability Section 3:

More information

STARTING in the 1990s, much work was done to enhance

STARTING in the 1990s, much work was done to enhance 1048 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 57, NO. 5, MAY 2010 A Low-Complexity Message-Passing Algorithm for Reduced Routing Congestion in LDPC Decoders Tinoosh Mohsenin, Dean

More information

Multi-Megabit Channel Decoder

Multi-Megabit Channel Decoder MPSoC 13 July 15-19, 2013 Otsu, Japan Multi-Gigabit Channel Decoders Ten Years After Norbert Wehn wehn@eit.uni-kl.de Multi-Megabit Channel Decoder MPSoC 03 N. Wehn UMTS standard: 2 Mbit/s throughput requirements

More information

Configuration latency constraint and frame duration /13/$ IEEE. a) Configuration latency constraint

Configuration latency constraint and frame duration /13/$ IEEE. a) Configuration latency constraint An efficient on-chip configuration infrastructure for a flexible multi-asip turbo decoder architecture Vianney Lapotre, Michael Hübner, Guy Gogniat, Purushotham Murugappa, Amer Baghdadi and Jean-Philippe

More information

Flexible wireless communication architectures

Flexible wireless communication architectures Flexible wireless communication architectures Sridhar Rajagopal Department of Electrical and Computer Engineering Rice University, Houston TX Faculty Candidate Seminar Southern Methodist University April

More information

International Journal of Engineering Trends and Technology (IJETT) - Volume4Issue5- May 2013

International Journal of Engineering Trends and Technology (IJETT) - Volume4Issue5- May 2013 Design of Low Density Parity Check Decoder for WiMAX and FPGA Realization M.K Bharadwaj #1, Ch.Phani Teja *2, K.S ROY #3 #1 Electronics and Communications Engineering,K.L University #2 Electronics and

More information

A Software LDPC Decoder Implemented on a Many-Core Array of Programmable Processors

A Software LDPC Decoder Implemented on a Many-Core Array of Programmable Processors A Software LDPC Decoder Implemented on a Many-Core Array of Programmable Processors Brent Bohnenstiehl and Bevan Baas Department of Electrical and Computer Engineering University of California, Davis {bvbohnen,

More information

LLR-based Successive-Cancellation List Decoder for Polar Codes with Multi-bit Decision

LLR-based Successive-Cancellation List Decoder for Polar Codes with Multi-bit Decision > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLIC HERE TO EDIT < LLR-based Successive-Cancellation List Decoder for Polar Codes with Multi-bit Decision Bo Yuan and eshab. Parhi, Fellow,

More information

Adding C Programmability to Data Path Design

Adding C Programmability to Data Path Design Adding C Programmability to Data Path Design Gert Goossens Sr. Director R&D, Synopsys May 6, 2015 1 Smart Products Drive SoC Developments Feature-Rich Multi-Sensing Multi-Output Wirelessly Connected Always-On

More information

Architecture and Automated Design Flow for Digital Network on chip for Analog/RF Building Block Control

Architecture and Automated Design Flow for Digital Network on chip for Analog/RF Building Block Control Architecture and Automated Design Flow for Digital Network on chip for Analog/RF Building Block Control Wolfgang Eberle, PhD IMEC Bioelectronic Systems Bridging software and analog/rf Software defined

More information

Stopping-free dynamic configuration of a multi-asip turbo decoder

Stopping-free dynamic configuration of a multi-asip turbo decoder 2013 16th Euromicro Conference on Digital System Design Stopping-free dynamic configuration of a multi-asip turbo decoder Vianney Lapotre, Purushotham Murugappa, Guy Gogniat, Amer Baghdadi, Michael Hübner

More information

Disclosing the LDPC Code Decoder Design Space

Disclosing the LDPC Code Decoder Design Space Disclosing the LDPC Code Decoder Design Space Torben Brack, Frank Kienle, Norbert Wehn Microelectronic System Design Research Group University of Kaiserslautern Erwin-Schrödinger-Straße 67663 Kaiserslautern,

More information

Partly Parallel Overlapped Sum-Product Decoder Architectures for Quasi-Cyclic LDPC Codes

Partly Parallel Overlapped Sum-Product Decoder Architectures for Quasi-Cyclic LDPC Codes Partly Parallel Overlapped Sum-Product Decoder Architectures for Quasi-Cyclic LDPC Codes Ning Chen, Yongmei Dai, and Zhiyuan Yan Department of Electrical and Computer Engineering, Lehigh University, PA

More information

A New MIMO Detector Architecture Based on A Forward-Backward Trellis Algorithm

A New MIMO Detector Architecture Based on A Forward-Backward Trellis Algorithm A New MIMO etector Architecture Based on A Forward-Backward Trellis Algorithm Yang Sun and Joseph R Cavallaro epartment of Electrical and Computer Engineering Rice University, Houston, TX 775 Email: {ysun,

More information

IEEE C802.16a-02/86. IEEE Broadband Wireless Access Working Group <

IEEE C802.16a-02/86. IEEE Broadband Wireless Access Working Group < 2002-09-18 IEEE C802.16a-02/86 Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group BTC, CTC, and Reed-Solomon-Viterbi performance on SUI channel models

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) doc.: IEEE 802. 15-16-0746-07-003d 15-16-0746-01-003d Performance_of_FEC_in_TG3d_Channels Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Preliminary Performance

More information

A Reduced Routing Network Architecture for Partial Parallel LDPC decoders

A Reduced Routing Network Architecture for Partial Parallel LDPC decoders A Reduced Routing Network Architecture for Partial Parallel LDPC decoders By HOUSHMAND SHIRANI MEHR B.S. (Sharif University of Technology) July, 2009 THESIS Submitted in partial satisfaction of the requirements

More information

LOW-POWER IMPLEMENTATION OF A HIGH-THROUGHPUT LDPC DECODER FOR IEEE N STANDARD

LOW-POWER IMPLEMENTATION OF A HIGH-THROUGHPUT LDPC DECODER FOR IEEE N STANDARD LOW-POWER IMPLEMENTATION OF A HIGH-THROUGHPUT LDPC DECODER FOR IEEE 802.11N STANDARD Junho Cho* Department of Electrical Engineering, Seoul National University, Seoul, 151-744, Korea Naresh R. Shanbhag

More information

OVer past decades, iteratively decodable codes, such as

OVer past decades, iteratively decodable codes, such as 1 Trellis-based Extended Min-Sum Algorithm for Non-binary LDPC Codes and its Hardware Structure Erbao Li, David Declercq Senior Member, IEEE, and iran Gunnam Senior Member, IEEE Abstract In this paper,

More information

Optimized ARM-Based Implementation of Low Density Parity Check Code (LDPC) Decoder in China Digital Radio (CDR)

Optimized ARM-Based Implementation of Low Density Parity Check Code (LDPC) Decoder in China Digital Radio (CDR) Optimized ARM-Based Implementation of Low Density Parity Check Code (LDPC) Decoder in China Digital Radio (CDR) P. Vincy Priscilla 1, R. Padmavathi 2, S. Tamilselvan 3, Dr.S. Kanthamani 4 1,4 Department

More information

Hardware Implementation

Hardware Implementation Low Density Parity Check decoder Hardware Implementation Ruchi Rani (2008EEE2225) Under guidance of Prof. Jayadeva Dr.Shankar Prakriya 1 Indian Institute of Technology LDPC code Linear block code which

More information

KiloCore: A 32 nm 1000-Processor Array

KiloCore: A 32 nm 1000-Processor Array KiloCore: A 32 nm 1000-Processor Array Brent Bohnenstiehl, Aaron Stillmaker, Jon Pimentel, Timothy Andreas, Bin Liu, Anh Tran, Emmanuel Adeagbo, Bevan Baas University of California, Davis VLSI Computation

More information

The Application of SystemC to the Design and Implementation of a High Data Rate Satellite Transceiver

The Application of SystemC to the Design and Implementation of a High Data Rate Satellite Transceiver The Application of SystemC to the Design and Implementation of a High Data Rate Satellite Transceiver The MITRE Corporation Approved for public release. Distribution unlimited. Case #07-0782 Contract No.

More information

VLSI Signal Processing

VLSI Signal Processing VLSI Signal Processing Programmable DSP Architectures Chih-Wei Liu VLSI Signal Processing Lab Department of Electronics Engineering National Chiao Tung University Outline DSP Arithmetic Stream Interface

More information

Area and Energy Efficient VLSI Architectures for Low-Density Parity-Check Decoders using an On-the-fly Computation

Area and Energy Efficient VLSI Architectures for Low-Density Parity-Check Decoders using an On-the-fly Computation Area and Energy Efficient VLSI Architectures for Low-Density Parity-Check Decoders using an On-the-fly Computation Kiran Gunnam Texas A&M University October 11 2006 Outline Introduction of LDPC Problem

More information

Processor Architectures At A Glance: M.I.T. Raw vs. UC Davis AsAP

Processor Architectures At A Glance: M.I.T. Raw vs. UC Davis AsAP Processor Architectures At A Glance: M.I.T. Raw vs. UC Davis AsAP Presenter: Course: EEC 289Q: Reconfigurable Computing Course Instructor: Professor Soheil Ghiasi Outline Overview of M.I.T. Raw processor

More information

Development of Dependable Wireless System and Device

Development of Dependable Wireless System and Device December 6, 2013 JST International Symposium on Dependable VLSI Systems 2013 Development of Dependable Wireless System and Device Research Director: Kazuo Tsubouchi, Tohoku University Members: Akira Matsuzawa,

More information

Quantized Iterative Message Passing Decoders with Low Error Floor for LDPC Codes

Quantized Iterative Message Passing Decoders with Low Error Floor for LDPC Codes Quantized Iterative Message Passing Decoders with Low Error Floor for LDPC Codes Xiaojie Zhang and Paul H. Siegel University of California, San Diego 1. Introduction Low-density parity-check (LDPC) codes

More information

Hybrid Iteration Control on LDPC Decoders

Hybrid Iteration Control on LDPC Decoders Hybrid Iteration Control on LDPC Decoders Erick Amador and Raymond Knopp EURECOM 694 Sophia Antipolis, France name.surname@eurecom.fr Vincent Rezard Infineon Technologies France 656 Sophia Antipolis, France

More information

Overview of Broadband Cable Access Technologies

Overview of Broadband Cable Access Technologies Overview of Broadband Cable Access Technologies Shaohua Zhao, PhD Communications Technologies Group, ASTRI 26 Oct 2012 1 Outline Introduction Technologies EPoC MoCA HINOC ASTRI s Project Development: HINOC

More information

Efficient Markov Chain Monte Carlo Algorithms For MIMO and ISI channels

Efficient Markov Chain Monte Carlo Algorithms For MIMO and ISI channels Efficient Markov Chain Monte Carlo Algorithms For MIMO and ISI channels Rong-Hui Peng Department of Electrical and Computer Engineering University of Utah /7/6 Summary of PhD work Efficient MCMC algorithms

More information

Partially-Parallel LDPC Decoder Achieving High-Efficiency Message-Passing Schedule

Partially-Parallel LDPC Decoder Achieving High-Efficiency Message-Passing Schedule IEICE TRANS. FUNDAMENTALS, VOL.E89 A, NO.4 APRIL 2006 969 PAPER Special Section on Selected Papers from the 18th Workshop on Circuits and Systems in Karuizawa Partially-Parallel LDPC Decoder Achieving

More information

General Purpose Signal Processors

General Purpose Signal Processors General Purpose Signal Processors First announced in 1978 (AMD) for peripheral computation such as in printers, matured in early 80 s (TMS320 series). General purpose vs. dedicated architectures: Pros:

More information

BER Evaluation of LDPC Decoder with BPSK Scheme in AWGN Fading Channel

BER Evaluation of LDPC Decoder with BPSK Scheme in AWGN Fading Channel I J C T A, 9(40), 2016, pp. 397-404 International Science Press ISSN: 0974-5572 BER Evaluation of LDPC Decoder with BPSK Scheme in AWGN Fading Channel Neha Mahankal*, Sandeep Kakde* and Atish Khobragade**

More information

A Memory Efficient FPGA Implementation of Quasi-Cyclic LDPC Decoder

A Memory Efficient FPGA Implementation of Quasi-Cyclic LDPC Decoder Proceedings of the 5th WSEAS Int. Conf. on Instrumentation, Measurement, Circuits and Systems, angzhou, China, April 6-8, 26 (pp28-223) A Memory Efficient FPGA Implementation of Quasi-Cyclic DPC Decoder

More information

Multi-Rate Reconfigurable LDPC Decoder Architectures for QC-LDPC codes in High Throughput Applications

Multi-Rate Reconfigurable LDPC Decoder Architectures for QC-LDPC codes in High Throughput Applications Multi-Rate Reconfigurable LDPC Decoder Architectures for QC-LDPC codes in High Throughput Applications A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Technology

More information

Submission Title: Preliminary Performance of FEC Schemes in TG3d Channels

Submission Title: Preliminary Performance of FEC Schemes in TG3d Channels doc.: IEEE 802. 15-16-0746-05-003d 15-16-0746-01-003d Performance_of_FEC_in_TG3d_Channels Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Preliminary Performance

More information

Reconfigurable Cell Array for DSP Applications

Reconfigurable Cell Array for DSP Applications Outline econfigurable Cell Array for DSP Applications Chenxin Zhang Department of Electrical and Information Technology Lund University, Sweden econfigurable computing Coarse-grained reconfigurable cell

More information

HIGH THROUGHPUT LOW POWER DECODER ARCHITECTURES FOR LOW DENSITY PARITY CHECK CODES

HIGH THROUGHPUT LOW POWER DECODER ARCHITECTURES FOR LOW DENSITY PARITY CHECK CODES HIGH THROUGHPUT LOW POWER DECODER ARCHITECTURES FOR LOW DENSITY PARITY CHECK CODES A Dissertation by ANAND MANIVANNAN SELVARATHINAM Submitted to the Office of Graduate Studies of Texas A&M University in

More information

Piecewise Linear Approximation Based on Taylor Series of LDPC Codes Decoding Algorithm and Implemented in FPGA

Piecewise Linear Approximation Based on Taylor Series of LDPC Codes Decoding Algorithm and Implemented in FPGA Journal of Information Hiding and Multimedia Signal Processing c 2018 ISSN 2073-4212 Ubiquitous International Volume 9, Number 3, May 2018 Piecewise Linear Approximation Based on Taylor Series of LDPC

More information

A High-Throughput FPGA Implementation of Quasi-Cyclic LDPC Decoder

A High-Throughput FPGA Implementation of Quasi-Cyclic LDPC Decoder 40 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.3, March 07 A High-Throughput FPGA Implementation of Quasi-Cyclic LDPC Decoder Hossein Gharaee, Mahdie Kiaee and Naser

More information

SoC Communication Complexity Problem

SoC Communication Complexity Problem When is the use of a Most Effective and Why MPSoC, June 2007 K. Charles Janac, Chairman, President and CEO SoC Communication Complexity Problem Arbitration problem in an SoC with 30 initiators: Hierarchical

More information

P V Sriniwas Shastry et al, Int.J.Computer Technology & Applications,Vol 5 (1),

P V Sriniwas Shastry et al, Int.J.Computer Technology & Applications,Vol 5 (1), On-The-Fly AES Key Expansion For All Key Sizes on ASIC P.V.Sriniwas Shastry 1, M. S. Sutaone 2, 1 Cummins College of Engineering for Women, Pune, 2 College of Engineering, Pune pvs.shastry@cumminscollege.in

More information

Fault Tolerant Parallel Filters Based On Bch Codes

Fault Tolerant Parallel Filters Based On Bch Codes RESEARCH ARTICLE OPEN ACCESS Fault Tolerant Parallel Filters Based On Bch Codes K.Mohana Krishna 1, Mrs.A.Maria Jossy 2 1 Student, M-TECH(VLSI Design) SRM UniversityChennai, India 2 Assistant Professor

More information

lambda-min Decoding Algorithm of Regular and Irregular LDPC Codes

lambda-min Decoding Algorithm of Regular and Irregular LDPC Codes lambda-min Decoding Algorithm of Regular and Irregular LDPC Codes Emmanuel Boutillon, Frédéric Guillou, Jean-Luc Danger To cite this version: Emmanuel Boutillon, Frédéric Guillou, Jean-Luc Danger lambda-min

More information

Comparison of Polar Decoders with Existing Low-Density Parity-Check and Turbo Decoders

Comparison of Polar Decoders with Existing Low-Density Parity-Check and Turbo Decoders Comparison of Polar Decoders with Existing Low-Density Parity-Check and Turbo Decoders Alexios Balatsoukas-Stimming, Pascal Giard, and Andreas Burg Telecommunications Circuits Laboratory, EPFL, Switzerland

More information

Hardware / Software Co-design of a SIMD-DSP-based DVB-T Receiver

Hardware / Software Co-design of a SIMD-DSP-based DVB-T Receiver Hardware / Software Co-design of a SIMD-DSP-based DVB-T Receiver H. Seidel, G. Cichon, P. Robelly, M. Bronzel, G. Fettweis Mobile Communications Chair, TU-Dresden D-01062 Dresden, Germany seidel@ifn.et.tu-dresden.de

More information

A High-Throughput Processor for Cryptographic Hash Functions

A High-Throughput Processor for Cryptographic Hash Functions A High-Throughput Processor for Cryptographic Hash Functions Yuanhong Huo and Dake Liu Beijing Institute of Technology, Beijing 100081, China Email: {hyh, dake@bit.edu.cn Abstract This paper presents a

More information

High Speed Downlink Packet Access efficient turbo decoder architecture: 3GPP Advanced Turbo Decoder

High Speed Downlink Packet Access efficient turbo decoder architecture: 3GPP Advanced Turbo Decoder I J C T A, 9(24), 2016, pp. 291-298 International Science Press High Speed Downlink Packet Access efficient turbo decoder architecture: 3GPP Advanced Turbo Decoder Parvathy M.*, Ganesan R.*,** and Tefera

More information

Physical Implementation of the DSPIN Network-on-Chip in the FAUST Architecture

Physical Implementation of the DSPIN Network-on-Chip in the FAUST Architecture 1 Physical Implementation of the DSPI etwork-on-chip in the FAUST Architecture Ivan Miro-Panades 1,2,3, Fabien Clermidy 3, Pascal Vivet 3, Alain Greiner 1 1 The University of Pierre et Marie Curie, Paris,

More information

Low complexity FEC Systems for Satellite Communication

Low complexity FEC Systems for Satellite Communication Low complexity FEC Systems for Satellite Communication Ashwani Singh Navtel Systems 2 Rue Muette, 27000,Houville La Branche, France Tel: +33 237 25 71 86 E-mail: ashwani.singh@navtelsystems.com Henry Chandran

More information

98 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 58, NO. 1, JANUARY 2011

98 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 58, NO. 1, JANUARY 2011 98 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 58, NO. 1, JANUARY 2011 Memory System Optimization for FPGA- Based Implementation of Quasi-Cyclic LDPC Codes Decoders Xiaoheng Chen,

More information

Communication Systems Design in Practice

Communication Systems Design in Practice Communication Systems Design in Practice Jacob Kornerup, Ph.D. LabVIEW R&D National Instruments A Word About National Instruments Annual Revenue: $1.14 billion Global Operations: Approximately 6,870 employees;

More information

Comparison of the Hardware Performance of the AES Candidates Using Reconfigurable Hardware

Comparison of the Hardware Performance of the AES Candidates Using Reconfigurable Hardware Comparison of the Hardware Performance of the AES Candidates Using Reconfigurable Hardware Master s Thesis Pawel Chodowiec MS CpE Candidate, ECE George Mason University Advisor: Dr. Kris Gaj, ECE George

More information

The Serial Commutator FFT

The Serial Commutator FFT The Serial Commutator FFT Mario Garrido Gálvez, Shen-Jui Huang, Sau-Gee Chen and Oscar Gustafsson Journal Article N.B.: When citing this work, cite the original article. 2016 IEEE. Personal use of this

More information

Review Article Flexible LDPC Decoder Architectures

Review Article Flexible LDPC Decoder Architectures VLSI Design Volume 2012, Article ID 730835, 16 pages doi:10.1155/2012/730835 Review Article Flexible LDPC Decoder Architectures Muhammad Awais and Carlo Condo Department of Electronics and Telecommunications,

More information

High Performance Embedded Applications. Raja Pillai Applications Engineering Specialist

High Performance Embedded Applications. Raja Pillai Applications Engineering Specialist High Performance Embedded Applications Raja Pillai Applications Engineering Specialist Agenda What is High Performance Embedded? NI s History in HPE FlexRIO Overview System architecture Adapter modules

More information

Design and Verification of FPGA Applications

Design and Verification of FPGA Applications Design and Verification of FPGA Applications Giuseppe Ridinò Paola Vallauri MathWorks giuseppe.ridino@mathworks.it paola.vallauri@mathworks.it Torino, 19 Maggio 2016, INAF 2016 The MathWorks, Inc. 1 Agenda

More information

Efficient Configurable Decoder Architecture for Non-binary Quasi-cyclic LDPC Codes

Efficient Configurable Decoder Architecture for Non-binary Quasi-cyclic LDPC Codes 1 Efficient Configurable Decoder Architecture for Non-binary Quasi-cyclic LDPC Codes Xiaoheng Chen, Shu Lin, Life Fellow, IEEE, and Venkatesh Akella Department of Electrical and Computer Engineering University

More information

Gigabit Baseband Modem Technology for 5G mmwave Applications

Gigabit Baseband Modem Technology for 5G mmwave Applications Gigabit Baseband Modem Technology for 5G mmwave Applications Interlligent Seminar, 18 th May 2017 Ray McConnell, CTO Blu Wireless Technology Ltd Gigabit mmwave modem IP Consumer WiGig : IEEE 802.11ad/ay

More information

EE382V: System-on-a-Chip (SoC) Design

EE382V: System-on-a-Chip (SoC) Design EE382V: System-on-a-Chip (SoC) Design Lecture 10 Task Partitioning Sources: Prof. Margarida Jacome, UT Austin Prof. Lothar Thiele, ETH Zürich Andreas Gerstlauer Electrical and Computer Engineering University

More information

Structure of Computer Systems

Structure of Computer Systems 288 between this new matrix and the initial collision matrix M A, because the original forbidden latencies for functional unit A still have to be considered in later initiations. Figure 5.37. State diagram

More information

Reconfigurable Real-time MIMO Detector on GPU

Reconfigurable Real-time MIMO Detector on GPU Reconfigurable Real-time MIMO Detector on GPU Michael Wu, Yang Sun, and Joseph R. Cavallaro Electrical and Computer Engineering Rice University, Houston, Texas 775 {mbw, ysun, cavallar}@rice.edu Abstract

More information

A Massively Parallel Implementation of QC-LDPC Decoder on GPU

A Massively Parallel Implementation of QC-LDPC Decoder on GPU A Massively Parallel Implementation of QC-LDPC Decoder on GPU Guohui Wang, Michael Wu, Yang Sun, and Joseph R Cavallaro Department of Electrical and Computer Engineering, Rice University, Houston, Texas

More information

Multi-Gigahertz Parallel FFTs for FPGA and ASIC Implementation

Multi-Gigahertz Parallel FFTs for FPGA and ASIC Implementation Multi-Gigahertz Parallel FFTs for FPGA and ASIC Implementation Doug Johnson, Applications Consultant Chris Eddington, Technical Marketing Synopsys 2013 1 Synopsys, Inc. 700 E. Middlefield Road Mountain

More information

Enhancing Energy Efficiency of Processor-Based Embedded Systems thorough Post-Fabrication ISA Extension

Enhancing Energy Efficiency of Processor-Based Embedded Systems thorough Post-Fabrication ISA Extension Enhancing Energy Efficiency of Processor-Based Embedded Systems thorough Post-Fabrication ISA Extension Hamid Noori, Farhad Mehdipour, Koji Inoue, and Kazuaki Murakami Institute of Systems, Information

More information

Low energy and High-performance Embedded Systems Design and Reconfigurable Architectures

Low energy and High-performance Embedded Systems Design and Reconfigurable Architectures Low energy and High-performance Embedded Systems Design and Reconfigurable Architectures Ass. Professor Dimitrios Soudris School of Electrical and Computer Eng., National Technical Univ. of Athens, Greece

More information

MPSoC Design Space Exploration Framework

MPSoC Design Space Exploration Framework MPSoC Design Space Exploration Framework Gerd Ascheid RWTH Aachen University, Germany Outline Motivation: MPSoC requirements in wireless and multimedia MPSoC design space exploration framework Summary

More information

DIGITAL VS. ANALOG SIGNAL PROCESSING Digital signal processing (DSP) characterized by: OUTLINE APPLICATIONS OF DIGITAL SIGNAL PROCESSING

DIGITAL VS. ANALOG SIGNAL PROCESSING Digital signal processing (DSP) characterized by: OUTLINE APPLICATIONS OF DIGITAL SIGNAL PROCESSING 1 DSP applications DSP platforms The synthesis problem Models of computation OUTLINE 2 DIGITAL VS. ANALOG SIGNAL PROCESSING Digital signal processing (DSP) characterized by: Time-discrete representation

More information

High performance, power-efficient DSPs based on the TI C64x

High performance, power-efficient DSPs based on the TI C64x High performance, power-efficient DSPs based on the TI C64x Sridhar Rajagopal, Joseph R. Cavallaro, Scott Rixner Rice University {sridhar,cavallar,rixner}@rice.edu RICE UNIVERSITY Recent (2003) Research

More information

Table 1: Example Implementation Statistics for Xilinx FPGAs

Table 1: Example Implementation Statistics for Xilinx FPGAs logijpge Motion JPEG Encoder January 10 th, 2018 Data Sheet Version: v1.0 Xylon d.o.o. Fallerovo setaliste 22 10000 Zagreb, Croatia Phone: +385 1 368 00 26 Fax: +385 1 365 51 67 E-mail: support@logicbricks.com

More information

Design and Verification of FPGA and ASIC Applications Graham Reith MathWorks

Design and Verification of FPGA and ASIC Applications Graham Reith MathWorks Design and Verification of FPGA and ASIC Applications Graham Reith MathWorks 2014 The MathWorks, Inc. 1 Agenda -Based Design for FPGA and ASIC Generating HDL Code from MATLAB and Simulink For prototyping

More information

A 167-processor 65 nm Computational Platform with Per-Processor Dynamic Supply Voltage and Dynamic Clock Frequency Scaling

A 167-processor 65 nm Computational Platform with Per-Processor Dynamic Supply Voltage and Dynamic Clock Frequency Scaling A 167-processor 65 nm Computational Platform with Per-Processor Dynamic Supply Voltage and Dynamic Clock Frequency Scaling Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu, Toney Jacobson, Gouri Landge,

More information

LOW-DENSITY parity-check (LDPC) codes, which are defined

LOW-DENSITY parity-check (LDPC) codes, which are defined 734 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 56, NO. 9, SEPTEMBER 2009 Design of a Multimode QC-LDPC Decoder Based on Shift-Routing Network Chih-Hao Liu, Chien-Ching Lin, Shau-Wei

More information

Hi Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan Processors Hi Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan chanhl@maili.cgu.edu.twcgu General-purpose p processor Control unit Controllerr Control/ status Datapath ALU

More information

An Overview of Standard Cell Based Digital VLSI Design

An Overview of Standard Cell Based Digital VLSI Design An Overview of Standard Cell Based Digital VLSI Design With examples taken from the implementation of the 36-core AsAP1 chip and the 1000-core KiloCore chip Zhiyi Yu, Tinoosh Mohsenin, Aaron Stillmaker,

More information

FPGA Implementation of Binary Quasi Cyclic LDPC Code with Rate 2/5

FPGA Implementation of Binary Quasi Cyclic LDPC Code with Rate 2/5 FPGA Implementation of Binary Quasi Cyclic LDPC Code with Rate 2/5 Arulmozhi M. 1, Nandini G. Iyer 2, Anitha M. 3 Assistant Professor, Department of EEE, Rajalakshmi Engineering College, Chennai, India

More information

FlexiChaP: A Reconfigurable ASIP for Convolutional, Turbo, and LDPC Code Decoding

FlexiChaP: A Reconfigurable ASIP for Convolutional, Turbo, and LDPC Code Decoding FlexiChaP: A Reconfigurable ASIP for Convolutional, Turbo, and LDPC Code Decoding Matthias Alles, Timo Vogt, Norbert Wehn University of Kaiserslautern Erwin-Schroedinger-Str. 67663 Kaiserslautern, Germany

More information

Communication Systems Design in Practice

Communication Systems Design in Practice Communication Systems Design in Practice Jacob Kornerup, Ph.D. LabVIEW R&D National Instruments '87 '88 '89 '90 '91 '92 '93 '94 '95 '96 '97 '98 '99 '00 '01 '02 03 04 '05 '06 '07 '08 '09 '10 '11 '12 '13

More information

Fast implementation and fair comparison of the final candidates for Advanced Encryption Standard using Field Programmable Gate Arrays

Fast implementation and fair comparison of the final candidates for Advanced Encryption Standard using Field Programmable Gate Arrays Kris Gaj and Pawel Chodowiec Electrical and Computer Engineering George Mason University Fast implementation and fair comparison of the final candidates for Advanced Encryption Standard using Field Programmable

More information

Embedded Systems: Hardware Components (part I) Todor Stefanov

Embedded Systems: Hardware Components (part I) Todor Stefanov Embedded Systems: Hardware Components (part I) Todor Stefanov Leiden Embedded Research Center Leiden Institute of Advanced Computer Science Leiden University, The Netherlands Outline Generic Embedded System

More information

FPGA Implementation of 16-Point Radix-4 Complex FFT Core Using NEDA

FPGA Implementation of 16-Point Radix-4 Complex FFT Core Using NEDA FPGA Implementation of 16-Point FFT Core Using NEDA Abhishek Mankar, Ansuman Diptisankar Das and N Prasad Abstract--NEDA is one of the techniques to implement many digital signal processing systems that

More information