Forget about the Clouds, Shoot for the MOON

Size: px
Start display at page:

Download "Forget about the Clouds, Shoot for the MOON"

Transcription

1 Forget about the Clouds, Shoot for the MOON Wu FENG Dept. of Computer Science Dept. of Electrical & Computer Engineering Virginia Bioinformatics Institute September 2012, W. Feng

2 Motivation Cognitive Neuroscience Data Deluge New scientific instruments generate data rapidly High-performance simulations generate a flood of data Internet data sharing allows data caching and replication Need for Rapid Scientific Discovery Bioterrorism Video Surveillance Solution: Ubiquity of Parallel Computing Genomics Images: Courtesy of

3 Traditional Parallel Computing Resources Government-Funded Supercomputers Not easily accessible to majority of scientists Long queuing time Institutional Clusters Expensive to acquire Japan K Computer: $1250M DOE/Cray Jaguar: $104M Microsoft Datacenter:???? Expensive to own Facilities: O($10M - $100M) Operations: Power and cooling Personnel: Experienced system administrators

4 The Cost of Parallel Computing Electrical power costs $$$$. Source: IDC & IBM, 2006.

5 The Cost of Parallel Computing Examples: Power, Cooling, and Infrastructure $$$ Japanese K Computer Power & Cooling: 9.89 MW $10M/year

6 Cloud Computing Taxonomy Public Clouds Private Dedicated Clouds Example: Our MOON Project Private Opportunistic Clouds

7 Solution: Cloud Computing Public Clouds Private Dedicated Clouds Example: Our MOON Project Private Opportunistic Clouds

8 Public Clouds Computing as Utility Commercial Clouds Software as a Service Gmail Platform as a Service Google AppEngine, Microsoft Azure Infrastructure as a Service Amazon EC2 Academic Cloud DOE Magellan

9 Cloud Computing Taxonomy Public Clouds Private Dedicated Clouds Example: Our MOON Project Private Opportunistic Clouds

10 Private Dedicated Clouds Pros Currently Built on Dedicated Resources Eucalyptus Virtual Computing Lab Better Security & Privacy Cons Behind the firewall Owners have complete control of infrastructure No data transfer to/from public networks Inflexible for handle load variance Not that different from datacenter $$$ for infrastructure, power, and cooling

11 Alternative Resources for Private Clouds? Free Computing Resources within Institutions: Idle Personal Computers E.g. Math Emporium at VT: 550 dual-core Intel Mac Collective compute power equivalent to a modest supercomputer

12 Challenges Resource Volatility Example opportunistic environment SDSC) Average unavailability 0.4 and as high as 0.9

13 Cloud Computing Taxonomy Public Clouds Private Dedicated Clouds Example: Our MOON Project Private Opportunistic Clouds

14 Private Opportunistic Clouds Private Cloud Computing on Opportunistic Resources Our Approach MOON: MapReduce On Opportunistic environments Platform as a Service Reliable and efficient MapReduce service Minimize performance impact to desktop users while delivering compute cycles to cloud end users

15 Comparison Public Clouds Private Dedicated Clouds Private Opportunistic Clouds Cost Efficiency Security & Privacy Accessibility Performance

16 Roadmap Introduction MOON: MapReduce On Opportunistic environments What is MapReduce? What is an Opportunistic Environment? Overview of MOON Data Management Task Scheduling Results Conclusion

17 What is MapReduce? Ease of Use Primitives from Lisp: Map and Reduce Automatic parallel execution, fault-tolerance by runtime Efficient for Large-Scale Data Processing Deliver computation to data Example: Word Count Hello World Hadoop Hello World Map <Hello, 1> <World, 1> <Hadoop,1> <Hello, 1> <World, 1> Reduce <Hello, 2> <World, 2> <Hadoop,1>

18 Many Applications to Bio Computational Biology Sequence alignment Short-read sequence mapping Data Mining Temporal data mining K-means clustering Genetic Algorithms Cognitive Neuroscience Bioterrorism Genomics Images: Courtesy of

19 Hadoop Open-Source MapReduce Implementation Widely used: Yahoo!, Facebook, Amazon and many others Master-Slave Architecture Coupled with Hadoop Distributed File System (HDFS) JobTracker NameNode Master TaskTracker DataNode TaskTracker DataNode Slaves

20 What is an Opportunistic Environment? Resources come and go without notice E.g., Condor yield for 15 minutes after keyboard/mouse events Examples: BOINC and Condor Limitations Limited programming models Embarrassingly parallel Master-worker programming model Inefficient support for data-intensive applications

21 Our Solution: MOON Combining the expressiveness of MapReduce with the latent computing capability of idle compute resources, i.e., opportunistic environments MapReduce + Opportunistic Environments or MapReduce On Opportunistic environments

22 MOON Overview Observation Opportunistic resources not dependable enough to provide reliable service

23 MOON Overview (Cont.) Hybrid Resource Provisioning Supplement volatile PCs with a small # of dedicated computers Extend Hadoop Task Scheduling & Data Management

24 Roadmap Introduction MOON: MapReduce On Opportunistic environments What is MapReduce? What is an Opportunistic Environment? Overview of MOON Data Management Task Scheduling Results Conclusion

25 MapReduce Data Model Data Dependencies Input Data A Map task depends on its corresponding input data A Reduce task depends on intermediate data of ALL map tasks Map Intermediate Data Output Data Map Reduce Map Reduce Map

26 Hadoop Data Management Design Summary Uniform replication of input/output data No replication for intermediate data Limitations on Opportunistic Environments Prohibitively high replication cost for reliable data service E.g., 11 replicas to achieve 99.99% availability on resources with 0.4 unavailability rate: = Frequent Map task re-execution caused by loss of intermediate data Too many re-execution could cause job failure

27 MOON Data Management Enhancement Reduce Replication Cost with Hybrid Replication Two dimensional replication factor <d, v> E.g., 1 dedicated and 3 volatile copies to achieve 99.99% availability (0.001 unavailability rate on dedicated node) * = Design Challenges # dedicated nodes << # volatile nodes Dedicated nodes can be overloaded with incautious I/O

28 Cost-Efficient Replication Reserve Dedicated Resources for Important Data Differentiate Data in the File System Reliable Files: Cannot afford loss System data, input data Opportunistic Files: Can be regenerated Intermediate data rerun map tasks Output data rerun reduce tasks Avoid Overloading Dedicated Nodes by Prioritizing I/O Write access: Opportunistic files yield to reliable files on dedicated nodes Read access: Data supplied by the volatile nodes first

29 Hadoop Task Scheduling Speculative Task Dispatching for Stragglers Task progress score proportional to processed data Straggler: progress score 20% slower than average Uniform replication: each task replicated at most once Issue: Design Assumption Broken Original assumption: Tasks run smoothly till completion Opportunistic environment: Frequent task suspension/resume Result: Misidentification of Stragglers

30 Hadoop Task Suspension Handling Heartbeat Mechanism Mark a TaskTracker dead when no heartbeat in expiring interval All tasks on a dead node killed and rescheduled Inflexible If expiring interval too long, speculative copy too slow If expiring interval too short, tasks killed prematurely Lost Live Dead

31 MOON Task Suspension Handling Introduce hibernated state for TaskTracker Give replication priority to frozen tasks, i.e., all copies on hibernated nodes Configure hibernating interval much shorter than expiring interval Advantages Fast response to task suspension Prevent killing tasks prematurely Sleep Lost Live Hibernated Dead Wake Up

32 Leverage Dedicated Resources Assign Tasks to Dedicated Nodes when Possible Advantages Save replication cost Tasks with dedicated copy do not participate homestretch phase Improve efficiency of long-running tasks No suspension/interruption Guarantee completion

33 Roadmap Introduction MOON: MapReduce On Opportunistic environments What is MapReduce? What is an Opportunistic Environment? Overview of MOON Data Management Task Scheduling Results Conclusion

34 Experiment Setup Methodology Emulate opportunistic environments on clusters with configuration similar to student labs Control degree of volatility with randomly generated machine unavailability traces Platform System X at Virginia Tech Dual 2.3GHz PowerPC 970FX processors 4GB of RAM Gigabit Ethernet

35 Overall Performance Extended Hadoop with intermediate data replication MOON hybrid setting: 20:1, 15:1, 10:1 MOON outperforms extended Hadoop by 3x

36 Acknowledgements Seed funding was provided in part by the Virginia Tech Foundation (VTF). We actively seek additional collaborations, partnerships, funding, and customers to extend and harden MOON.

37 Conclusion Ubiquity of parallel computing and the importance of highend computing for scientific discovery MOON provides cost-efficient parallel computing solutions on private clouds High-quality MapReduce services Reliable data storage Forget about the clouds, shoot for the MOON!

MOON: MapReduce On Opportunistic environments

MOON: MapReduce On Opportunistic environments MOON: MapReduce On Opportunistic environments Heshan Lin, Jeremy Archuleta, Xiaosong Ma, Wu-chun Feng Zhe Zhang and Mark Gardner Department of Computer Science, Virginia Tech {hlin2, jsarch, feng}@cs.vt.edu,

More information

MOON: MapReduce On Opportunistic environments

MOON: MapReduce On Opportunistic environments MOON: MapReduce On Opportunistic environments Heshan Lin Virginia Tech hlin2@cs.vt.edu Wu-chun Feng Virginia Tech feng@cs.vt.edu Xiaosong Ma North Carolina State U. Oak Ridge Nat l Lab ma@cs.ncsu.edu Mark

More information

Reliable MapReduce computing on opportunistic resources

Reliable MapReduce computing on opportunistic resources DOI 10.1007/s10586-011-0158-7 Reliable MapReduce computing on opportunistic resources Heshan Lin Xiaosong Ma Wu-chun Feng Received: 2 November 2010 / Accepted: 13 January 2011 Springer Science+Business

More information

CPSC 426/526. Cloud Computing. Ennan Zhai. Computer Science Department Yale University

CPSC 426/526. Cloud Computing. Ennan Zhai. Computer Science Department Yale University CPSC 426/526 Cloud Computing Ennan Zhai Computer Science Department Yale University Recall: Lec-7 In the lec-7, I talked about: - P2P vs Enterprise control - Firewall - NATs - Software defined network

More information

IN organizations, most of their computers are

IN organizations, most of their computers are Provisioning Hadoop Virtual Cluster in Opportunistic Cluster Arindam Choudhury, Elisa Heymann, Miquel Angel Senar 1 Abstract Traditional opportunistic cluster is designed for running compute-intensive

More information

Cloud Computing and Hadoop Distributed File System. UCSB CS170, Spring 2018

Cloud Computing and Hadoop Distributed File System. UCSB CS170, Spring 2018 Cloud Computing and Hadoop Distributed File System UCSB CS70, Spring 08 Cluster Computing Motivations Large-scale data processing on clusters Scan 000 TB on node @ 00 MB/s = days Scan on 000-node cluster

More information

Distributed Systems CS6421

Distributed Systems CS6421 Distributed Systems CS6421 Intro to Distributed Systems and the Cloud Prof. Tim Wood v I teach: Software Engineering, Operating Systems, Sr. Design I like: distributed systems, networks, building cool

More information

Big Data Analytics. Izabela Moise, Evangelos Pournaras, Dirk Helbing

Big Data Analytics. Izabela Moise, Evangelos Pournaras, Dirk Helbing Big Data Analytics Izabela Moise, Evangelos Pournaras, Dirk Helbing Izabela Moise, Evangelos Pournaras, Dirk Helbing 1 Big Data "The world is crazy. But at least it s getting regular analysis." Izabela

More information

Chapter 5. The MapReduce Programming Model and Implementation

Chapter 5. The MapReduce Programming Model and Implementation Chapter 5. The MapReduce Programming Model and Implementation - Traditional computing: data-to-computing (send data to computing) * Data stored in separate repository * Data brought into system for computing

More information

Cloud Programming. Programming Environment Oct 29, 2015 Osamu Tatebe

Cloud Programming. Programming Environment Oct 29, 2015 Osamu Tatebe Cloud Programming Programming Environment Oct 29, 2015 Osamu Tatebe Cloud Computing Only required amount of CPU and storage can be used anytime from anywhere via network Availability, throughput, reliability

More information

Hadoop/MapReduce Computing Paradigm

Hadoop/MapReduce Computing Paradigm Hadoop/Reduce Computing Paradigm 1 Large-Scale Data Analytics Reduce computing paradigm (E.g., Hadoop) vs. Traditional database systems vs. Database Many enterprises are turning to Hadoop Especially applications

More information

Introduction to MapReduce

Introduction to MapReduce Basics of Cloud Computing Lecture 4 Introduction to MapReduce Satish Srirama Some material adapted from slides by Jimmy Lin, Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet, Google Distributed

More information

escience in the Cloud: A MODIS Satellite Data Reprojection and Reduction Pipeline in the Windows

escience in the Cloud: A MODIS Satellite Data Reprojection and Reduction Pipeline in the Windows escience in the Cloud: A MODIS Satellite Data Reprojection and Reduction Pipeline in the Windows Jie Li1, Deb Agarwal2, Azure Marty Platform Humphrey1, Keith Jackson2, Catharine van Ingen3, Youngryel Ryu4

More information

The MapReduce Framework

The MapReduce Framework The MapReduce Framework In Partial fulfilment of the requirements for course CMPT 816 Presented by: Ahmed Abdel Moamen Agents Lab Overview MapReduce was firstly introduced by Google on 2004. MapReduce

More information

What is the maximum file size you have dealt so far? Movies/Files/Streaming video that you have used? What have you observed?

What is the maximum file size you have dealt so far? Movies/Files/Streaming video that you have used? What have you observed? Simple to start What is the maximum file size you have dealt so far? Movies/Files/Streaming video that you have used? What have you observed? What is the maximum download speed you get? Simple computation

More information

MI-PDB, MIE-PDB: Advanced Database Systems

MI-PDB, MIE-PDB: Advanced Database Systems MI-PDB, MIE-PDB: Advanced Database Systems http://www.ksi.mff.cuni.cz/~svoboda/courses/2015-2-mie-pdb/ Lecture 10: MapReduce, Hadoop 26. 4. 2016 Lecturer: Martin Svoboda svoboda@ksi.mff.cuni.cz Author:

More information

The Analysis Research of Hierarchical Storage System Based on Hadoop Framework Yan LIU 1, a, Tianjian ZHENG 1, Mingjiang LI 1, Jinpeng YUAN 1

The Analysis Research of Hierarchical Storage System Based on Hadoop Framework Yan LIU 1, a, Tianjian ZHENG 1, Mingjiang LI 1, Jinpeng YUAN 1 International Conference on Intelligent Systems Research and Mechatronics Engineering (ISRME 2015) The Analysis Research of Hierarchical Storage System Based on Hadoop Framework Yan LIU 1, a, Tianjian

More information

CCA-410. Cloudera. Cloudera Certified Administrator for Apache Hadoop (CCAH)

CCA-410. Cloudera. Cloudera Certified Administrator for Apache Hadoop (CCAH) Cloudera CCA-410 Cloudera Certified Administrator for Apache Hadoop (CCAH) Download Full Version : http://killexams.com/pass4sure/exam-detail/cca-410 Reference: CONFIGURATION PARAMETERS DFS.BLOCK.SIZE

More information

Big Data for Engineers Spring Resource Management

Big Data for Engineers Spring Resource Management Ghislain Fourny Big Data for Engineers Spring 2018 7. Resource Management artjazz / 123RF Stock Photo Data Technology Stack User interfaces Querying Data stores Indexing Processing Validation Data models

More information

Large-Scale GPU programming

Large-Scale GPU programming Large-Scale GPU programming Tim Kaldewey Research Staff Member Database Technologies IBM Almaden Research Center tkaldew@us.ibm.com Assistant Adjunct Professor Computer and Information Science Dept. University

More information

Vendor: Cloudera. Exam Code: CCA-505. Exam Name: Cloudera Certified Administrator for Apache Hadoop (CCAH) CDH5 Upgrade Exam.

Vendor: Cloudera. Exam Code: CCA-505. Exam Name: Cloudera Certified Administrator for Apache Hadoop (CCAH) CDH5 Upgrade Exam. Vendor: Cloudera Exam Code: CCA-505 Exam Name: Cloudera Certified Administrator for Apache Hadoop (CCAH) CDH5 Upgrade Exam Version: Demo QUESTION 1 You have installed a cluster running HDFS and MapReduce

More information

Big Data 7. Resource Management

Big Data 7. Resource Management Ghislain Fourny Big Data 7. Resource Management artjazz / 123RF Stock Photo Data Technology Stack User interfaces Querying Data stores Indexing Processing Validation Data models Syntax Encoding Storage

More information

Clustering Lecture 8: MapReduce

Clustering Lecture 8: MapReduce Clustering Lecture 8: MapReduce Jing Gao SUNY Buffalo 1 Divide and Conquer Work Partition w 1 w 2 w 3 worker worker worker r 1 r 2 r 3 Result Combine 4 Distributed Grep Very big data Split data Split data

More information

Google File System (GFS) and Hadoop Distributed File System (HDFS)

Google File System (GFS) and Hadoop Distributed File System (HDFS) Google File System (GFS) and Hadoop Distributed File System (HDFS) 1 Hadoop: Architectural Design Principles Linear scalability More nodes can do more work within the same time Linear on data size, linear

More information

HADOOP FRAMEWORK FOR BIG DATA

HADOOP FRAMEWORK FOR BIG DATA HADOOP FRAMEWORK FOR BIG DATA Mr K. Srinivas Babu 1,Dr K. Rameshwaraiah 2 1 Research Scholar S V University, Tirupathi 2 Professor and Head NNRESGI, Hyderabad Abstract - Data has to be stored for further

More information

Introduction to MapReduce

Introduction to MapReduce Basics of Cloud Computing Lecture 4 Introduction to MapReduce Satish Srirama Some material adapted from slides by Jimmy Lin, Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet, Google Distributed

More information

Cloud Computing. Hwajung Lee. Key Reference: Prof. Jong-Moon Chung s Lecture Notes at Yonsei University

Cloud Computing. Hwajung Lee. Key Reference: Prof. Jong-Moon Chung s Lecture Notes at Yonsei University Cloud Computing Hwajung Lee Key Reference: Prof. Jong-Moon Chung s Lecture Notes at Yonsei University Cloud Computing Cloud Introduction Cloud Service Model Big Data Hadoop MapReduce HDFS (Hadoop Distributed

More information

High Performance and Cloud Computing (HPCC) for Bioinformatics

High Performance and Cloud Computing (HPCC) for Bioinformatics High Performance and Cloud Computing (HPCC) for Bioinformatics King Jordan Georgia Tech January 13, 2016 Adopted From BIOS-ICGEB HPCC for Bioinformatics 1 Outline High performance computing (HPC) Cloud

More information

Lecture 11 Hadoop & Spark

Lecture 11 Hadoop & Spark Lecture 11 Hadoop & Spark Dr. Wilson Rivera ICOM 6025: High Performance Computing Electrical and Computer Engineering Department University of Puerto Rico Outline Distributed File Systems Hadoop Ecosystem

More information

Introduction to Hadoop. Owen O Malley Yahoo!, Grid Team

Introduction to Hadoop. Owen O Malley Yahoo!, Grid Team Introduction to Hadoop Owen O Malley Yahoo!, Grid Team owen@yahoo-inc.com Who Am I? Yahoo! Architect on Hadoop Map/Reduce Design, review, and implement features in Hadoop Working on Hadoop full time since

More information

PLATFORM AND SOFTWARE AS A SERVICE THE MAPREDUCE PROGRAMMING MODEL AND IMPLEMENTATIONS

PLATFORM AND SOFTWARE AS A SERVICE THE MAPREDUCE PROGRAMMING MODEL AND IMPLEMENTATIONS PLATFORM AND SOFTWARE AS A SERVICE THE MAPREDUCE PROGRAMMING MODEL AND IMPLEMENTATIONS By HAI JIN, SHADI IBRAHIM, LI QI, HAIJUN CAO, SONG WU and XUANHUA SHI Prepared by: Dr. Faramarz Safi Islamic Azad

More information

MapReduce, Hadoop and Spark. Bompotas Agorakis

MapReduce, Hadoop and Spark. Bompotas Agorakis MapReduce, Hadoop and Spark Bompotas Agorakis Big Data Processing Most of the computations are conceptually straightforward on a single machine but the volume of data is HUGE Need to use many (1.000s)

More information

3. Monitoring Scenarios

3. Monitoring Scenarios 3. Monitoring Scenarios This section describes the following: Navigation Alerts Interval Rules Navigation Ambari SCOM Use the Ambari SCOM main navigation tree to browse cluster, HDFS and MapReduce performance

More information

Hadoop and HDFS Overview. Madhu Ankam

Hadoop and HDFS Overview. Madhu Ankam Hadoop and HDFS Overview Madhu Ankam Why Hadoop We are gathering more data than ever Examples of data : Server logs Web logs Financial transactions Analytics Emails and text messages Social media like

More information

Database Applications (15-415)

Database Applications (15-415) Database Applications (15-415) Hadoop Lecture 24, April 23, 2014 Mohammad Hammoud Today Last Session: NoSQL databases Today s Session: Hadoop = HDFS + MapReduce Announcements: Final Exam is on Sunday April

More information

Delegated Access for Hadoop Clusters in the Cloud

Delegated Access for Hadoop Clusters in the Cloud Delegated Access for Hadoop Clusters in the Cloud David Nuñez, Isaac Agudo, and Javier Lopez Network, Information and Computer Security Laboratory (NICS Lab) Universidad de Málaga, Spain Email: dnunez@lcc.uma.es

More information

CS 61C: Great Ideas in Computer Architecture. MapReduce

CS 61C: Great Ideas in Computer Architecture. MapReduce CS 61C: Great Ideas in Computer Architecture MapReduce Guest Lecturer: Justin Hsia 3/06/2013 Spring 2013 Lecture #18 1 Review of Last Lecture Performance latency and throughput Warehouse Scale Computing

More information

Performance Enhancement of Data Processing using Multiple Intelligent Cache in Hadoop

Performance Enhancement of Data Processing using Multiple Intelligent Cache in Hadoop Performance Enhancement of Data Processing using Multiple Intelligent Cache in Hadoop K. Senthilkumar PG Scholar Department of Computer Science and Engineering SRM University, Chennai, Tamilnadu, India

More information

LEEN: Locality/Fairness- Aware Key Partitioning for MapReduce in the Cloud

LEEN: Locality/Fairness- Aware Key Partitioning for MapReduce in the Cloud LEEN: Locality/Fairness- Aware Key Partitioning for MapReduce in the Cloud Shadi Ibrahim, Hai Jin, Lu Lu, Song Wu, Bingsheng He*, Qi Li # Huazhong University of Science and Technology *Nanyang Technological

More information

2/26/2017. For instance, consider running Word Count across 20 splits

2/26/2017. For instance, consider running Word Count across 20 splits Based on the slides of prof. Pietro Michiardi Hadoop Internals https://github.com/michiard/disc-cloud-course/raw/master/hadoop/hadoop.pdf Job: execution of a MapReduce application across a data set Task:

More information

TITLE: PRE-REQUISITE THEORY. 1. Introduction to Hadoop. 2. Cluster. Implement sort algorithm and run it using HADOOP

TITLE: PRE-REQUISITE THEORY. 1. Introduction to Hadoop. 2. Cluster. Implement sort algorithm and run it using HADOOP TITLE: Implement sort algorithm and run it using HADOOP PRE-REQUISITE Preliminary knowledge of clusters and overview of Hadoop and its basic functionality. THEORY 1. Introduction to Hadoop The Apache Hadoop

More information

Aeromancer: A Workflow Manager for Large- Scale MapReduce-Based Scientific Workflows

Aeromancer: A Workflow Manager for Large- Scale MapReduce-Based Scientific Workflows Aeromancer: A Workflow Manager for Large- Scale MapReduce-Based Scientific Workflows Presented by Sarunya Pumma Supervisors: Dr. Wu-chun Feng, Dr. Mark Gardner, and Dr. Hao Wang synergy.cs.vt.edu Outline

More information

what is cloud computing?

what is cloud computing? what is cloud computing? (Private) Cloud Computing with Mesos at Twi9er Benjamin Hindman @benh scalable virtualized self-service utility managed elastic economic pay-as-you-go what is cloud computing?

More information

50 Must Read Hadoop Interview Questions & Answers

50 Must Read Hadoop Interview Questions & Answers 50 Must Read Hadoop Interview Questions & Answers Whizlabs Dec 29th, 2017 Big Data Are you planning to land a job with big data and data analytics? Are you worried about cracking the Hadoop job interview?

More information

Cloud Computing Paradigms for Pleasingly Parallel Biomedical Applications

Cloud Computing Paradigms for Pleasingly Parallel Biomedical Applications Cloud Computing Paradigms for Pleasingly Parallel Biomedical Applications Thilina Gunarathne, Tak-Lon Wu Judy Qiu, Geoffrey Fox School of Informatics, Pervasive Technology Institute Indiana University

More information

HADOOP 3.0 is here! Dr. Sandeep Deshmukh Sadepach Labs Pvt. Ltd. - Let us grow together!

HADOOP 3.0 is here! Dr. Sandeep Deshmukh Sadepach Labs Pvt. Ltd. - Let us grow together! HADOOP 3.0 is here! Dr. Sandeep Deshmukh sandeep@sadepach.com Sadepach Labs Pvt. Ltd. - Let us grow together! About me BE from VNIT Nagpur, MTech+PhD from IIT Bombay Worked with Persistent Systems - Life

More information

Data Clustering on the Parallel Hadoop MapReduce Model. Dimitrios Verraros

Data Clustering on the Parallel Hadoop MapReduce Model. Dimitrios Verraros Data Clustering on the Parallel Hadoop MapReduce Model Dimitrios Verraros Overview The purpose of this thesis is to implement and benchmark the performance of a parallel K- means clustering algorithm on

More information

Hadoop محبوبه دادخواه کارگاه ساالنه آزمایشگاه فناوری وب زمستان 1391

Hadoop محبوبه دادخواه کارگاه ساالنه آزمایشگاه فناوری وب زمستان 1391 Hadoop محبوبه دادخواه کارگاه ساالنه آزمایشگاه فناوری وب زمستان 1391 Outline Big Data Big Data Examples Challenges with traditional storage NoSQL Hadoop HDFS MapReduce Architecture 2 Big Data In information

More information

Dynamic processing slots scheduling for I/O intensive jobs of Hadoop MapReduce

Dynamic processing slots scheduling for I/O intensive jobs of Hadoop MapReduce Dynamic processing slots scheduling for I/O intensive jobs of Hadoop MapReduce Shiori KURAZUMI, Tomoaki TSUMURA, Shoichi SAITO and Hiroshi MATSUO Nagoya Institute of Technology Gokiso, Showa, Nagoya, Aichi,

More information

L22: SC Report, Map Reduce

L22: SC Report, Map Reduce L22: SC Report, Map Reduce November 23, 2010 Map Reduce What is MapReduce? Example computing environment How it works Fault Tolerance Debugging Performance Google version = Map Reduce; Hadoop = Open source

More information

Real-time Scheduling of Skewed MapReduce Jobs in Heterogeneous Environments

Real-time Scheduling of Skewed MapReduce Jobs in Heterogeneous Environments Real-time Scheduling of Skewed MapReduce Jobs in Heterogeneous Environments Nikos Zacheilas, Vana Kalogeraki Department of Informatics Athens University of Economics and Business 1 Big Data era has arrived!

More information

Programming Models MapReduce

Programming Models MapReduce Programming Models MapReduce Majd Sakr, Garth Gibson, Greg Ganger, Raja Sambasivan 15-719/18-847b Advanced Cloud Computing Fall 2013 Sep 23, 2013 1 MapReduce In a Nutshell MapReduce incorporates two phases

More information

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Yahoo! Sunnyvale, California USA {Shv, Hairong, SRadia,

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Yahoo! Sunnyvale, California USA {Shv, Hairong, SRadia, Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Yahoo! Sunnyvale, California USA {Shv, Hairong, SRadia, Chansler}@Yahoo-Inc.com Presenter: Alex Hu } Introduction } Architecture } File

More information

Distributed Filesystem

Distributed Filesystem Distributed Filesystem 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributing Code! Don t move data to workers move workers to the data! - Store data on the local disks of nodes in the

More information

ΕΠΛ 602:Foundations of Internet Technologies. Cloud Computing

ΕΠΛ 602:Foundations of Internet Technologies. Cloud Computing ΕΠΛ 602:Foundations of Internet Technologies Cloud Computing 1 Outline Bigtable(data component of cloud) Web search basedonch13of thewebdatabook 2 What is Cloud Computing? ACloudis an infrastructure, transparent

More information

Hadoop File System S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y B. R A M A M U R T H Y 11/15/2017

Hadoop File System S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y B. R A M A M U R T H Y 11/15/2017 Hadoop File System 1 S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y B. R A M A M U R T H Y Moving Computation is Cheaper than Moving Data Motivation: Big Data! What is BigData? - Google

More information

BigDataBench-MT: Multi-tenancy version of BigDataBench

BigDataBench-MT: Multi-tenancy version of BigDataBench BigDataBench-MT: Multi-tenancy version of BigDataBench Gang Lu Beijing Academy of Frontier Science and Technology BigDataBench Tutorial, ASPLOS 2016 Atlanta, GA, USA n Software perspective Multi-tenancy

More information

MapReduce. U of Toronto, 2014

MapReduce. U of Toronto, 2014 MapReduce U of Toronto, 2014 http://www.google.org/flutrends/ca/ (2012) Average Searches Per Day: 5,134,000,000 2 Motivation Process lots of data Google processed about 24 petabytes of data per day in

More information

Hadoop MapReduce Framework

Hadoop MapReduce Framework Hadoop MapReduce Framework Contents Hadoop MapReduce Framework Architecture Interaction Diagram of MapReduce Framework (Hadoop 1.0) Interaction Diagram of MapReduce Framework (Hadoop 2.0) Hadoop MapReduce

More information

Cloud Computing 2. CSCI 4850/5850 High-Performance Computing Spring 2018

Cloud Computing 2. CSCI 4850/5850 High-Performance Computing Spring 2018 Cloud Computing 2 CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University Learning

More information

Facilitating Consistency Check between Specification & Implementation with MapReduce Framework

Facilitating Consistency Check between Specification & Implementation with MapReduce Framework Facilitating Consistency Check between Specification & Implementation with MapReduce Framework Shigeru KUSAKABE, Yoichi OMORI, Keijiro ARAKI Kyushu University, Japan 2 Our expectation Light-weight formal

More information

TOOLS FOR INTEGRATING BIG DATA IN CLOUD COMPUTING: A STATE OF ART SURVEY

TOOLS FOR INTEGRATING BIG DATA IN CLOUD COMPUTING: A STATE OF ART SURVEY Journal of Analysis and Computation (JAC) (An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861 International Conference on Emerging Trends in IOT & Machine Learning, 2018 TOOLS

More information

Chisel++: Handling Partitioning Skew in MapReduce Framework Using Efficient Range Partitioning Technique

Chisel++: Handling Partitioning Skew in MapReduce Framework Using Efficient Range Partitioning Technique Chisel++: Handling Partitioning Skew in MapReduce Framework Using Efficient Range Partitioning Technique Prateek Dhawalia Sriram Kailasam D. Janakiram Distributed and Object Systems Lab Dept. of Comp.

More information

TP1-2: Analyzing Hadoop Logs

TP1-2: Analyzing Hadoop Logs TP1-2: Analyzing Hadoop Logs Shadi Ibrahim January 26th, 2017 MapReduce has emerged as a leading programming model for data-intensive computing. It was originally proposed by Google to simplify development

More information

Mixing and matching virtual and physical HPC clusters. Paolo Anedda

Mixing and matching virtual and physical HPC clusters. Paolo Anedda Mixing and matching virtual and physical HPC clusters Paolo Anedda paolo.anedda@crs4.it HPC 2010 - Cetraro 22/06/2010 1 Outline Introduction Scalability Issues System architecture Conclusions & Future

More information

Introduction to MapReduce

Introduction to MapReduce Introduction to MapReduce April 19, 2012 Jinoh Kim, Ph.D. Computer Science Department Lock Haven University of Pennsylvania Research Areas Datacenter Energy Management Exa-scale Computing Network Performance

More information

Cloud Computing. UCD IT Services Experience

Cloud Computing. UCD IT Services Experience Cloud Computing UCD IT Services Experience Background - UCD IT Services Central IT provider for University College Dublin 23,000 Full Time Students 7,000 Researchers 5,000 Staff Background - UCD IT Services

More information

Accelerate Big Data Insights

Accelerate Big Data Insights Accelerate Big Data Insights Executive Summary An abundance of information isn t always helpful when time is of the essence. In the world of big data, the ability to accelerate time-to-insight can not

More information

MapReduce for Data Intensive Scientific Analyses

MapReduce for Data Intensive Scientific Analyses apreduce for Data Intensive Scientific Analyses Jaliya Ekanayake Shrideep Pallickara Geoffrey Fox Department of Computer Science Indiana University Bloomington, IN, 47405 5/11/2009 Jaliya Ekanayake 1 Presentation

More information

Cloud Computing. Summary

Cloud Computing. Summary Cloud Computing Lectures 2 and 3 Definition of Cloud Computing, Grid Architectures 2012-2013 Summary Definition of Cloud Computing (more complete). Grid Computing: Conceptual Architecture. Condor. 1 Cloud

More information

Introduction to MapReduce. Instructor: Dr. Weikuan Yu Computer Sci. & Software Eng.

Introduction to MapReduce. Instructor: Dr. Weikuan Yu Computer Sci. & Software Eng. Introduction to MapReduce Instructor: Dr. Weikuan Yu Computer Sci. & Software Eng. Before MapReduce Large scale data processing was difficult! Managing hundreds or thousands of processors Managing parallelization

More information

International Journal of Advance Engineering and Research Development. A Study: Hadoop Framework

International Journal of Advance Engineering and Research Development. A Study: Hadoop Framework Scientific Journal of Impact Factor (SJIF): e-issn (O): 2348- International Journal of Advance Engineering and Research Development Volume 3, Issue 2, February -2016 A Study: Hadoop Framework Devateja

More information

Sinbad. Leveraging Endpoint Flexibility in Data-Intensive Clusters. Mosharaf Chowdhury, Srikanth Kandula, Ion Stoica. UC Berkeley

Sinbad. Leveraging Endpoint Flexibility in Data-Intensive Clusters. Mosharaf Chowdhury, Srikanth Kandula, Ion Stoica. UC Berkeley Sinbad Leveraging Endpoint Flexibility in Data-Intensive Clusters Mosharaf Chowdhury, Srikanth Kandula, Ion Stoica UC Berkeley Communication is Crucial for Analytics at Scale Performance Facebook analytics

More information

Parallel Programming Principle and Practice. Lecture 10 Big Data Processing with MapReduce

Parallel Programming Principle and Practice. Lecture 10 Big Data Processing with MapReduce Parallel Programming Principle and Practice Lecture 10 Big Data Processing with MapReduce Outline MapReduce Programming Model MapReduce Examples Hadoop 2 Incredible Things That Happen Every Minute On The

More information

Lecture 9: MIMD Architectures

Lecture 9: MIMD Architectures Lecture 9: MIMD Architectures Introduction and classification Symmetric multiprocessors NUMA architecture Clusters Zebo Peng, IDA, LiTH 1 Introduction MIMD: a set of general purpose processors is connected

More information

Optimizing Hadoop Block Placement Policy & Cluster Blocks Distribution

Optimizing Hadoop Block Placement Policy & Cluster Blocks Distribution Vol:6, No:1, 212 Optimizing Hadoop Block Placement Policy & Cluster Blocks Distribution Nchimbi Edward Pius, Liu Qin, Fion Yang, Zhu Hong Ming International Science Index, Computer and Information Engineering

More information

Oracle NoSQL Database and Cisco- Collaboration that produces results. 1 Copyright 2011, Oracle and/or its affiliates. All rights reserved.

Oracle NoSQL Database and Cisco- Collaboration that produces results. 1 Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle NoSQL Database and Cisco- Collaboration that produces results 1 Copyright 2011, Oracle and/or its affiliates. All rights reserved. What is Big Data? SOCIAL BLOG SMART METER VOLUME VELOCITY VARIETY

More information

Magellan Project. Jeff Broughton NERSC Systems Department Head October 7, 2009

Magellan Project. Jeff Broughton NERSC Systems Department Head October 7, 2009 Magellan Project Jeff Broughton NERSC Systems Department Head October 7, 2009 1 Magellan Background National Energy Research Scientific Computing Center (NERSC) Argonne Leadership Computing Facility (ALCF)

More information

MixApart: Decoupled Analytics for Shared Storage Systems. Madalin Mihailescu, Gokul Soundararajan, Cristiana Amza University of Toronto and NetApp

MixApart: Decoupled Analytics for Shared Storage Systems. Madalin Mihailescu, Gokul Soundararajan, Cristiana Amza University of Toronto and NetApp MixApart: Decoupled Analytics for Shared Storage Systems Madalin Mihailescu, Gokul Soundararajan, Cristiana Amza University of Toronto and NetApp Hadoop Pig, Hive Hadoop + Enterprise storage?! Shared storage

More information

Cycle Sharing Systems

Cycle Sharing Systems Cycle Sharing Systems Jagadeesh Dyaberi Dependable Computing Systems Lab Purdue University 10/31/2005 1 Introduction Design of Program Security Communication Architecture Implementation Conclusion Outline

More information

EXTRACT DATA IN LARGE DATABASE WITH HADOOP

EXTRACT DATA IN LARGE DATABASE WITH HADOOP International Journal of Advances in Engineering & Scientific Research (IJAESR) ISSN: 2349 3607 (Online), ISSN: 2349 4824 (Print) Download Full paper from : http://www.arseam.com/content/volume-1-issue-7-nov-2014-0

More information

CS6030 Cloud Computing. Acknowledgements. Today s Topics. Intro to Cloud Computing 10/20/15. Ajay Gupta, WMU-CS. WiSe Lab

CS6030 Cloud Computing. Acknowledgements. Today s Topics. Intro to Cloud Computing 10/20/15. Ajay Gupta, WMU-CS. WiSe Lab CS6030 Cloud Computing Ajay Gupta B239, CEAS Computer Science Department Western Michigan University ajay.gupta@wmich.edu 276-3104 1 Acknowledgements I have liberally borrowed these slides and material

More information

18-hdfs-gfs.txt Thu Oct 27 10:05: Notes on Parallel File Systems: HDFS & GFS , Fall 2011 Carnegie Mellon University Randal E.

18-hdfs-gfs.txt Thu Oct 27 10:05: Notes on Parallel File Systems: HDFS & GFS , Fall 2011 Carnegie Mellon University Randal E. 18-hdfs-gfs.txt Thu Oct 27 10:05:07 2011 1 Notes on Parallel File Systems: HDFS & GFS 15-440, Fall 2011 Carnegie Mellon University Randal E. Bryant References: Ghemawat, Gobioff, Leung, "The Google File

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 Lecture 24 Mass Storage, HDFS/Hadoop Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ What 2

More information

The amount of data increases every day Some numbers ( 2012):

The amount of data increases every day Some numbers ( 2012): 1 The amount of data increases every day Some numbers ( 2012): Data processed by Google every day: 100+ PB Data processed by Facebook every day: 10+ PB To analyze them, systems that scale with respect

More information

2/26/2017. The amount of data increases every day Some numbers ( 2012):

2/26/2017. The amount of data increases every day Some numbers ( 2012): The amount of data increases every day Some numbers ( 2012): Data processed by Google every day: 100+ PB Data processed by Facebook every day: 10+ PB To analyze them, systems that scale with respect to

More information

Dynamically Estimating Reliability in a Volunteer-Based Compute and Data-Storage System

Dynamically Estimating Reliability in a Volunteer-Based Compute and Data-Storage System Dynamically Estimating Reliability in a Volunteer-Based Compute and Data-Storage System Muhammed Uluyol University of Minnesota Abstract Although cloud computing is a powerful tool for analyzing large

More information

Clouds: An Opportunity for Scientific Applications?

Clouds: An Opportunity for Scientific Applications? Clouds: An Opportunity for Scientific Applications? Ewa Deelman USC Information Sciences Institute Acknowledgements Yang-Suk Ki (former PostDoc, USC) Gurmeet Singh (former Ph.D. student, USC) Gideon Juve

More information

Large Scale Computing Infrastructures

Large Scale Computing Infrastructures GC3: Grid Computing Competence Center Large Scale Computing Infrastructures Lecture 2: Cloud technologies Sergio Maffioletti GC3: Grid Computing Competence Center, University

More information

Multi-tenancy version of BigDataBench

Multi-tenancy version of BigDataBench Multi-tenancy version of BigDataBench Gang Lu Institute of Computing Technology, Chinese Academy of Sciences BigDataBench Tutorial MICRO 2014 Cambridge, UK INSTITUTE OF COMPUTING TECHNOLOGY 1 Multi-tenancy

More information

Motivation. Map in Lisp (Scheme) Map/Reduce. MapReduce: Simplified Data Processing on Large Clusters

Motivation. Map in Lisp (Scheme) Map/Reduce. MapReduce: Simplified Data Processing on Large Clusters Motivation MapReduce: Simplified Data Processing on Large Clusters These are slides from Dan Weld s class at U. Washington (who in turn made his slides based on those by Jeff Dean, Sanjay Ghemawat, Google,

More information

Introduction to Cloud Computing. [thoughtsoncloud.com] 1

Introduction to Cloud Computing. [thoughtsoncloud.com] 1 Introduction to Cloud Computing [thoughtsoncloud.com] 1 Outline What is Cloud Computing? Characteristics of the Cloud Computing model Evolution of Cloud Computing Cloud Computing Architecture Cloud Services:

More information

A BigData Tour HDFS, Ceph and MapReduce

A BigData Tour HDFS, Ceph and MapReduce A BigData Tour HDFS, Ceph and MapReduce These slides are possible thanks to these sources Jonathan Drusi - SCInet Toronto Hadoop Tutorial, Amir Payberah - Course in Data Intensive Computing SICS; Yahoo!

More information

Processing Technology of Massive Human Health Data Based on Hadoop

Processing Technology of Massive Human Health Data Based on Hadoop 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer (MMEBC 2016) Processing Technology of Massive Human Health Data Based on Hadoop Miao Liu1, a, Junsheng Yu1,

More information

Large Scale Sky Computing Applications with Nimbus

Large Scale Sky Computing Applications with Nimbus Large Scale Sky Computing Applications with Nimbus Pierre Riteau Université de Rennes 1, IRISA INRIA Rennes Bretagne Atlantique Rennes, France Pierre.Riteau@irisa.fr INTRODUCTION TO SKY COMPUTING IaaS

More information

Chapter 1: Introduction 1/29

Chapter 1: Introduction 1/29 Chapter 1: Introduction 1/29 What is a Distributed System? A distributed system is a collection of independent computers that appears to its users as a single coherent system. 2/29 Characteristics of a

More information

Cloud Computing 3. CSCI 4850/5850 High-Performance Computing Spring 2018

Cloud Computing 3. CSCI 4850/5850 High-Performance Computing Spring 2018 Cloud Computing 3 CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University Learning

More information

Hadoop-PR Hortonworks Certified Apache Hadoop 2.0 Developer (Pig and Hive Developer)

Hadoop-PR Hortonworks Certified Apache Hadoop 2.0 Developer (Pig and Hive Developer) Hortonworks Hadoop-PR000007 Hortonworks Certified Apache Hadoop 2.0 Developer (Pig and Hive Developer) http://killexams.com/pass4sure/exam-detail/hadoop-pr000007 QUESTION: 99 Which one of the following

More information

Ioan Raicu. Everyone else. More information at: Background? What do you want to get out of this course?

Ioan Raicu. Everyone else. More information at: Background? What do you want to get out of this course? Ioan Raicu More information at: http://www.cs.iit.edu/~iraicu/ Everyone else Background? What do you want to get out of this course? 2 Data Intensive Computing is critical to advancing modern science Applies

More information

A New Model of Search Engine based on Cloud Computing

A New Model of Search Engine based on Cloud Computing A New Model of Search Engine based on Cloud Computing DING Jian-li 1,2, YANG Bo 1 1. College of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China 2. Tianjin Key

More information