EE/CSCI 451 Spring 2018 Homework 2 Assigned: February 7, 2018 Due: February 14, 2018, before 11:59 pm Total Points: 100

Size: px
Start display at page:

Download "EE/CSCI 451 Spring 2018 Homework 2 Assigned: February 7, 2018 Due: February 14, 2018, before 11:59 pm Total Points: 100"

Transcription

1 EE/CSCI 45 Spring 08 Homework Assigned: February 7, 08 Due: February 4, 08, before :59 pm Total Points: 00 [0 points] Explain the following terms:. Diameter of a network. Bisection width of a network. Multistage network 4. Rearrangeable network 5. Non blocking network [0 points] Figure shows a 4 input/output CLOS network with control setting for each switch box. What permutation does this network realize? Figure : 4 input/output CLOS network Permutation: 0

2 [0 points] In the class, we discussed an algorithm to perform routing on a Shuffle-Exchange Network which requires k routing steps (shuffles and exchanges), where k is the number of bits in the binary representation of source and destination. For a binary number x k x k... x 0, we define suffix as the most significant bits x k x k... of the number and prefix as the least significant bits... x x 0 of the number. Figure : Prefix 0 of s is equal to suffix 0 of d Let l denote the length of the longest prefix of the source (in binary representation) which is a suffix of the destination (again in binary representation). See Figure for example.. Consider a 6 input and output shuffle-exchange network, a source node s = 00 and a destination node d = 00. For this pair of source and destination, find a route which has 4 links ((k l) = (4 ) = 4). Write all the intermediate nodes and the operation (Shuffle or Exchange) performed at each step. (5 points) Hint: Longest prefix of s which is equal to the suffix of d is 0.. Modify the algorithm discussed in the lecture so that it runs in at most (k l) steps. 4 [5 points] A mesh of trees is a network that imposes a tree interconnection on a grid of processing nodes. A p p mesh of trees is constructed as follows. Starting with a p p grid, a complete binary tree is imposed on each row of the grid. Then a complete binary tree is imposed on each column of the grid. Figure illustrates the construction of a 4 4 mesh of trees. Assume that the nodes at intermediate levels are switching nodes. Determine the diameter of a p p mesh of trees. 5 [5 points] In the class, we defined an n input and n output CLOS network as a -stage network with n n n crossbar switches in each stage.. Draw the network for n = 6.. We can extend the -stage CLOS network as follows: A p input and p output CLOS network can be defined as a -stage network where Stage 0 and Stage consist of p switches while Stage consists of two p p switches. The definition can be applied recursively to Stage until the network consists only of switches. Using the above definition, each n n crossbar switch of the network in part a can be implemented using only switches. Draw a 6 6 crossbar switch and define the connectivity requirement from Stage 0 to Stage.

3 complete binary tree is imposed on each column of the grid. Figure.6 illustrates the construction of a 4 x 4 mesh of trees. Assume that the nodes at intermediate levels are switching nodes. Determine the bisection width, diameter, and total number of switching nodes in a mesh. Figure.6. The construction of a 4 x 4 mesh of trees: (a) a 4 x 4 grid, (b) complete binary trees imposed over individual rows, (c) complete binary trees imposed over each column, and (d) the complete 4 x 4 mesh of trees..8 [Lei9] Extend the two-dimensional mesh of trees (Problem.7) to d dimensions to construct Figurea : p /d The x pconstruction /d x x p /d of mesh a 4 of 4 mesh trees. of We trees: can do (a) this a 4 by 4fixing grid, grid (b) complete positions in all dimensions binary treesto imposed different over values individual and imposing rows, (c) a complete complete binary binary trees tree imposed on the over oneeach dimension column, that and is (d) being the complete varied. 4 4 mesh of trees. Derive the total number of switching nodes in a p /d x p /d x x p /d mesh of trees. Calculate the diameter, bisection width, and wiring cost in terms of the total number of wires. What are the advantages and disadvantages of a mesh of trees as compared to a wraparound mesh?.9 [Lei9] A network related to the mesh of trees is the d-dimensional pyramidal mesh. A d-dimensional pyramidal mesh imposes a pyramid on the underlying grid of processing nodes (as opposed to a complete tree in the mesh of trees). The generalization

4 . In general, derive an expression for the total number of switches and the total delay from an input to an output for an n input and n output CLOS network with n n n crossbar switches each of which is implemented using the definition of CLOS network used in Part. (Assume the delay of each switch is equal to unit) 6 [0 points] In this problem, we will design a network for n n = k nodes. The nodes will be laid out in dimensions with n rows and n columns. Each row is a Shuffle-Exchange network of size n = k. Similarly, each column is a Shuffle-Exchange network of size n = k. To perform routing on this network, we split the k bits into two chunks of k bits each. The most significant k bits (left chunk) will be used to perform Shuffle-Exchange Routing in vertical direction (across columns) and the least significant k bits (right chunk) will be used to perform Shuffle-Exchange Routing in horizontal direction (along a row).. Fill the connections for k = 4 in the network shown in Figure 4.. Show the intermediate nodes while routing from source s = 00 to destination d = 00 in the network shown in Figure Figure 4: The network for k = 4 4

5 7 [0 points] Suppose we want to perform matrix transpose for an n n matrix using an n n -D mesh with a simple routing algorithm that routes Matrix(i, j) to PE(j, i) (0 i, j < n). Matrix(i, j) is initially stored in PE(i, j) of the -D mesh. The matrix transpose is performed as follows: Matrix(i, j) is first routed along row i to PE(i, i), then routed along column i to PE(j, i). Using the simple definition of congestion, what is the congestion in the network? Specify all nodes where the congestion is maximum. 8 Submission Instructions Upload your file to Google drive. Create a share link and give edit permission to grader (shubhamb@usc.edu). Fill in your name and link in Google sheet d/9fststzqexz-neel_bqpulxf9xgayzkrqhexnrems4/edit?usp=sharing. Send the files to me (zhuoyw@gmail.com) in . (This is for record only) 5

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #5 1/29/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 From last class Outline

More information

Physical Organization of Parallel Platforms. Alexandre David

Physical Organization of Parallel Platforms. Alexandre David Physical Organization of Parallel Platforms Alexandre David 1.2.05 1 Static vs. Dynamic Networks 13-02-2008 Alexandre David, MVP'08 2 Interconnection networks built using links and switches. How to connect:

More information

Interconnection networks

Interconnection networks Interconnection networks When more than one processor needs to access a memory structure, interconnection networks are needed to route data from processors to memories (concurrent access to a shared memory

More information

EE/CSCI 451 Midterm 1

EE/CSCI 451 Midterm 1 EE/CSCI 451 Midterm 1 Spring 2018 Instructor: Xuehai Qian Friday: 02/26/2018 Problem # Topic Points Score 1 Definitions 20 2 Memory System Performance 10 3 Cache Performance 10 4 Shared Memory Programming

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #4 1/24/2018 Xuehai Qian xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Announcements PA #1

More information

CS575 Parallel Processing

CS575 Parallel Processing CS575 Parallel Processing Lecture three: Interconnection Networks Wim Bohm, CSU Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 license.

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #11 2/21/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Outline Midterm 1:

More information

Interconnection Network

Interconnection Network Interconnection Network Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3054: Multicore Systems, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu) Topics

More information

Interconnection Network. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Interconnection Network. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Interconnection Network Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Topics Taxonomy Metric Topologies Characteristics Cost Performance 2 Interconnection

More information

Lectures 8/9. 1 Overview. 2 Prelude:Routing on the Grid. 3 A couple of networks.

Lectures 8/9. 1 Overview. 2 Prelude:Routing on the Grid. 3 A couple of networks. U.C. Berkeley CS273: Parallel and Distributed Theory Lectures 8/9 Professor Satish Rao September 23,2010 Lecturer: Satish Rao Last revised October 23, 2010 Lectures 8/9 1 Overview We will give a couple

More information

Parallel Systems Prof. James L. Frankel Harvard University. Version of 6:50 PM 4-Dec-2018 Copyright 2018, 2017 James L. Frankel. All rights reserved.

Parallel Systems Prof. James L. Frankel Harvard University. Version of 6:50 PM 4-Dec-2018 Copyright 2018, 2017 James L. Frankel. All rights reserved. Parallel Systems Prof. James L. Frankel Harvard University Version of 6:50 PM 4-Dec-2018 Copyright 2018, 2017 James L. Frankel. All rights reserved. Architectures SISD (Single Instruction, Single Data)

More information

Outline. Distributed Shared Memory. Shared Memory. ECE574 Cluster Computing. Dichotomy of Parallel Computing Platforms (Continued)

Outline. Distributed Shared Memory. Shared Memory. ECE574 Cluster Computing. Dichotomy of Parallel Computing Platforms (Continued) Cluster Computing Dichotomy of Parallel Computing Platforms (Continued) Lecturer: Dr Yifeng Zhu Class Review Interconnections Crossbar» Example: myrinet Multistage» Example: Omega network Outline Flynn

More information

Lecture 3: Topology - II

Lecture 3: Topology - II ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017 http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/ Lecture 3: Topology - II Tushar Krishna Assistant Professor School of Electrical and

More information

Interconnection Networks: Topology. Prof. Natalie Enright Jerger

Interconnection Networks: Topology. Prof. Natalie Enright Jerger Interconnection Networks: Topology Prof. Natalie Enright Jerger Topology Overview Definition: determines arrangement of channels and nodes in network Analogous to road map Often first step in network design

More information

Advanced and parallel architectures. Part B. Prof. A. Massini. June 13, Exercise 1a (3 points) Exercise 1b (3 points) Exercise 2 (8 points)

Advanced and parallel architectures. Part B. Prof. A. Massini. June 13, Exercise 1a (3 points) Exercise 1b (3 points) Exercise 2 (8 points) Advanced and parallel architectures Prof. A. Massini June 13, 2017 Part B Exercise 1a (3 points) Exercise 1b (3 points) Exercise 2 (8 points) Student s Name Exercise 3 (4 points) Exercise 4 (3 points)

More information

Parallel Architecture. Sathish Vadhiyar

Parallel Architecture. Sathish Vadhiyar Parallel Architecture Sathish Vadhiyar Motivations of Parallel Computing Faster execution times From days or months to hours or seconds E.g., climate modelling, bioinformatics Large amount of data dictate

More information

Introduction to Parallel Computing

Introduction to Parallel Computing Introduction to Parallel Computing George Karypis Sorting Outline Background Sorting Networks Quicksort Bucket-Sort & Sample-Sort Background Input Specification Each processor has n/p elements A ordering

More information

Introduction to Parallel Computing Errata

Introduction to Parallel Computing Errata Introduction to Parallel Computing Errata John C. Kirk 27 November, 2004 Overview Book: Introduction to Parallel Computing, Second Edition, first printing (hardback) ISBN: 0-201-64865-2 Official book website:

More information

CS 6143 COMPUTER ARCHITECTURE II SPRING 2014

CS 6143 COMPUTER ARCHITECTURE II SPRING 2014 CS 6143 COMPUTER ARCHITECTURE II SPRING 2014 DUE : April 9, 2014 HOMEWORK IV READ : - Related portions of Chapter 5 and Appendces F and I of the Hennessy book - Related portions of Chapter 1, 4 and 6 of

More information

Interconnection topologies (cont.) [ ] In meshes and hypercubes, the average distance increases with the dth root of N.

Interconnection topologies (cont.) [ ] In meshes and hypercubes, the average distance increases with the dth root of N. Interconnection topologies (cont.) [ 10.4.4] In meshes and hypercubes, the average distance increases with the dth root of N. In a tree, the average distance grows only logarithmically. A simple tree structure,

More information

Topology basics. Constraints and measures. Butterfly networks.

Topology basics. Constraints and measures. Butterfly networks. EE48: Advanced Computer Organization Lecture # Interconnection Networks Architecture and Design Stanford University Topology basics. Constraints and measures. Butterfly networks. Lecture #: Monday, 7 April

More information

Multiprocessor Interconnection Networks- Part Three

Multiprocessor Interconnection Networks- Part Three Babylon University College of Information Technology Software Department Multiprocessor Interconnection Networks- Part Three By The k-ary n-cube Networks The k-ary n-cube network is a radix k cube with

More information

Introduction to Parallel and Distributed Systems - INZ0277Wcl 5 ECTS. Teacher: Jan Kwiatkowski, Office 201/15, D-2

Introduction to Parallel and Distributed Systems - INZ0277Wcl 5 ECTS. Teacher: Jan Kwiatkowski, Office 201/15, D-2 Introduction to Parallel and Distributed Systems - INZ0277Wcl 5 ECTS Teacher: Jan Kwiatkowski, Office 201/15, D-2 COMMUNICATION For questions, email to jan.kwiatkowski@pwr.edu.pl with 'Subject=your name.

More information

Advanced Parallel Architecture. Annalisa Massini /2017

Advanced Parallel Architecture. Annalisa Massini /2017 Advanced Parallel Architecture Annalisa Massini - 2016/2017 References Advanced Computer Architecture and Parallel Processing H. El-Rewini, M. Abd-El-Barr, John Wiley and Sons, 2005 Parallel computing

More information

Dr e v prasad Dt

Dr e v prasad Dt Dr e v prasad Dt. 12.10.17 Contents Characteristics of Multiprocessors Interconnection Structures Inter Processor Arbitration Inter Processor communication and synchronization Cache Coherence Introduction

More information

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E)

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) Lecture 12: Interconnection Networks Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) 1 Topologies Internet topologies are not very regular they grew

More information

Lecture 9: Group Communication Operations. Shantanu Dutt ECE Dept. UIC

Lecture 9: Group Communication Operations. Shantanu Dutt ECE Dept. UIC Lecture 9: Group Communication Operations Shantanu Dutt ECE Dept. UIC Acknowledgement Adapted from Chapter 4 slides of the text, by A. Grama w/ a few changes, augmentations and corrections Topic Overview

More information

Homework Assignment #1: Topology Kelly Shaw

Homework Assignment #1: Topology Kelly Shaw EE482 Advanced Computer Organization Spring 2001 Professor W. J. Dally Homework Assignment #1: Topology Kelly Shaw As we have not discussed routing or flow control yet, throughout this problem set assume

More information

CS 614 COMPUTER ARCHITECTURE II FALL 2005

CS 614 COMPUTER ARCHITECTURE II FALL 2005 CS 614 COMPUTER ARCHITECTURE II FALL 2005 DUE : November 23, 2005 HOMEWORK IV READ : i) Related portions of Chapters : 3, 10, 15, 17 and 18 of the Sima book and ii) Chapter 8 of the Hennessy book. ASSIGNMENT:

More information

4. Networks. in parallel computers. Advances in Computer Architecture

4. Networks. in parallel computers. Advances in Computer Architecture 4. Networks in parallel computers Advances in Computer Architecture System architectures for parallel computers Control organization Single Instruction stream Multiple Data stream (SIMD) All processors

More information

CSC630/CSC730: Parallel Computing

CSC630/CSC730: Parallel Computing CSC630/CSC730: Parallel Computing Parallel Computing Platforms Chapter 2 (2.4.1 2.4.4) Dr. Joe Zhang PDC-4: Topology 1 Content Parallel computing platforms Logical organization (a programmer s view) Control

More information

Lecture 26: Interconnects. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 26: Interconnects. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 26: Interconnects James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L26 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Housekeeping Your goal today get an overview of parallel

More information

EE/CSCI 451 Spring 2018 Homework 8 Total Points: [10 points] Explain the following terms: EREW PRAM CRCW PRAM. Brent s Theorem.

EE/CSCI 451 Spring 2018 Homework 8 Total Points: [10 points] Explain the following terms: EREW PRAM CRCW PRAM. Brent s Theorem. EE/CSCI 451 Spring 2018 Homework 8 Total Points: 100 1 [10 points] Explain the following terms: EREW PRAM CRCW PRAM Brent s Theorem BSP model 1 2 [15 points] Assume two sorted sequences of size n can be

More information

Parallel Computing Platforms

Parallel Computing Platforms Parallel Computing Platforms Network Topologies John Mellor-Crummey Department of Computer Science Rice University johnmc@rice.edu COMP 422/534 Lecture 14 28 February 2017 Topics for Today Taxonomy Metrics

More information

High Performance Computing Programming Paradigms and Scalability Part 2: High-Performance Networks

High Performance Computing Programming Paradigms and Scalability Part 2: High-Performance Networks High Performance Computing Programming Paradigms and Scalability Part 2: High-Performance Networks PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering (CiE) Scientific Computing (SCCS)

More information

Interconnection Networks. Issues for Networks

Interconnection Networks. Issues for Networks Interconnection Networks Communications Among Processors Chris Nevison, Colgate University Issues for Networks Total Bandwidth amount of data which can be moved from somewhere to somewhere per unit time

More information

Recall: The Routing problem: Local decisions. Recall: Multidimensional Meshes and Tori. Properties of Routing Algorithms

Recall: The Routing problem: Local decisions. Recall: Multidimensional Meshes and Tori. Properties of Routing Algorithms CS252 Graduate Computer Architecture Lecture 16 Multiprocessor Networks (con t) March 14 th, 212 John Kubiatowicz Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~kubitron/cs252

More information

Exemples of LCP. (b,3) (c,3) (d,4) 38 d

Exemples of LCP. (b,3) (c,3) (d,4) 38 d This layout has been presented by G. Even and S. Even [ 00], and it is based on the notion of Layered Cross Product Def. A layered graph of l+1 layers G=(V 0, V 1,, V l, E) consists of l+1 layers of nodes;

More information

CS Parallel Algorithms in Scientific Computing

CS Parallel Algorithms in Scientific Computing CS 775 - arallel Algorithms in Scientific Computing arallel Architectures January 2, 2004 Lecture 2 References arallel Computer Architecture: A Hardware / Software Approach Culler, Singh, Gupta, Morgan

More information

INTERCONNECTION NETWORKS LECTURE 4

INTERCONNECTION NETWORKS LECTURE 4 INTERCONNECTION NETWORKS LECTURE 4 DR. SAMMAN H. AMEEN 1 Topology Specifies way switches are wired Affects routing, reliability, throughput, latency, building ease Routing How does a message get from source

More information

CS 770G - Parallel Algorithms in Scientific Computing Parallel Architectures. May 7, 2001 Lecture 2

CS 770G - Parallel Algorithms in Scientific Computing Parallel Architectures. May 7, 2001 Lecture 2 CS 770G - arallel Algorithms in Scientific Computing arallel Architectures May 7, 2001 Lecture 2 References arallel Computer Architecture: A Hardware / Software Approach Culler, Singh, Gupta, Morgan Kaufmann

More information

Literature Survey of nonblocking network topologies

Literature Survey of nonblocking network topologies Literature Survey of nonblocking network topologies S.UMARANI 1, S.PAVAI MADHESWARI 2, N.NAGARAJAN 3 Department of Computer Applications 1 Department of Computer Science and Engineering 2,3 Sakthi Mariamman

More information

Chapter 4 : Butterfly Networks

Chapter 4 : Butterfly Networks 1 Chapter 4 : Butterfly Networks Structure of a butterfly network Isomorphism Channel load and throughput Optimization Path diversity Case study: BBN network 2 Structure of a butterfly network A K-ary

More information

High Performance Computing Programming Paradigms and Scalability

High Performance Computing Programming Paradigms and Scalability High Performance Computing Programming Paradigms and Scalability PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Summer Term 208

More information

Concurrent/Parallel Processing

Concurrent/Parallel Processing Concurrent/Parallel Processing David May: April 9, 2014 Introduction The idea of using a collection of interconnected processing devices is not new. Before the emergence of the modern stored program computer,

More information

Lecture 3: Sorting 1

Lecture 3: Sorting 1 Lecture 3: Sorting 1 Sorting Arranging an unordered collection of elements into monotonically increasing (or decreasing) order. S = a sequence of n elements in arbitrary order After sorting:

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6: file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_1.htm 1 of 1 6/20/2012 12:24 PM The Lecture deals with: ADI Method file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_2.htm 1 of 2 6/20/2012

More information

Scalability and Classifications

Scalability and Classifications Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static

More information

Lecture 2: Topology - I

Lecture 2: Topology - I ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017 http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/ Lecture 2: Topology - I Tushar Krishna Assistant Professor School of Electrical and

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #8 2/7/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Outline From last class

More information

Lecture 28: Networks & Interconnect Architectural Issues Professor Randy H. Katz Computer Science 252 Spring 1996

Lecture 28: Networks & Interconnect Architectural Issues Professor Randy H. Katz Computer Science 252 Spring 1996 Lecture 28: Networks & Interconnect Architectural Issues Professor Randy H. Katz Computer Science 252 Spring 1996 RHK.S96 1 Review: ABCs of Networks Starting Point: Send bits between 2 computers Queue

More information

VIII. Communication costs, routing mechanism, mapping techniques, cost-performance tradeoffs. April 6 th, 2009

VIII. Communication costs, routing mechanism, mapping techniques, cost-performance tradeoffs. April 6 th, 2009 VIII. Communication costs, routing mechanism, mapping techniques, cost-performance tradeoffs April 6 th, 2009 Message Passing Costs Major overheads in the execution of parallel programs: from communication

More information

CS 258, Spring 99 David E. Culler Computer Science Division U.C. Berkeley Wide links, smaller routing delay Tremendous variation 3/19/99 CS258 S99 2

CS 258, Spring 99 David E. Culler Computer Science Division U.C. Berkeley Wide links, smaller routing delay Tremendous variation 3/19/99 CS258 S99 2 Real Machines Interconnection Network Topology Design Trade-offs CS 258, Spring 99 David E. Culler Computer Science Division U.C. Berkeley Wide links, smaller routing delay Tremendous variation 3/19/99

More information

SHARED MEMORY VS DISTRIBUTED MEMORY

SHARED MEMORY VS DISTRIBUTED MEMORY OVERVIEW Important Processor Organizations 3 SHARED MEMORY VS DISTRIBUTED MEMORY Classical parallel algorithms were discussed using the shared memory paradigm. In shared memory parallel platform processors

More information

Data Communication and Parallel Computing on Twisted Hypercubes

Data Communication and Parallel Computing on Twisted Hypercubes Data Communication and Parallel Computing on Twisted Hypercubes E. Abuelrub, Department of Computer Science, Zarqa Private University, Jordan Abstract- Massively parallel distributed-memory architectures

More information

EE 3613: Computer Organization Homework #2

EE 3613: Computer Organization Homework #2 EE 3613: Computer Organization Homework #2 Due Dates: (in-class) Hw #2A - Monday, September 24, 2018 Due Dates: (in-class) Hw #2B - Friday, September 21, 2018 by 11:59 PM Instructions: 1. The assignment

More information

Parallel Systems Course: Chapter VIII. Sorting Algorithms. Kumar Chapter 9. Jan Lemeire ETRO Dept. Fall Parallel Sorting

Parallel Systems Course: Chapter VIII. Sorting Algorithms. Kumar Chapter 9. Jan Lemeire ETRO Dept. Fall Parallel Sorting Parallel Systems Course: Chapter VIII Sorting Algorithms Kumar Chapter 9 Jan Lemeire ETRO Dept. Fall 2017 Overview 1. Parallel sort distributed memory 2. Parallel sort shared memory 3. Sorting Networks

More information

Shortest Path Routing on Multi-Mesh of Trees

Shortest Path Routing on Multi-Mesh of Trees Shortest Path Routing on Multi-Mesh of Trees Sudhanshu Kumar Jha, Prasanta K. Jana, Senior Member, IEEE Abstract Multi-Mesh of Trees (MMT) is an efficient interconnection network for massively parallel

More information

Homework 4 assignment for ECE374 Posted: 04/06/15 Due: 04/13/15

Homework 4 assignment for ECE374 Posted: 04/06/15 Due: 04/13/15 ECE374: Homework 4 1 Homework 4 assignment for ECE374 Posted: 04/06/15 Due: 04/13/15 Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can

More information

ACM ICPC World Finals 2011

ACM ICPC World Finals 2011 ACM ICPC World Finals 2011 Solution sketches Disclaimer This is an unofficial analysis of some possible ways to solve the problems of the ACM ICPC World Finals 2011. Any error in this text is my error.

More information

Generalizing Map- Reduce

Generalizing Map- Reduce Generalizing Map- Reduce 1 Example: A Map- Reduce Graph map reduce map... reduce reduce map 2 Map- reduce is not a solu;on to every problem, not even every problem that profitably can use many compute

More information

1 (15 points) LexicoSort

1 (15 points) LexicoSort CS161 Homework 2 Due: 22 April 2016, 12 noon Submit on Gradescope Handed out: 15 April 2016 Instructions: Please answer the following questions to the best of your ability. If you are asked to show your

More information

Cache Coherency and Interconnection Networks

Cache Coherency and Interconnection Networks Cache Coherency and Interconnection Networks Cluster and Grid Computing Autumn Semester (2006-2007) 7 th August 2006 Umang Jain Kumar Puspesh Pankaj Jajoo Amar Kumar Dani 03CS3004 03CS3025 03CS3024 03CS304

More information

Design of Parallel Algorithms. The Architecture of a Parallel Computer

Design of Parallel Algorithms. The Architecture of a Parallel Computer + Design of Parallel Algorithms The Architecture of a Parallel Computer + Trends in Microprocessor Architectures n Microprocessor clock speeds are no longer increasing and have reached a limit of 3-4 Ghz

More information

Lecture 8 Parallel Algorithms II

Lecture 8 Parallel Algorithms II Lecture 8 Parallel Algorithms II Dr. Wilson Rivera ICOM 6025: High Performance Computing Electrical and Computer Engineering Department University of Puerto Rico Original slides from Introduction to Parallel

More information

CS4961 Parallel Programming. Lecture 4: Memory Systems and Interconnects 9/1/11. Administrative. Mary Hall September 1, Homework 2, cont.

CS4961 Parallel Programming. Lecture 4: Memory Systems and Interconnects 9/1/11. Administrative. Mary Hall September 1, Homework 2, cont. CS4961 Parallel Programming Lecture 4: Memory Systems and Interconnects Administrative Nikhil office hours: - Monday, 2-3PM - Lab hours on Tuesday afternoons during programming assignments First homework

More information

Lecture: Interconnection Networks

Lecture: Interconnection Networks Lecture: Interconnection Networks Topics: Router microarchitecture, topologies Final exam next Tuesday: same rules as the first midterm 1 Packets/Flits A message is broken into multiple packets (each packet

More information

Lecture 4: Principles of Parallel Algorithm Design (part 4)

Lecture 4: Principles of Parallel Algorithm Design (part 4) Lecture 4: Principles of Parallel Algorithm Design (part 4) 1 Mapping Technique for Load Balancing Minimize execution time Reduce overheads of execution Sources of overheads: Inter-process interaction

More information

Program Construction and Data Structures Course 1DL201 at Uppsala University Autumn 2010 / Spring 2011 Homework 6: Data Compression

Program Construction and Data Structures Course 1DL201 at Uppsala University Autumn 2010 / Spring 2011 Homework 6: Data Compression Program Construction and Data Structures Course 1DL201 at Uppsala University Autumn 2010 / Spring 2011 Homework 6: Data Compression Prepared by Pierre Flener Lab: Thursday 17 February 2011 Submission Deadline:

More information

Network Properties, Scalability and Requirements For Parallel Processing. Communication assist (CA)

Network Properties, Scalability and Requirements For Parallel Processing. Communication assist (CA) Network Properties, Scalability and Requirements For Parallel Processing Scalable Parallel Performance: Continue to achieve good parallel performance "speedup"as the sizes of the system/problem are increased.

More information

Chapter 6. Delivery and Forwarding of IP Packets

Chapter 6. Delivery and Forwarding of IP Packets Chapter 6 Delivery and Forwarding of IP Packets TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. OBJECTIVES: To discuss the delivery of

More information

Fundamentals of. Parallel Computing. Sanjay Razdan. Alpha Science International Ltd. Oxford, U.K.

Fundamentals of. Parallel Computing. Sanjay Razdan. Alpha Science International Ltd. Oxford, U.K. Fundamentals of Parallel Computing Sanjay Razdan Alpha Science International Ltd. Oxford, U.K. CONTENTS Preface Acknowledgements vii ix 1. Introduction to Parallel Computing 1.1-1.37 1.1 Parallel Computing

More information

Parallel Systems Course: Chapter VIII. Sorting Algorithms. Kumar Chapter 9. Jan Lemeire ETRO Dept. November Parallel Sorting

Parallel Systems Course: Chapter VIII. Sorting Algorithms. Kumar Chapter 9. Jan Lemeire ETRO Dept. November Parallel Sorting Parallel Systems Course: Chapter VIII Sorting Algorithms Kumar Chapter 9 Jan Lemeire ETRO Dept. November 2014 Overview 1. Parallel sort distributed memory 2. Parallel sort shared memory 3. Sorting Networks

More information

Hypercubes. (Chapter Nine)

Hypercubes. (Chapter Nine) Hypercubes (Chapter Nine) Mesh Shortcomings: Due to its simplicity and regular structure, the mesh is attractive, both theoretically and practically. A problem with the mesh is that movement of data is

More information

CSC 447: Parallel Programming for Multi- Core and Cluster Systems

CSC 447: Parallel Programming for Multi- Core and Cluster Systems CSC 447: Parallel Programming for Multi- Core and Cluster Systems Parallel Sorting Algorithms Instructor: Haidar M. Harmanani Spring 2016 Topic Overview Issues in Sorting on Parallel Computers Sorting

More information

A 12-STEP SORTING NETWORK FOR 22 ELEMENTS

A 12-STEP SORTING NETWORK FOR 22 ELEMENTS A 12-STEP SORTING NETWORK FOR 22 ELEMENTS SHERENAZ W. AL-HAJ BADDAR Department of Computer Science, Kent State University Kent, Ohio 44240, USA KENNETH E. BATCHER Department of Computer Science, Kent State

More information

6LPXODWLRQÃRIÃWKHÃ&RPPXQLFDWLRQÃ7LPHÃIRUÃDÃ6SDFH7LPH $GDSWLYHÃ3URFHVVLQJÃ$OJRULWKPÃRQÃDÃ3DUDOOHOÃ(PEHGGHG 6\VWHP

6LPXODWLRQÃRIÃWKHÃ&RPPXQLFDWLRQÃ7LPHÃIRUÃDÃ6SDFH7LPH $GDSWLYHÃ3URFHVVLQJÃ$OJRULWKPÃRQÃDÃ3DUDOOHOÃ(PEHGGHG 6\VWHP LPXODWLRQÃRIÃWKHÃ&RPPXQLFDWLRQÃLPHÃIRUÃDÃSDFHLPH $GDSWLYHÃURFHVVLQJÃ$OJRULWKPÃRQÃDÃDUDOOHOÃ(PEHGGHG \VWHP Jack M. West and John K. Antonio Department of Computer Science, P.O. Box, Texas Tech University,

More information

CS256 Applied Theory of Computation

CS256 Applied Theory of Computation CS256 Applied Theory of Computation Parallel Computation II John E Savage Overview Mesh-based architectures Hypercubes Embedding meshes in hypercubes Normal algorithms on hypercubes Summing and broadcasting

More information

Static Interconnection Networks Prof. Kasim M. Al-Aubidy Computer Eng. Dept.

Static Interconnection Networks Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Advanced Computer Architecture (0630561) Lecture 17 Static Interconnection Networks Prof. Kasim M. Al-Aubidy Computer Eng. Dept. INs Taxonomy: An IN could be either static or dynamic. Connections in a

More information

Algorithms for Grid Graphs in the MapReduce Model

Algorithms for Grid Graphs in the MapReduce Model University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Computer Science and Engineering: Theses, Dissertations, and Student Research Computer Science and Engineering, Department

More information

Crossbar - example. Crossbar. Crossbar. Combination: Time-space switching. Simple space-division switch Crosspoints can be turned on or off

Crossbar - example. Crossbar. Crossbar. Combination: Time-space switching. Simple space-division switch Crosspoints can be turned on or off Crossbar Crossbar - example Simple space-division switch Crosspoints can be turned on or off i n p u t s sessions: (,) (,) (,) (,) outputs Crossbar Advantages: simple to implement simple control flexible

More information

CSE 21 Spring 2016 Homework 5. Instructions

CSE 21 Spring 2016 Homework 5. Instructions CSE 21 Spring 2016 Homework 5 Instructions Homework should be done in groups of one to three people. You are free to change group members at any time throughout the quarter. Problems should be solved together,

More information

Space-division switch fabrics. Copyright 2003, Tim Moors

Space-division switch fabrics. Copyright 2003, Tim Moors 1 Space-division switch fabrics 2 Outline: Space-division switches Single-stage Crossbar, Knockout Staged switches: Multiple switching elements between input and output Networks of basic elements Clos

More information

Homework 3 assignment for ECE671 Posted: 03/01/18 Due: 03/08/18

Homework 3 assignment for ECE671 Posted: 03/01/18 Due: 03/08/18 ECE67: Homework Homework assignment for ECE67 Posted: //8 Due: /8/8 Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit

More information

group 0 group 1 group 2 group 3 (1,0) (1,1) (0,0) (0,1) (1,2) (1,3) (3,0) (3,1) (3,2) (3,3) (2,2) (2,3)

group 0 group 1 group 2 group 3 (1,0) (1,1) (0,0) (0,1) (1,2) (1,3) (3,0) (3,1) (3,2) (3,3) (2,2) (2,3) BPC Permutations n The TIS-Hypercube ptoelectronic Computer Sartaj Sahni and Chih-fang Wang Department of Computer and Information Science and ngineering University of Florida Gainesville, FL 32611 fsahni,wangg@cise.u.edu

More information

Network Properties, Scalability and Requirements For Parallel Processing. Communication assist (CA)

Network Properties, Scalability and Requirements For Parallel Processing. Communication assist (CA) Network Properties, Scalability and Requirements For Parallel Processing Scalable Parallel Performance: Continue to achieve good parallel performance "speedup"as the sizes of the system/problem are increased.

More information

GIAN Course on Distributed Network Algorithms. Network Topologies and Interconnects

GIAN Course on Distributed Network Algorithms. Network Topologies and Interconnects GIAN Course on Distributed Network Algorithms Network Topologies and Interconnects Stefan Schmid @ T-Labs, 2011 The Many Faces and Flavors of Network Topologies Gnutella P2P. Social Networks. Internet.

More information

What is the minimum number of letters that could have been changed?

What is the minimum number of letters that could have been changed? Homework 4, CSE 232 Due September 24 Note: On most of the problem sets through the semester, I ll put a horizontal line with Optional under it. Any problems below this section are encouraged - I think

More information

EE/CSCI 451 Spring 2017 Homework 3 solution Total Points: 100

EE/CSCI 451 Spring 2017 Homework 3 solution Total Points: 100 EE/CSCI 451 Spring 2017 Homework 3 solution Total Points: 100 1 [10 points] 1. Task parallelism: The computations in a parallel algorithm can be split into a set of tasks for concurrent execution. Task

More information

CSE Introduction to Parallel Processing. Chapter 4. Models of Parallel Processing

CSE Introduction to Parallel Processing. Chapter 4. Models of Parallel Processing Dr Izadi CSE-4533 Introduction to Parallel Processing Chapter 4 Models of Parallel Processing Elaborate on the taxonomy of parallel processing from chapter Introduce abstract models of shared and distributed

More information

Lecture 24: Interconnection Networks. Topics: topologies, routing, deadlocks, flow control

Lecture 24: Interconnection Networks. Topics: topologies, routing, deadlocks, flow control Lecture 24: Interconnection Networks Topics: topologies, routing, deadlocks, flow control 1 Topology Examples Grid Torus Hypercube Criteria Bus Ring 2Dtorus 6-cube Fully connected Performance Bisection

More information

Sorting Algorithms. Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

Sorting Algorithms. Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar Sorting Algorithms Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar To accompany the text ``Introduction to Parallel Computing'', Addison Wesley, 2003. Topic Overview Issues in Sorting on Parallel

More information

Router Architectures

Router Architectures Router Architectures Venkat Padmanabhan Microsoft Research 13 April 2001 Venkat Padmanabhan 1 Outline Router architecture overview 50 Gbps multi-gigabit router (Partridge et al.) Technology trends Venkat

More information

EE382 Processor Design. Illinois

EE382 Processor Design. Illinois EE382 Processor Design Winter 1998 Chapter 8 Lectures Multiprocessors Part II EE 382 Processor Design Winter 98/99 Michael Flynn 1 Illinois EE 382 Processor Design Winter 98/99 Michael Flynn 2 1 Write-invalidate

More information

Simulation Analysis of Permutation Passibility behavior of Multi-stage Interconnection Networks

Simulation Analysis of Permutation Passibility behavior of Multi-stage Interconnection Networks Simulation Analysis of Permutation Passibility behavior of Multi-stage Interconnection Networks A Thesis Report Submitted in the partial fulfillment of the requirements for the award of the degree of ME

More information

Basic Communication Operations Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

Basic Communication Operations Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar Basic Communication Operations Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar To accompany the text ``Introduction to Parallel Computing'', Addison Wesley, 2003 Topic Overview One-to-All Broadcast

More information

SOME CONCEPTS IN DISCRETE COSINE TRANSFORMS ~ Jennie G. Abraham Fall 2009, EE5355

SOME CONCEPTS IN DISCRETE COSINE TRANSFORMS ~ Jennie G. Abraham Fall 2009, EE5355 SOME CONCEPTS IN DISCRETE COSINE TRANSFORMS ~ Jennie G. Abraham Fall 009, EE5355 Under Digital Image and Video Processing files by Dr. Min Wu Please see lecture10 - Unitary Transform lecture11 - Transform

More information

CSCI4211: Introduction to Computer Networks Fall 2017 Homework Assignment 2

CSCI4211: Introduction to Computer Networks Fall 2017 Homework Assignment 2 CSCI411: Introduction to Computer Networks Fall 017 Homework Assignment Due 11:59pm Friday November 17 Instructions: 1. Please submit your homework using the on-line electronic submission system (via Moodle)

More information

THOMPSON S MODEL THOMPSON S MODEL (1) THOMPSON S MODEL (2) THE INTERCONNECTION TOPOLOGY LAYOUT PROBLEM THE ORTHOGONAL GRID GRAPH DRAWING

THOMPSON S MODEL THOMPSON S MODEL (1) THOMPSON S MODEL (2) THE INTERCONNECTION TOPOLOGY LAYOUT PROBLEM THE ORTHOGONAL GRID GRAPH DRAWING THE INTERCONNECTION TOPOLOGY LAYOUT PROBLEM I.E. THE ORTHOGONAL GRID GRAPH DRAWING PROBLEM THOMPSON S MODEL 1 Prof. Tiziana Calamoneri Network Algorithms A.A. 2013/14 2 THOMPSON S MODEL (1)! The interconnection

More information

IV. PACKET SWITCH ARCHITECTURES

IV. PACKET SWITCH ARCHITECTURES IV. PACKET SWITCH ARCHITECTURES (a) General Concept - as packet arrives at switch, destination (and possibly source) field in packet header is used as index into routing tables specifying next switch in

More information