0!1. Overlaying mechanism is called tunneling. Overlay Network Nodes. ATM links can be the physical layer for IP

Size: px
Start display at page:

Download "0!1. Overlaying mechanism is called tunneling. Overlay Network Nodes. ATM links can be the physical layer for IP"

Transcription

1 epartment of lectrical ngineering and omputer Sciences University of alifornia erkeley '!$$( network defined over another set of networks The overlay addresses its own nodes Links on one layer are network segments of lower layers Requires lower layer routing to be utilized Overlaying mechanism is called tunneling $)$*+ $)$*+ Overlay Network Nodes Overlay Networks are extremely popular MON, kamai, Virtual Private Networks, Napster, Gnutella Overlay Networks may even peer!, $)$*.$! c a d b TM links can be the physical layer for IP - /

2 ! "$*$! a c d Underlying Network b Virtual ircuit under atagram! "$*$! "$*$! Underlying Network 9 9 ut One virtual hop may be many underlying hops away. Latency and cost vary significantly over the virtual links State information may grow with (n^) "$* "$* Underlying Network ut One virtual hop may be many underlying hops away. Latency and cost vary significantly over the virtual links State information may grow with (n^) ut One virtual hop may be many underlying hops away. Latency and cost vary significantly over the virtual links State information may grow with (n^)

3 "$*!*! $#$*$ "$*!*! $#$*$ Message from Message from xtreme Inefficiencies Possible, "$* $# ut One virtual hop may be many underlying hops away. Latency and cost vary significantly over the virtual links State information may grow with (n^) t any given time, the overlay network picks a connected subgraph based on nearest neighbors How often can vary lso, structured (hord) v/s unstructured (Gnutella) a) Physical Topology b) Naive unicast transmission c) IP multicast d) pplication level multicast rom omputer Networks, by Peterson & avie - / $# Three kinds of Overlays. Only Hosts: Peer to Peer Networks (PP) xample: Gnutella, Napster. Only Gateway nodes: Infrastructure Overlays ontent istribution Networks (Ns) xample: kamai. Host and Gateway Nodes: Virtual Private Networks Overlay node structure Regular: hord, Pastry dhoc: Gnutella unctions Route nhancement: etter QoS, pplication Level Multicast Resource iscovery: PP m? m? m m m m m m m m m m m

4 )$ )$ istribute file location Idea: multicast the request Hot to find a file: Send request to all neighbors Neighbors recursively multicast the request ventually a machine that has the file receives the request, and it sends back the answer dvantages: Totally decentralized, highly robust isadvantages: Not scalable; the entire network can be swamped with request (to alleviate this problem, each request has a TTL) ssume: m s neighbors are m and m; m s neighbors are m and m; m m? m? m?? m m $ Infrastructure Overlays dding performance and route functionality Resource iscovery PP Overlays Resource iscovery in Gnutella xample of an Infrastructure Overlay pplication Level Multicast xample of a PP Overlay ontent ddressable Networks onclusions $ Overlay network users are not directly connected to the overlay nodes.g. kamai "$*#*$* "$*#*$*? IP() Overlay network users are not directly connected to the overlay nodes.g. kamai User must be redirected to a close by overlay node dge-mapping, or redirection function is hard since # potential users enormous User clients not under direct control When overlay clients are directly connected the edge mapping function is obviated.g. PP: users/nodes colocated? IP() Overlay nodes interconnect clients nhance nature of connection Multicast Secure Low Loss Much easier to add functionality than to integrate into a router,

5 "$*##$*%$$! Overlay nodes interconnect clients nhance nature of connection Multicast Secure Low Loss Much easier to add functionality than to integrate into a router Overlay nodes can become bottlenecks? s. g. iles lient makes request for.g. find the least loaded content and that has low - /? s. g. iles lient makes request for.g. find the least loaded content and that is has low single index is not scalable Overlay launches a query to locate? s. g. iles lient makes request for.g. find the least loaded content and that is has low single index is not scalable Overlay launches a query to locate Query is Routed through the overlay until object is located? s. g. iles lient makes request for.g. find the least loaded content and that is has low single index is not scalable Overlay launches a query to locate Query is Routed through the overlay until object is located? s. g. iles lient makes request for.g. find the least loaded content and that is has low single index is not scalable Overlay launches a query to locate Query is Routed through the overlay until object is located

6 Overlay network users are not directly connected to the overlay nodes.g. Napster, Gnutella No edge mapping problem No gateways to maintain ut Nodes have limited s storage, connectivity computational power Two kinds of overlays functions Overlay provides access to distributed s Overlay facilitates communication among other client applications Two kinds of virtual topologies Structured: mesh, ring etc. Unstructured Two kinds of client connectivty irect: PP Not direct: kamai Overlay Network unctions Select Virtual dges (fast or slow timescales) Overlay Routing Protocol dge Mapping Resource Location $ 9!:#$$ ontent Producer ontent Producer Media istribution Network Media lients ontent Producer ontent Producer, :#! :#$*$ Management Platform content management injection & real-time control network management monitoring & provisioning server management redirection management load balancing system availability viewer management subscriptions, PPV, monitoring, Neilson ratings, targeted advertising pplication-level information for management and tracking Works across multiple networks ontent Producer event programming with ad-hoc query audience statistics - /

7 :#$* $*$ Node Information Stream Switchover $$##; < = N is one of several recent PP architectures that imposes a structure on the virtual topology uses a distributed hash-table data structure abstraction Note: item can be anything: a data object, document, file, pointer to a file routes queries through the structured overlay attempts to distribute (object, location) pairs uniformly throughout the network supports object lookup, insertion and deletion of objects efficiently. Others: hord, Pastry, Tapestry $$##; < = ssociate to each node and item a unique id in an d-dimensional space Properties Routing table size O(d) Guarantee that a file is found in at most d*n /d steps, where n is the total number of nodes, 9.$$ Space divided between nodes ll nodes cover the entire space ach node covers either a square or a rectangular area of ratios : or : xample: ssume space size ( x ) Node n:(, ) first node that joins cover the entire space n 9.$$ Node n:(, ) joins space is divided between n and n n n,,

8 9.$$ Node n:(, ) joins space is divided between n and n 9.$$ Nodes n:(, ) and n:(,) join n n n n n n n n,,, 9.$$ Nodes: n:(, ); n:(,); n:(, ); n:(,);n:(,) Items: f:(,); f:(,); f:(,); f:(,); n n n f 9.$$ ach item is stored by the node who owns its mapping in the space n n n f n f f n n f f n f f,-,/ > ##$*?.$*$# ach node knows its neighbors in the d-space orward query to the neighbor that is closest to the query id xample: assume n queries f n n n f f n n f f New node picks a point P at random ssuming it can find any overlay node, it sends a join message to the node which owns that point When the message has reached P, the node divides itself in half along one of the dimensions (first x then y etc) Pairs are transferred and neighbor sets updated Similar reasoning handles departures and failures,,

9 +$#$* xample: Three landmarks -ms: level -ms: level -ms: level Node j measures latencies of ms, ms, ms to the three landmarks. The bin of node j is (l,l,l : ) Neighbors should be close to each other in terms of latency on the underlying network Pick a set of well known landmark hosts ach node distributively computes its bin Nodes in the same bin are close to each other Orders the landmark set in increasing order of RTT from it. Latency is partitioned into levels Thus, associated with each landmark, at each node is a rank and a level. These values identify the bin $## $*%$$ ddressing: Uniquely identify the nodes host IP address, group address, attributes set is dynamic! Topology Update: haracterize and maintain connectivity iscover topology Measure distance metric(s) ynamically provision (on slower timescale) estination iscovery: ind node identifiers of the destination set Route omputation: Pick the tree (path) Kind of path: Multicast, Unicast Global or istributed lgorithm Policy Hierarchy Switching: orward the packets at each node, - $#9!$* $$ ddressing: Uniquely identify the nodes host IP address, group address, attributes set Structured is dynamic! Topology Topology Update: haracterize and maintain connectivity iscover topology Measure dd/insert distance Nodes, metric(s) inning ynamically provision (on slower timescale) estination iscovery: ind Resource node identifiers Location of the dge destination Mapping set Route omputation: Pick the tree (path) Kind of path: Multicast, Unicast pplication Level Routing...g streaming broadcast Global or istributed lgorithm Policy Structured Topology Hierarchy Switching: orward the packets at each node Overlays are an irreversible trend in network Overlays add new functions to the network infrastructure much faster than by trying to integrate them in the router relying on a infrastructure service provider on deploy the function isadvantages Overlay nodes can create performance bottlenecks New end-to-end protocols may not work since the overlay nodes don t understand them Generally better to improve performance by building an underlay and add functionality by building an overlay - - 9

Main Challenge. Other Challenges. How Did it Start? Napster. Model. EE 122: Peer-to-Peer Networks. Find where a particular file is stored

Main Challenge. Other Challenges. How Did it Start? Napster. Model. EE 122: Peer-to-Peer Networks. Find where a particular file is stored Main hallenge ind where a particular file is stored : Peer-to-Peer Networks Ion Stoica (and righten Godfrey) Ts: Lucian Popa, avid Zats and Ganesh nanthanarayanan http://inst.eecs.berkeley.edu/~ee/ (Materials

More information

Goals. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Solution. Overlay Networks: Motivations.

Goals. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Solution. Overlay Networks: Motivations. Goals CS : Introduction to Computer Networks Overlay Networks and PP Networks Ion Stoica Computer Science Division Department of lectrical ngineering and Computer Sciences University of California, Berkeley

More information

Overlay Networks: Motivations. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Motivations (cont d) Goals.

Overlay Networks: Motivations. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Motivations (cont d) Goals. Overlay Networks: Motivations CS : Introduction to Computer Networks Overlay Networks and PP Networks Ion Stoica Computer Science Division Department of lectrical ngineering and Computer Sciences University

More information

Final Overview EECS 122

Final Overview EECS 122 The Network ore Final Overview EES epartment of Electrical Engineering and omputer Sciences University of alifornia erkeley any interconnected subs any different architectures dvertises a service to the

More information

EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Overlay Networks: Motivations

EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Overlay Networks: Motivations EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks Ion Stoica Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley

More information

EE 122: Peer-to-Peer (P2P) Networks. Ion Stoica November 27, 2002

EE 122: Peer-to-Peer (P2P) Networks. Ion Stoica November 27, 2002 EE 122: Peer-to-Peer (P2P) Networks Ion Stoica November 27, 22 How Did it Start? A killer application: Naptser - Free music over the Internet Key idea: share the storage and bandwidth of individual (home)

More information

Ossification of the Internet

Ossification of the Internet Ossification of the Internet The Internet evolved as an experimental packet-switched network Today, many aspects appear to be set in stone - Witness difficulty in getting IP multicast deployed - Major

More information

Lecture 6: Overlay Networks. CS 598: Advanced Internetworking Matthew Caesar February 15, 2011

Lecture 6: Overlay Networks. CS 598: Advanced Internetworking Matthew Caesar February 15, 2011 Lecture 6: Overlay Networks CS 598: Advanced Internetworking Matthew Caesar February 15, 2011 1 Overlay networks: Motivations Protocol changes in the network happen very slowly Why? Internet is shared

More information

EE 122: Peer-to-Peer Networks

EE 122: Peer-to-Peer Networks EE 122: Peer-to-Peer Networks Ion Stoica (and Brighten Godfrey) TAs: Lucian Popa, David Zats and Ganesh Ananthanarayanan http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer

More information

Page 1. How Did it Start?" Model" Main Challenge" CS162 Operating Systems and Systems Programming Lecture 24. Peer-to-Peer Networks"

Page 1. How Did it Start? Model Main Challenge CS162 Operating Systems and Systems Programming Lecture 24. Peer-to-Peer Networks How Did it Start?" CS162 Operating Systems and Systems Programming Lecture 24 Peer-to-Peer Networks" A killer application: Napster (1999) Free music over the Internet Key idea: share the storage and bandwidth

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [P2P SYSTEMS] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Byzantine failures vs malicious nodes

More information

Peer-to-Peer Systems. Chapter General Characteristics

Peer-to-Peer Systems. Chapter General Characteristics Chapter 2 Peer-to-Peer Systems Abstract In this chapter, a basic overview is given of P2P systems, architectures, and search strategies in P2P systems. More specific concepts that are outlined include

More information

Flooded Queries (Gnutella) Centralized Lookup (Napster) Routed Queries (Freenet, Chord, etc.) Overview N 2 N 1 N 3 N 4 N 8 N 9 N N 7 N 6 N 9

Flooded Queries (Gnutella) Centralized Lookup (Napster) Routed Queries (Freenet, Chord, etc.) Overview N 2 N 1 N 3 N 4 N 8 N 9 N N 7 N 6 N 9 Peer-to-Peer Networks -: Computer Networking L-: PP Typically each member stores/provides access to content Has quickly grown in popularity Bulk of traffic from/to CMU is Kazaa! Basically a replication

More information

CIS 700/005 Networking Meets Databases

CIS 700/005 Networking Meets Databases Announcements CIS / Networking Meets Databases Boon Thau Loo Spring Lecture Paper summaries due at noon today. Office hours: Wed - pm ( Levine) Project proposal: due Feb. Student presenter: rd Jan: A Scalable

More information

March 10, Distributed Hash-based Lookup. for Peer-to-Peer Systems. Sandeep Shelke Shrirang Shirodkar MTech I CSE

March 10, Distributed Hash-based Lookup. for Peer-to-Peer Systems. Sandeep Shelke Shrirang Shirodkar MTech I CSE for for March 10, 2006 Agenda for Peer-to-Peer Sytems Initial approaches to Their Limitations CAN - Applications of CAN Design Details Benefits for Distributed and a decentralized architecture No centralized

More information

CDNs and Peer-to-Peer

CDNs and Peer-to-Peer This Lecture This will be a why lecture, not a how to one CDNs and Peer-to-Peer EECS 89 Computer Networks http://www.eecs.umich.edu/~zmao/eecs89 Z. Morley Mao Tuesday Nov 9, Emphasis is on why these developments

More information

Bayeux: An Architecture for Scalable and Fault Tolerant Wide area Data Dissemination

Bayeux: An Architecture for Scalable and Fault Tolerant Wide area Data Dissemination Bayeux: An Architecture for Scalable and Fault Tolerant Wide area Data Dissemination By Shelley Zhuang,Ben Zhao,Anthony Joseph, Randy Katz,John Kubiatowicz Introduction Multimedia Streaming typically involves

More information

4/11/2012. Outline. Routing Protocols for Ad Hoc Networks. Classification of Unicast Ad-Hoc Routing Protocols. Ad Hoc Networks.

4/11/2012. Outline. Routing Protocols for Ad Hoc Networks. Classification of Unicast Ad-Hoc Routing Protocols. Ad Hoc Networks. 18759 Wireless Networks (2012-pring) urvey Routing Protocols for d Hoc Networks Jiun-RenLin and Yi-hun hou lectrical and omputer ngineering arnegie Mellon University Outline d-hoc networks Unicast d-hoc

More information

A Scalable Content- Addressable Network

A Scalable Content- Addressable Network A Scalable Content- Addressable Network In Proceedings of ACM SIGCOMM 2001 S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker Presented by L.G. Alex Sung 9th March 2005 for CS856 1 Outline CAN basics

More information

Content Overlays. Nick Feamster CS 7260 March 12, 2007

Content Overlays. Nick Feamster CS 7260 March 12, 2007 Content Overlays Nick Feamster CS 7260 March 12, 2007 Content Overlays Distributed content storage and retrieval Two primary approaches: Structured overlay Unstructured overlay Today s paper: Chord Not

More information

WAN Technology and Routing

WAN Technology and Routing PS 60 - Network Programming WN Technology and Routing Michele Weigle epartment of omputer Science lemson University mweigle@cs.clemson.edu March, 00 http://www.cs.clemson.edu/~mweigle/courses/cpsc60 WN

More information

Telematics Chapter 9: Peer-to-Peer Networks

Telematics Chapter 9: Peer-to-Peer Networks Telematics Chapter 9: Peer-to-Peer Networks Beispielbild User watching video clip Server with video clips Application Layer Presentation Layer Application Layer Presentation Layer Session Layer Session

More information

What is Routing? EE 122: Shortest Path Routing. Example. Internet Routing. Ion Stoica TAs: Junda Liu, DK Moon, David Zats

What is Routing? EE 122: Shortest Path Routing. Example. Internet Routing. Ion Stoica TAs: Junda Liu, DK Moon, David Zats What is Routing? Routing implements the core function of a network: : Shortest Path Routing Ion Stoica Ts: Junda Liu, K Moon, avid Zats http://inst.eecs.berkeley.edu/~ee/fa9 (Materials with thanks to Vern

More information

Dynamic Source Routing (DSR) [Johnson96] CSE 6811 : Lecture 5

Dynamic Source Routing (DSR) [Johnson96] CSE 6811 : Lecture 5 ynamic Source Routing (SR) [Johnson96] S 6811 : Lecture 5 d Hoc Wireless Routing ifferent from routing in the wired world esirable properties of a wireless routing protocol istributed operation Loop freedom

More information

Page 1 EEC173B/ECS152C. Link State Routing [Huitema95] Optimized Link State Routing (OLSR) MANET Unicast Routing. Proactive Protocols

Page 1 EEC173B/ECS152C. Link State Routing [Huitema95] Optimized Link State Routing (OLSR) MANET Unicast Routing. Proactive Protocols 173/S152 Proactive Protocols MNT Unicast Routing Proactive Protocols OLSR SV ybrid Protocols Most of the schemes discussed so far are reactive Proactive schemes based on distance vector and link state

More information

Introduction to Peer-to-Peer Systems

Introduction to Peer-to-Peer Systems Introduction Introduction to Peer-to-Peer Systems Peer-to-peer (PP) systems have become extremely popular and contribute to vast amounts of Internet traffic PP basic definition: A PP system is a distributed

More information

Chord : A Scalable Peer-to-Peer Lookup Protocol for Internet Applications

Chord : A Scalable Peer-to-Peer Lookup Protocol for Internet Applications : A Scalable Peer-to-Peer Lookup Protocol for Internet Applications Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashock, Frank Dabek, Hari Balakrishnan March 4, 2013 One slide

More information

CS 640 Introduction to Computer Networks. Today s lecture. What is P2P? Lecture30. Peer to peer applications

CS 640 Introduction to Computer Networks. Today s lecture. What is P2P? Lecture30. Peer to peer applications Introduction to Computer Networks Lecture30 Today s lecture Peer to peer applications Napster Gnutella KaZaA Chord What is P2P? Significant autonomy from central servers Exploits resources at the edges

More information

Peer-to-peer systems and overlay networks

Peer-to-peer systems and overlay networks Complex Adaptive Systems C.d.L. Informatica Università di Bologna Peer-to-peer systems and overlay networks Fabio Picconi Dipartimento di Scienze dell Informazione 1 Outline Introduction to P2P systems

More information

Ad Hoc Routing. Ad-hoc Routing. Problems Using DV or LS. DSR Concepts. DSR Components. Proposed Protocols

Ad Hoc Routing. Ad-hoc Routing. Problems Using DV or LS. DSR Concepts. DSR Components. Proposed Protocols d oc Routing d-hoc Routing rvind Krishnamurthy all 2003 Create multi-hop connectivity among set of wireless, possibly moving, nodes Mobile, wireless hosts act as forwarding nodes as well as end systems

More information

CompSci 356: Computer Network Architectures Lecture 21: Overlay Networks Chap 9.4. Xiaowei Yang

CompSci 356: Computer Network Architectures Lecture 21: Overlay Networks Chap 9.4. Xiaowei Yang CompSci 356: Computer Network Architectures Lecture 21: Overlay Networks Chap 9.4 Xiaowei Yang xwy@cs.duke.edu Overview Problem Evolving solutions IP multicast Proxy caching Content distribution networks

More information

Peer-to-Peer Systems. Network Science: Introduction. P2P History: P2P History: 1999 today

Peer-to-Peer Systems. Network Science: Introduction. P2P History: P2P History: 1999 today Network Science: Peer-to-Peer Systems Ozalp Babaoglu Dipartimento di Informatica Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/ Introduction Peer-to-peer (PP) systems have become

More information

A Survey of Peer-to-Peer Content Distribution Technologies

A Survey of Peer-to-Peer Content Distribution Technologies A Survey of Peer-to-Peer Content Distribution Technologies Stephanos Androutsellis-Theotokis and Diomidis Spinellis ACM Computing Surveys, December 2004 Presenter: Seung-hwan Baek Ja-eun Choi Outline Overview

More information

Architectures for Distributed Systems

Architectures for Distributed Systems Distributed Systems and Middleware 2013 2: Architectures Architectures for Distributed Systems Components A distributed system consists of components Each component has well-defined interface, can be replaced

More information

Making Gnutella-like P2P Systems Scalable

Making Gnutella-like P2P Systems Scalable Making Gnutella-like P2P Systems Scalable Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker Presented by: Herman Li Mar 2, 2005 Outline What are peer-to-peer (P2P) systems? Early P2P systems

More information

Peer-to-Peer Internet Applications: A Review

Peer-to-Peer Internet Applications: A Review Peer-to-Peer Internet Applications: A Review Davide Quaglia 01/14/10 Introduction Key points Lookup task Outline Centralized (Napster) Query flooding (Gnutella) Distributed Hash Table (Chord) Simulation

More information

Distributed Meta-data Servers: Architecture and Design. Sarah Sharafkandi David H.C. Du DISC

Distributed Meta-data Servers: Architecture and Design. Sarah Sharafkandi David H.C. Du DISC Distributed Meta-data Servers: Architecture and Design Sarah Sharafkandi David H.C. Du DISC 5/22/07 1 Outline Meta-Data Server (MDS) functions Why a distributed and global Architecture? Problem description

More information

Overlay Networks. Behnam Momeni Computer Engineering Department Sharif University of Technology

Overlay Networks. Behnam Momeni Computer Engineering Department Sharif University of Technology CE443 Computer Networks Overlay Networks Behnam Momeni Computer Engineering Department Sharif University of Technology Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer

More information

Distriubted Hash Tables and Scalable Content Adressable Network (CAN)

Distriubted Hash Tables and Scalable Content Adressable Network (CAN) Distriubted Hash Tables and Scalable Content Adressable Network (CAN) Ines Abdelghani 22.09.2008 Contents 1 Introduction 2 2 Distributed Hash Tables: DHT 2 2.1 Generalities about DHTs............................

More information

Distributed Algorithms in Networks EECS 122: Lecture 17

Distributed Algorithms in Networks EECS 122: Lecture 17 istributed lgorithms in Networks EES : Lecture 7 epartment of Electrical Engineering and omputer Sciences University of alifornia erkeley Network Protocols often have unintended effects TP Eample TP connections

More information

Deployment of IGRP/EIGRP

Deployment of IGRP/EIGRP 1 eployment of IGRP/EIGRP Session 2 Presentation_I.scr 1 Understanding EIGRP Understanding and deploying EIGRP is like driving a car 3 genda Fundamentals of EIGRP UL Summarization and Load alancing EIGRP/IGRP

More information

: Scalable Lookup

: Scalable Lookup 6.824 2006: Scalable Lookup Prior focus has been on traditional distributed systems e.g. NFS, DSM/Hypervisor, Harp Machine room: well maintained, centrally located. Relatively stable population: can be

More information

Overlay networks. Today. l Overlays networks l P2P evolution l Pastry as a routing overlay example

Overlay networks. Today. l Overlays networks l P2P evolution l Pastry as a routing overlay example Overlay networks Today l Overlays networks l P2P evolution l Pastry as a routing overlay eample Network virtualization and overlays " Different applications with a range of demands/needs network virtualization

More information

DSDV: Proactive. Distance Vector (Basic idea) Distance Vector. Distance Vector Algorithm: Tables 12/13/2016

DSDV: Proactive. Distance Vector (Basic idea) Distance Vector. Distance Vector Algorithm: Tables 12/13/2016 estination Sequenced istance Vector (SV) Routing [Perkins94] SV: Proactive SV is a proactive protocol means it maintains up-to-date routing information for all available nodes in the network. No extra

More information

Now Arriving at Layer 3. Packet Forwarding. Router Design. Network Layers and Routers. Switching and Forwarding. Forwarding

Now Arriving at Layer 3. Packet Forwarding. Router Design. Network Layers and Routers. Switching and Forwarding. Forwarding Now rriving at Layer Packet orwarding although layer switches and layer routers are similar in many ways and TM/Virtual are used at layer these days 9/7/6 S/ 48 - UIU, all 6 9/7/6 S/ 48 - UIU, all 6 Layers

More information

Optimizing Xcast Treemap Performance with NFV and SDN

Optimizing Xcast Treemap Performance with NFV and SDN Optimizing Xcast Treemap Performance with NFV and N T. Khoa Phan Joined work with avid Griffin and Miguel Rio University ollege London Next Generation Networking workshop, July 2016 Facebook Livestream

More information

Telecommunication Services Engineering Lab. Roch H. Glitho

Telecommunication Services Engineering Lab. Roch H. Glitho 1 Support Infrastructure Support infrastructure for application layer Why? Re-usability across application layer protocols Modularity (i.e. separation between application layer protocol specification /

More information

Overlay and P2P Networks. Introduction and unstructured networks. Prof. Sasu Tarkoma

Overlay and P2P Networks. Introduction and unstructured networks. Prof. Sasu Tarkoma Overlay and P2P Networks Introduction and unstructured networks Prof. Sasu Tarkoma 14.1.2013 Contents Overlay networks and intro to networking Unstructured networks Overlay Networks An overlay network

More information

DISTRIBUTED COMPUTER SYSTEMS ARCHITECTURES

DISTRIBUTED COMPUTER SYSTEMS ARCHITECTURES DISTRIBUTED COMPUTER SYSTEMS ARCHITECTURES Dr. Jack Lange Computer Science Department University of Pittsburgh Fall 2015 Outline System Architectural Design Issues Centralized Architectures Application

More information

LECTURE 9. Ad hoc Networks and Routing

LECTURE 9. Ad hoc Networks and Routing 1 LECTURE 9 Ad hoc Networks and Routing Ad hoc Networks 2 Ad Hoc Networks consist of peer to peer communicating nodes (possibly mobile) no infrastructure. Topology of the network changes dynamically links

More information

Opportunistic Application Flows in Sensor-based Pervasive Environments

Opportunistic Application Flows in Sensor-based Pervasive Environments Opportunistic Application Flows in Sensor-based Pervasive Environments Nanyan Jiang, Cristina Schmidt, Vincent Matossian, and Manish Parashar ICPS 2004 1 Outline Introduction to pervasive sensor-based

More information

Unicast Routing in Mobile Ad Hoc Networks

Unicast Routing in Mobile Ad Hoc Networks Unicast Routing in obile d oc etworks Routing problem 1 2 Responsibility of a routing protocol etermining an optimal way to find optimal routes etermining a feasible path to a destination based on a certain

More information

Topologically-Aware Overlay Construction and Server Selection

Topologically-Aware Overlay Construction and Server Selection Topologically-Aware Overlay Construction and Server Selection Sylvia Ratnasamy, Mark Handley, Richard Karp, Scott Shenker Abstract A number of large-scale distributed Internet applications could potentially

More information

An Expresway over Chord in Peer-to-Peer Systems

An Expresway over Chord in Peer-to-Peer Systems An Expresway over Chord in Peer-to-Peer Systems Hathai Tanta-ngai Technical Report CS-2005-19 October 18, 2005 Faculty of Computer Science 6050 University Ave., Halifax, Nova Scotia, B3H 1W5, Canada An

More information

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE! 1. Link state flooding topology information finding the shortest paths (Dijkstra)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE! 1. Link state flooding topology information finding the shortest paths (Dijkstra) ontents ÉOL POLYTHNIQU ÉÉRL LUSNN! 1. Link state flooding topology information finding the shortest paths (ijkstra)! 2. Hierarchical routing with areas! 3. OSP Link State Routing database modelling neighbor

More information

Network Layer (Routing)

Network Layer (Routing) Network Layer (Routing) Topics Network service models Datagrams (packets), virtual circuits IP (Internet Protocol) Internetworking Forwarding (Longest Matching Prefix) Helpers: ARP and DHCP Fragmentation

More information

Peer-to-Peer Streaming Systems. Behzad Akbari

Peer-to-Peer Streaming Systems. Behzad Akbari Peer-to-Peer Streaming Systems Behzad Akbari 1 Outline Introduction Scaleable Streaming Approaches Application Layer Multicast Content Distribution Networks Peer-to-Peer Streaming Metrics Current Issues

More information

P2P Network Structured Networks: Distributed Hash Tables. Pedro García López Universitat Rovira I Virgili

P2P Network Structured Networks: Distributed Hash Tables. Pedro García López Universitat Rovira I Virgili P2P Network Structured Networks: Distributed Hash Tables Pedro García López Universitat Rovira I Virgili Pedro.garcia@urv.net Index Introduction to DHT s Origins of structured overlays Case studies Chord

More information

CS 268: DHTs. Page 1. How Did it Start? Model. Main Challenge. Napster. Other Challenges

CS 268: DHTs. Page 1. How Did it Start? Model. Main Challenge. Napster. Other Challenges How Did it Start? CS : DHTs A killer application: Naptser - Free music over the Internet Key idea: share the content, storage and bandwidth of individual (home) users Scott Shenker and Ion Stoica April,

More information

Outline A Hierarchical P2P Architecture and an Efficient Flooding Algorithm

Outline A Hierarchical P2P Architecture and an Efficient Flooding Algorithm University of British Columbia Cpsc 527 Advanced Computer Communications Lecture 9b Hierarchical P2P Architecture and Efficient Multicasting (Juan Li s MSc Thesis) Instructor: Dr. Son Vuong The World Connected

More information

Dynamic Source Routing (DSR) [Johnson96]

Dynamic Source Routing (DSR) [Johnson96] ynamic Source Routing (SR) [ohnson96] S 6811 : ecture 5 d oc Wireless Routing ifferent from routing in the wired world esirable properties of a wireless routing protocol istributed operation oop freedom

More information

Distance-Vector Routing: Distributed B-F (cont.)

Distance-Vector Routing: Distributed B-F (cont.) istance-vector Routing: istributed - (cont.) xample [ istributed ellman-ord lgorithm ] ssume each node i maintains an entry (R(i,x), L(i,x)), where R(i,x) is the next node along the current shortest path

More information

Discussion 8: Link State Routing. CSE 123: Computer Networks Marti Motoyama & Chris Kanich

Discussion 8: Link State Routing. CSE 123: Computer Networks Marti Motoyama & Chris Kanich iscussion 8: Link State Routing S : omputer Networks Marti Motoyama & hris Kanich Schedule Project Questions: mail hris, post to moodle, or attend his OH Homework Questions? Link State iscussion S iscussion

More information

CSE/EE 461 Lecture 7 Bridging LANs. Last Two Times. This Time -- Switching (a.k.a. Bridging)

CSE/EE 461 Lecture 7 Bridging LANs. Last Two Times. This Time -- Switching (a.k.a. Bridging) S/ 461 Lecture 7 ridging LNs Last Two Times Medium ccess ontrol (M) protocols Part of the Link Layer t the heart of Local rea Networks (LNs) ow do multiple parties share a wire or the air? Random access

More information

Chapter 8 LOCATION SERVICES

Chapter 8 LOCATION SERVICES Chapter 8 LOCATION SERVICES Distributed Computing Group Mobile Computing Winter 2005 / 2006 Overview Mobile IP Motivation Data transfer Encapsulation Location Services & Routing Classification of location

More information

CPSC 426/526. P2P Lookup Service. Ennan Zhai. Computer Science Department Yale University

CPSC 426/526. P2P Lookup Service. Ennan Zhai. Computer Science Department Yale University CPSC 4/5 PP Lookup Service Ennan Zhai Computer Science Department Yale University Recall: Lec- Network basics: - OSI model and how Internet works - Socket APIs red PP network (Gnutella, KaZaA, etc.) UseNet

More information

ECE 158A: Lecture 5. Fall 2015

ECE 158A: Lecture 5. Fall 2015 8: Lecture Fall 0 Routing ()! Location-ased ddressing Recall from Lecture that routers maintain routing tables to forward packets based on their IP addresses To allow scalability, IP addresses are assigned

More information

15-744: Computer Networking P2P/DHT

15-744: Computer Networking P2P/DHT 15-744: Computer Networking P2P/DHT Overview P2P Lookup Overview Centralized/Flooded Lookups Routed Lookups Chord Comparison of DHTs 2 Peer-to-Peer Networks Typically each member stores/provides access

More information

CS514: Intermediate Course in Computer Systems

CS514: Intermediate Course in Computer Systems Distributed Hash Tables (DHT) Overview and Issues Paul Francis CS514: Intermediate Course in Computer Systems Lecture 26: Nov 19, 2003 Distributed Hash Tables (DHT): Overview and Issues What is a Distributed

More information

Overlay Networks in ScaleNet

Overlay Networks in ScaleNet Overlay Networks in ScaleNet Dipl-Inform. Ingmar Baumgart Prof. Dr. Martina Zitterbart VDE ITG 5.2.1 Fachgruppentreffen, Ericsson, Aachen, 5.5.06, The ScaleNet Project : Scalable, efficient and flexible

More information

08 Distributed Hash Tables

08 Distributed Hash Tables 08 Distributed Hash Tables 2/59 Chord Lookup Algorithm Properties Interface: lookup(key) IP address Efficient: O(log N) messages per lookup N is the total number of servers Scalable: O(log N) state per

More information

Distributed Information Processing

Distributed Information Processing Distributed Information Processing 14 th Lecture Eom, Hyeonsang ( 엄현상 ) Department of Computer Science & Engineering Seoul National University Copyrights 2016 Eom, Hyeonsang All Rights Reserved Outline

More information

Peer- Peer to -peer Systems

Peer- Peer to -peer Systems Peer-to-peer Systems Brian Nielsen bnielsen@cs.aau.dk Client-Server Centralized Bottleneck Functional specialization Single point of failure Central administration NFS Client NFS Client NFS Server NFS

More information

XMSF Overlay Multicast Status Report

XMSF Overlay Multicast Status Report XMSF Overlay Multicast Status Report Mark Pullen and ennis Moen George Mason University {dmoen,mpullen}@gmu.edu 2004 J. Mark Pullen 1 Network Service Requirements for Real Time istributed Virtual Simulation

More information

Scalable overlay Networks

Scalable overlay Networks overlay Networks Dr. Samu Varjonen 1 Lectures MO 15.01. C122 Introduction. Exercises. Motivation. TH 18.01. DK117 Unstructured networks I MO 22.01. C122 Unstructured networks II TH 25.01. DK117 Bittorrent

More information

TCP/IP Networking. Part 3: Forwarding and Routing

TCP/IP Networking. Part 3: Forwarding and Routing TP/IP Networking Part 3: Forwarding and Routing Routing of IP Packets There are two parts to routing IP packets:. How to pass a packet from an input interface to the output interface of a router ( IP forwarding

More information

Lecture 6: Bridges and Switches. CS/ECE 438: Communication Networks Prof. Matthew Caesar February 19, 2010

Lecture 6: Bridges and Switches. CS/ECE 438: Communication Networks Prof. Matthew Caesar February 19, 2010 Lecture 6: ridges and Switches CS/C 48: Communication Networks Prof. Matthew Caesar February 9, How can many hosts communicate? Naïve approach: full mesh Problem: doesn t scale How can many hosts communicate?

More information

INF5070 media storage and distribution systems. to-peer Systems 10/

INF5070 media storage and distribution systems. to-peer Systems 10/ INF5070 Media Storage and Distribution Systems: Peer-to to-peer Systems 10/11 2003 Client-Server! Traditional distributed computing! Successful architecture, and will continue to be so (adding proxy servers)!

More information

The Design and Implementation of a Next Generation Name Service for the Internet (CoDoNS) Presented By: Kamalakar Kambhatla

The Design and Implementation of a Next Generation Name Service for the Internet (CoDoNS) Presented By: Kamalakar Kambhatla The Design and Implementation of a Next Generation Name Service for the Internet (CoDoNS) Venugopalan Ramasubramanian Emin Gün Sirer Presented By: Kamalakar Kambhatla * Slides adapted from the paper -

More information

Routers & Routing : Computer Networking. Binary Search on Ranges. Speeding up Prefix Match - Alternatives

Routers & Routing : Computer Networking. Binary Search on Ranges. Speeding up Prefix Match - Alternatives Routers & Routing -44: omputer Networking High-speed router architecture Intro to routing protocols ssigned reading [McK9] Fast Switched ackplane for a Gigabit Switched Router Know RIP/OSPF L-4 Intra-omain

More information

! Naive n-way unicast does not scale. ! IP multicast to the rescue. ! Extends IP architecture for efficient multi-point delivery. !

! Naive n-way unicast does not scale. ! IP multicast to the rescue. ! Extends IP architecture for efficient multi-point delivery. ! Bayeux: An Architecture for Scalable and Fault-tolerant Wide-area Data Dissemination ACM NOSSDAV 001 Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, John D. Kubiatowicz {shelleyz, ravenben,

More information

Let s focus on clarifying questions. More Routing. Logic Refresher. Warning. Short Summary of Course. 10 Years from Now.

Let s focus on clarifying questions. More Routing. Logic Refresher. Warning. Short Summary of Course. 10 Years from Now. Let s focus on clarifying questions I love the degree of interaction in this year s class More Routing all Scott Shenker http://inst.eecs.berkeley.edu/~ee/ Materials with thanks to Jennifer Rexford, Ion

More information

Distributed File Systems: An Overview of Peer-to-Peer Architectures. Distributed File Systems

Distributed File Systems: An Overview of Peer-to-Peer Architectures. Distributed File Systems Distributed File Systems: An Overview of Peer-to-Peer Architectures Distributed File Systems Data is distributed among many sources Ex. Distributed database systems Frequently utilize a centralized lookup

More information

Drafting Behind Akamai (Travelocity-Based Detouring)

Drafting Behind Akamai (Travelocity-Based Detouring) (Travelocity-Based Detouring) Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic and Fabián E. Bustamante Department of EECS Northwestern University ACM SIGCOMM 2006 Drafting Detour 2 Motivation Growing

More information

Overlay and P2P Networks. Unstructured networks. PhD. Samu Varjonen

Overlay and P2P Networks. Unstructured networks. PhD. Samu Varjonen Overlay and P2P Networks Unstructured networks PhD. Samu Varjonen 25.1.2016 Contents Unstructured networks Last week Napster Skype This week: Gnutella BitTorrent P2P Index It is crucial to be able to find

More information

CSE 124 Finding objects in distributed systems: Distributed hash tables and consistent hashing. March 8, 2016 Prof. George Porter

CSE 124 Finding objects in distributed systems: Distributed hash tables and consistent hashing. March 8, 2016 Prof. George Porter CSE 124 Finding objects in distributed systems: Distributed hash tables and consistent hashing March 8, 2016 rof. George orter Outline Today: eer-to-peer networking Distributed hash tables Consistent hashing

More information

The Basics of Wireless Communication Octav Chipara

The Basics of Wireless Communication Octav Chipara The asics of Wireless ommunication Octav hipara genda hannel model: the protocol model High-level media access TM, SM hidden/exposed terminal problems WLN Fundamentals of routing proactive on-demand 2

More information

CPSC 426/526. P2P Lookup Service. Ennan Zhai. Computer Science Department Yale University

CPSC 426/526. P2P Lookup Service. Ennan Zhai. Computer Science Department Yale University CPSC / PP Lookup Service Ennan Zhai Computer Science Department Yale University Recall: Lec- Network basics: - OSI model and how Internet works - Socket APIs red PP network (Gnutella, KaZaA, etc.) UseNet

More information

Turning Heterogeneity into an Advantage in Overlay Routing

Turning Heterogeneity into an Advantage in Overlay Routing Turning Heterogeneity into an Advantage in Overlay Routing Zhichen Xu Hewlett-Packard Laboratories 50 Page Mill Rd Palo Alto, CA 9404 Email: zhichen@hpl.hp.com Mallik Mahalingam VMware Inc. 45 Porter Drive

More information

IP Forwarding Computer Networking. Routes from Node A. Graph Model. Lecture 10: Intra-Domain Routing

IP Forwarding Computer Networking. Routes from Node A. Graph Model. Lecture 10: Intra-Domain Routing IP orwarding - omputer Networking Lecture : Intra-omain Routing RIP (Routing Information Protocol) & OSP (Open Shortest Path irst) The Story So ar IP addresses are structure to reflect Internet structure

More information

Adaptive Routing of QoS-Constrained Media Streams over Scalable Overlay Topologies

Adaptive Routing of QoS-Constrained Media Streams over Scalable Overlay Topologies Adaptive Routing of QoS-Constrained Media Streams over Scalable Overlay Topologies Gerald Fry and Richard West Boston University Boston, MA 02215 {gfry,richwest}@cs.bu.edu Introduction Internet growth

More information

Page 1. Key Value Storage"

Page 1. Key Value Storage Key Value Storage CS162 Operating Systems and Systems Programming Lecture 14 Key Value Storage Systems March 12, 2012 Anthony D. Joseph and Ion Stoica http://inst.eecs.berkeley.edu/~cs162 Handle huge volumes

More information

Advanced Computer Networks

Advanced Computer Networks istance Vector dvanced omputer Networks Internal routing - distance vector protocols Prof. ndrzej uda duda@imag.fr ontents Principles of internal routing istance vector (ellman-ford) principles case of

More information

VXLAN Overview: Cisco Nexus 9000 Series Switches

VXLAN Overview: Cisco Nexus 9000 Series Switches White Paper VXLAN Overview: Cisco Nexus 9000 Series Switches What You Will Learn Traditional network segmentation has been provided by VLANs that are standardized under the IEEE 802.1Q group. VLANs provide

More information

Last Time. CSE 486/586 Distributed Systems Distributed Hash Tables. What We Want. Today s Question. What We Want. What We Don t Want C 1

Last Time. CSE 486/586 Distributed Systems Distributed Hash Tables. What We Want. Today s Question. What We Want. What We Don t Want C 1 Last Time Distributed Systems Distributed Hash Tables Evolution of peer-to-peer Central directory (Napster) Query flooding (Gnutella) Hierarchical overlay (Kazaa, modern Gnutella) BitTorrent Focuses on

More information

Page 1. Mobile Ad Hoc Networks. EEC173B/ECS152C, Winter Mobile Ad Hoc Networks (MANET)

Page 1. Mobile Ad Hoc Networks. EEC173B/ECS152C, Winter Mobile Ad Hoc Networks (MANET) 173/152, Winter 2006 obile d oc etworks (T) obile d oc etworks (T) ntroduction Unicast Routing Properties ormed by wireless hosts which may be mobile Without (necessarily) using a pre existing infrastructure

More information

Overlay and P2P Networks. Structured Networks and DHTs. Prof. Sasu Tarkoma

Overlay and P2P Networks. Structured Networks and DHTs. Prof. Sasu Tarkoma Overlay and P2P Networks Structured Networks and DHTs Prof. Sasu Tarkoma 6.2.2014 Contents Today Semantic free indexing Consistent Hashing Distributed Hash Tables (DHTs) Thursday (Dr. Samu Varjonen) DHTs

More information

Chapter 16 Networking

Chapter 16 Networking Chapter 16 Networking Outline 16.1 Introduction 16.2 Network Topology 16.3 Network Types 16.4 TCP/IP Protocol Stack 16.5 Application Layer 16.5.1 Hypertext Transfer Protocol (HTTP) 16.5.2 File Transfer

More information

CSCI-1680 P2P Rodrigo Fonseca

CSCI-1680 P2P Rodrigo Fonseca CSCI-1680 P2P Rodrigo Fonseca Based partly on lecture notes by Ion Stoica, Sco5 Shenker, Joe Hellerstein Today Overlay networks and Peer-to-Peer Motivation Suppose you want to write a routing protocol

More information

IPv6: An Introduction

IPv6: An Introduction Outline IPv6: An Introduction Dheeraj Sanghi Department of Computer Science and Engineering Indian Institute of Technology Kanpur dheeraj@iitk.ac.in http://www.cse.iitk.ac.in/users/dheeraj Problems with

More information