Composite Likelihood Data Augmentation for Within-Network Statistical Relational Learning

Size: px
Start display at page:

Download "Composite Likelihood Data Augmentation for Within-Network Statistical Relational Learning"

Transcription

1 Composite Likelihood Data Augmentation for Within-Network Statistical Relational Learning Joseph J. Pfeiffer III 1 Jennifer Neville 1 Paul Bennett 2 1 Purdue University 2 Microsoft Research ICDM 2014, Shenzhen

2 Relational Machine Learning Items: stock brokers - social network users, papers, movies, products, etc. Label: fraudulent - buy product, sales rank, etc., Relationships: phone calls - friendships, s, citations, co-purchases, etc. Attributes: other observable item traits Within-network relational machine learning 2

3 Within-Network Learn Relational model parameters Machine Y Learning using the observed data Infer (predict) remaining labels using the learned parameters and available data Y Will Show: Learning/inference approximations prevent semi-supervised algorithms from converging Will Develop/Demonstrate: Methods that model parameter uncertainty overcome approximation errors 3

4 Outline Introduction Background: Semi-supervised Relational Machine Learning Analysis of Relational EM convergence in real world networks Relational Stochastic EM and Relational Data Augmentation Experiments Conclusions 4

5 Outline Introduction Background: Semi-supervised Relational Machine Learning Analysis of Relational EM convergence in real world networks Relational Stochastic EM and Relational Data Augmentation Experiments Conclusions 5

6 Background - Semi-Supervised Relational Learning Relational Machine Learning - Approximate Learning: - Approximate Inference: Labels Many conditional forms to choose from (e.g., Generative, Logistic) xi yi yj xi yj (Xiang & Neville, 2009) MB(vi) M-Step: Edges P (Y X, E, Y ) Both learning and inference require Attributes approximations X ˆ Y = arg max log P Y (y i Y MBL (v i ), x i, Y ) Y v i 2V L Pseudolikelihood (GL) X X ˆ Y = arg max P Y (Y U ) log P Y (y i ỸMB(v i ), x i, Y ) Y Y U 2Y U v i 2V L How do these approximations affect E-Step: semi-supervised relational learning? Semi-supervised Relational EM Composite Likelihood (GO) P Y (y i Y MB (v i ), x i, Y ) Collective Inference yi MB(vi) (For all unlabeled instances)

7 Outline Introduction Background: Semi-supervised Relational Machine Learning Analysis of Relational EM convergence in real world networks Relational Stochastic EM and Relational Data Augmentation Experiments Conclusions 7

8 Outline Introduction Background: Semi-supervised Relational Machine Learning Analysis of Relational EM convergence in real world networks Relational Stochastic EM and Relational Data Augmentation Experiments Conclusions 8

9 Impact of Approximations in Semi-Supervised? Relational EM P (Purple Purple Neighbor) 0.96 (Relational EM:) E-Step: Collective Inference Approximation P Y (y i Y MB (v i ), x i, Y ) (For all unlabeled instances) Over-Propagation Error - Both neighboring yellow - Yellow neighbors are not predictive Over-Correction M-Step: X X? ˆ Y = arg max P (Purple Neighbors) P Y (Y U ) log P Y (y i ỸMB(v i 0.61 ), x i, Y ) Y Y U 2Y U v i 2V L Composite Likelihood Approximation

10 Impact of Approximations in Semi-Supervised Relational Learning Does over propagation during prediction happen in real world, sparsely labeled networks? Class Prior Class Prior Total Negatives5000 Trial 1 Trial 2 Trial 3 Trial 4 Trial Total Positives Relational Naive Bayes Total Negatives5000 Trial 1 Trial 2 Trial 3 Trial 4 Trial Total Positives Relational Logistic Regression Yes

11 Impact of Approximations in Semi-Supervised Relational Learning Does over correction happen during parameter estimation for semisupervised relational learning for real world, sparsely labeled networks? P (+ y) P ( ) P ( +) P ( y) Relational Naive Bayes w[1] w w[0] Relational Logistic Regression Yes

12 Outline Introduction Background: Semi-supervised Relational Machine Learning Analysis of Relational EM convergence in real world networks Relational Stochastic EM and Relational Data Augmentation Experiments Conclusions 12

13 Outline Introduction Background: Semi-supervised Relational Machine Learning Analysis of Relational EM convergence in real world networks Relational Stochastic EM and Relational Data Augmentation Experiments Conclusions 13

14 Relational Stochastic EM and Relational Data Augmentation Parameters Fixed Point Predictions Stochastic Fixed Point Relational EM Stochastic Relational Stochastic EM Relational Data Augmentation 14

15 Relational Stochastic EM Stochastic approximation to relational EM algorithm Sample from the joint conditional distribution of labels Maximize the composite likelihood Contrasts with Relational EM, which utilizes expectations of unlabeled items Average over the parameters to reduce the variance (Celex et al., 2001) Inference is still performed using a single, fixed point set of parameters Parameters Fixed Point Predictions Stochastic Fixed Point Relational EM Stochastic Relational Stochastic EM Alternate Between: Gibbs sample of labels Ỹ t U P t Y (Y U Y L, X, E, t 1 Y ) Maximizing Parameters t Y = arg max Y X Aggregate Parameters: Relational Data Augmentation v i 2V L log P Y (y i Ỹt MB(v i ), x i, Y ) ˆ Y = 1 T X t t Y Final Inference: P Y (Y U Y L, X, E, ˆ Y ) 15

16 Relational Data Augmentation Data Augmentation is a Bayesian viewpoint of EM - Parameters are random variables. - Computes posterior predictive distribution (Tanner&Wong,1987) Developed a version for relational semisupervised learning Final inference is over a distribution of parameter values Requires prior distributions over the parameters and corresponding sampling methods - RNB: Beta (conjunctive prior) - RLR: Normal (Metropolis-Hastings sampler) Parameters Fixed Point Predictions Stochastic Fixed Point Relational EM Stochastic Relational Stochastic EM Alternate Between: Gibbs sample of labels Ỹ t U P t Y (Y U Y L, X, E, t 1 Y ) Sample Parameters t Y P t ( Y Ỹt U, Y L, X, E) Final Parameters: Final Inference: ˆ Y Relational Data Augmentation = 1 T Ŷ t U = 1 T X t X t t Y Ỹ t U 16

17 Outline Introduction Background: Semi-supervised Relational Machine Learning Analysis of Relational EM convergence in real world networks Relational Stochastic EM and Relational Data Augmentation Experiments Conclusions 17

18 Outline Introduction Background: Semi-supervised Relational Machine Learning Analysis of Relational EM convergence in real world networks Relational Stochastic EM and Relational Data Augmentation Experiments Conclusions 18

19 Experiments - Setup Compare on four real world networks Competing Models - Independent - Relational (No CI and CI) - Relational EM - Relational SEM - Relational DA Conditional Models - Relational Naive Bayes - Relational Logistic Regression Error measures - Zero-One Loss (0-1 Loss) - Mean absolute error (MAE) Dataset Vertices Edges Attributes Facebook 5,906 73,374 2 IMDB 11, , DVD 16,118 75, Music 56, ,

20 Experiments - DVD Relational EM Relational EM 0-1 Loss Percentage of Graph Labeled Naive Bayes Relational DA 0-1 Loss Percentage of Graph Labeled Logistic Regression Relational DA Relational EM s instability in sparsely labeled domains causes poor performance 20

21 Experiments - Facebook 0.60 Relational Data Augmentation can outperform Relational Stochastic EM (In 0.32 Paper): Cast collective inference as a Percentage of Graph Labeled Percentage of Graph Labeled MAE Relational EM nonlinear dynamical system to analyze Naive the Bayes convergence Logistic of Relational Regression SEM Relational SEM Relational DA MAE Relational EM Relational DA (Finding): Similar to Relational EM, Relational SEM can sometimes learn parameters that result in an unstable system 21

22 Outline Introduction Background: Semi-supervised Relational Machine Learning Analysis of Relational EM convergence in real world networks Relational Stochastic EM and Relational Data Augmentation Experiments Conclusions 22

23 Outline Introduction Background: Semi-supervised Relational Machine Learning Analysis of Relational EM convergence in real world networks Relational Stochastic EM and Relational Data Augmentation Experiments Conclusions 23

24 Conclusions Findings - Fixed point approximation error led Relational EM to not converge - Overpropagation and Overcorrection - (In Paper) Fixed point EM methods can result in unstable systems during inference Developed - Relational Stochastic EM method has lower variance in parameter estimates - Relational Data Augmentation for computing a posterior predictive distribution for the unlabeled instances - Models the uncertainty over the parameter estimates, meaning it can outperform the Relational Stochastic EM approach - Both work well in conjunction with Composite Likelihood approximation - Both significantly outperformed a variety of competitors under a number of testing scenarios 24

25 Thank you! Jennifer Neville Paul Bennett

Combining Gradient Boosting Machines with Collective Inference to Predict Continuous Values

Combining Gradient Boosting Machines with Collective Inference to Predict Continuous Values Combining Gradient Boosting Machines with Collective Inference to Predict Continuous Values Iman Alodah Computer Science Department Purdue University West Lafayette, Indiana 47906 Email: ialodah@purdue.edu

More information

Analyzing the Transferability of Collective Inference Models Across Networks

Analyzing the Transferability of Collective Inference Models Across Networks Analyzing the Transferability of Collective Inference Models Across Networks Ransen Niu Computer Science Department Purdue University West Lafayette, IN 47907 rniu@purdue.edu Sebastian Moreno Faculty of

More information

A Shrinkage Approach for Modeling Non-Stationary Relational Autocorrelation

A Shrinkage Approach for Modeling Non-Stationary Relational Autocorrelation A Shrinkage Approach for Modeling Non-Stationary Relational Autocorrelation Pelin Angin Purdue University Department of Computer Science pangin@cs.purdue.edu Jennifer Neville Purdue University Departments

More information

Evaluation Strategies for Network Classification

Evaluation Strategies for Network Classification Evaluation Strategies for Network Classification Jennifer Neville Departments of Computer Science and Statistics Purdue University (joint work with Tao Wang, Brian Gallagher, and Tina Eliassi-Rad) 1 Given

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup Random Variables: Y i =(Y i1,...,y ip ) 0 =(Y i,obs, Y i,miss ) 0 R i =(R i1,...,r ip ) 0 ( 1

More information

Recommender Systems. Collaborative Filtering & Content-Based Recommending

Recommender Systems. Collaborative Filtering & Content-Based Recommending Recommender Systems Collaborative Filtering & Content-Based Recommending 1 Recommender Systems Systems for recommending items (e.g. books, movies, CD s, web pages, newsgroup messages) to users based on

More information

Logistic Regression

Logistic Regression Logistic Regression ddebarr@uw.edu 2016-05-26 Agenda Model Specification Model Fitting Bayesian Logistic Regression Online Learning and Stochastic Optimization Generative versus Discriminative Classifiers

More information

Statistical Matching using Fractional Imputation

Statistical Matching using Fractional Imputation Statistical Matching using Fractional Imputation Jae-Kwang Kim 1 Iowa State University 1 Joint work with Emily Berg and Taesung Park 1 Introduction 2 Classical Approaches 3 Proposed method 4 Application:

More information

Deep collective inference

Deep collective inference Purdue University Purdue e-pubs Open Access Theses Theses and Dissertations 12-2016 Deep collective inference John A. Moore Purdue University Follow this and additional works at: http://docs.lib.purdue.edu/open_access_theses

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

Structural EM Learning Bayesian Networks and Parameters from Incomplete Data

Structural EM Learning Bayesian Networks and Parameters from Incomplete Data Structural EM Learning Bayesian Networks and Parameters from Incomplete Data Dan Li University of Pittsburgh Nov 16, 2005 Papers Paper 1: The Bayesian Structural EM Algorithm by Nir Friedman Paper 2: Learning

More information

Clustering Relational Data using the Infinite Relational Model

Clustering Relational Data using the Infinite Relational Model Clustering Relational Data using the Infinite Relational Model Ana Daglis Supervised by: Matthew Ludkin September 4, 2015 Ana Daglis Clustering Data using the Infinite Relational Model September 4, 2015

More information

Expectation-Maximization Methods in Population Analysis. Robert J. Bauer, Ph.D. ICON plc.

Expectation-Maximization Methods in Population Analysis. Robert J. Bauer, Ph.D. ICON plc. Expectation-Maximization Methods in Population Analysis Robert J. Bauer, Ph.D. ICON plc. 1 Objective The objective of this tutorial is to briefly describe the statistical basis of Expectation-Maximization

More information

Machine Learning. Semi-Supervised Learning. Manfred Huber

Machine Learning. Semi-Supervised Learning. Manfred Huber Machine Learning Semi-Supervised Learning Manfred Huber 2015 1 Semi-Supervised Learning Semi-supervised learning refers to learning from data where part contains desired output information and the other

More information

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz Gradient Descent Wed Sept 20th, 2017 James McInenrey Adapted from slides by Francisco J. R. Ruiz Housekeeping A few clarifications of and adjustments to the course schedule: No more breaks at the midpoint

More information

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis 7 Computer Vision and Classification 413 / 458 Computer Vision and Classification The k-nearest-neighbor method The k-nearest-neighbor (knn) procedure has been used in data analysis and machine learning

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Active Sampling of Networks

Active Sampling of Networks Joseph J. Pfeiffer III jpfeiffer@purdue.edu Jennifer Neville neville@cs.purdue.edu Department of Computer Science, Purdue University, West Lafayette, IN Paul N. Bennett paul.n.bennett@microsoft.com Microsoft

More information

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models DB Tsai Steven Hillion Outline Introduction Linear / Nonlinear Classification Feature Engineering - Polynomial Expansion Big-data

More information

SOCIAL MEDIA MINING. Data Mining Essentials

SOCIAL MEDIA MINING. Data Mining Essentials SOCIAL MEDIA MINING Data Mining Essentials Dear instructors/users of these slides: Please feel free to include these slides in your own material, or modify them as you see fit. If you decide to incorporate

More information

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

Conditional Random Fields - A probabilistic graphical model. Yen-Chin Lee 指導老師 : 鮑興國

Conditional Random Fields - A probabilistic graphical model. Yen-Chin Lee 指導老師 : 鮑興國 Conditional Random Fields - A probabilistic graphical model Yen-Chin Lee 指導老師 : 鮑興國 Outline Labeling sequence data problem Introduction conditional random field (CRF) Different views on building a conditional

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

Image Restoration using Markov Random Fields

Image Restoration using Markov Random Fields Image Restoration using Markov Random Fields Based on the paper Stochastic Relaxation, Gibbs Distributions and Bayesian Restoration of Images, PAMI, 1984, Geman and Geman. and the book Markov Random Field

More information

Probabilistic Abstraction Lattices: A Computationally Efficient Model for Conditional Probability Estimation

Probabilistic Abstraction Lattices: A Computationally Efficient Model for Conditional Probability Estimation Probabilistic Abstraction Lattices: A Computationally Efficient Model for Conditional Probability Estimation Daniel Lowd January 14, 2004 1 Introduction Probabilistic models have shown increasing popularity

More information

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Atul Kanaujia, CBIM, Rutgers Cristian Sminchisescu, TTI-C Dimitris Metaxas,CBIM, Rutgers 3D Human Pose Inference Difficulties Towards

More information

Perceptron Introduction to Machine Learning. Matt Gormley Lecture 5 Jan. 31, 2018

Perceptron Introduction to Machine Learning. Matt Gormley Lecture 5 Jan. 31, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Perceptron Matt Gormley Lecture 5 Jan. 31, 2018 1 Q&A Q: We pick the best hyperparameters

More information

Classifiers and Detection. D.A. Forsyth

Classifiers and Detection. D.A. Forsyth Classifiers and Detection D.A. Forsyth Classifiers Take a measurement x, predict a bit (yes/no; 1/-1; 1/0; etc) Detection with a classifier Search all windows at relevant scales Prepare features Classify

More information

Louis Fourrier Fabien Gaie Thomas Rolf

Louis Fourrier Fabien Gaie Thomas Rolf CS 229 Stay Alert! The Ford Challenge Louis Fourrier Fabien Gaie Thomas Rolf Louis Fourrier Fabien Gaie Thomas Rolf 1. Problem description a. Goal Our final project is a recent Kaggle competition submitted

More information

Building Classifiers using Bayesian Networks

Building Classifiers using Bayesian Networks Building Classifiers using Bayesian Networks Nir Friedman and Moises Goldszmidt 1997 Presented by Brian Collins and Lukas Seitlinger Paper Summary The Naive Bayes classifier has reasonable performance

More information

Statistics (STAT) Statistics (STAT) 1. Prerequisites: grade in C- or higher in STAT 1200 or STAT 1300 or STAT 1400

Statistics (STAT) Statistics (STAT) 1. Prerequisites: grade in C- or higher in STAT 1200 or STAT 1300 or STAT 1400 Statistics (STAT) 1 Statistics (STAT) STAT 1200: Introductory Statistical Reasoning Statistical concepts for critically evaluation quantitative information. Descriptive statistics, probability, estimation,

More information

Graphical Models, Bayesian Method, Sampling, and Variational Inference

Graphical Models, Bayesian Method, Sampling, and Variational Inference Graphical Models, Bayesian Method, Sampling, and Variational Inference With Application in Function MRI Analysis and Other Imaging Problems Wei Liu Scientific Computing and Imaging Institute University

More information

Multi-Label Classification with Conditional Tree-structured Bayesian Networks

Multi-Label Classification with Conditional Tree-structured Bayesian Networks Multi-Label Classification with Conditional Tree-structured Bayesian Networks Original work: Batal, I., Hong C., and Hauskrecht, M. An Efficient Probabilistic Framework for Multi-Dimensional Classification.

More information

Overview of machine learning

Overview of machine learning Overview of machine learning Kevin P. Murphy Last updated November 26, 2007 1 Introduction In this Chapter, we provide a brief overview of the most commonly studied problems and solution methods within

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points]

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points] CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, 2015. 11:59pm, PDF to Canvas [100 points] Instructions. Please write up your responses to the following problems clearly and concisely.

More information

CS224W: Social and Information Network Analysis Project Report: Edge Detection in Review Networks

CS224W: Social and Information Network Analysis Project Report: Edge Detection in Review Networks CS224W: Social and Information Network Analysis Project Report: Edge Detection in Review Networks Archana Sulebele, Usha Prabhu, William Yang (Group 29) Keywords: Link Prediction, Review Networks, Adamic/Adar,

More information

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural

More information

Identifying and Understanding Differential Transcriptor Binding

Identifying and Understanding Differential Transcriptor Binding Identifying and Understanding Differential Transcriptor Binding 15-899: Computational Genomics David Koes Yong Lu Motivation Under different conditions, a transcription factor binds to different genes

More information

Introduction to Automated Text Analysis. bit.ly/poir599

Introduction to Automated Text Analysis. bit.ly/poir599 Introduction to Automated Text Analysis Pablo Barberá School of International Relations University of Southern California pablobarbera.com Lecture materials: bit.ly/poir599 Today 1. Solutions for last

More information

Multi-label classification using rule-based classifier systems

Multi-label classification using rule-based classifier systems Multi-label classification using rule-based classifier systems Shabnam Nazmi (PhD candidate) Department of electrical and computer engineering North Carolina A&T state university Advisor: Dr. A. Homaifar

More information

Conditional Random Fields and beyond D A N I E L K H A S H A B I C S U I U C,

Conditional Random Fields and beyond D A N I E L K H A S H A B I C S U I U C, Conditional Random Fields and beyond D A N I E L K H A S H A B I C S 5 4 6 U I U C, 2 0 1 3 Outline Modeling Inference Training Applications Outline Modeling Problem definition Discriminative vs. Generative

More information

Dynamic Bayesian network (DBN)

Dynamic Bayesian network (DBN) Readings: K&F: 18.1, 18.2, 18.3, 18.4 ynamic Bayesian Networks Beyond 10708 Graphical Models 10708 Carlos Guestrin Carnegie Mellon University ecember 1 st, 2006 1 ynamic Bayesian network (BN) HMM defined

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup For our analysis goals we would like to do: Y X N (X, 2 I) and then interpret the coefficients

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

Predicting Popular Xbox games based on Search Queries of Users

Predicting Popular Xbox games based on Search Queries of Users 1 Predicting Popular Xbox games based on Search Queries of Users Chinmoy Mandayam and Saahil Shenoy I. INTRODUCTION This project is based on a completed Kaggle competition. Our goal is to predict which

More information

Collective classification in network data

Collective classification in network data 1 / 50 Collective classification in network data Seminar on graphs, UCSB 2009 Outline 2 / 50 1 Problem 2 Methods Local methods Global methods 3 Experiments Outline 3 / 50 1 Problem 2 Methods Local methods

More information

Regularization and model selection

Regularization and model selection CS229 Lecture notes Andrew Ng Part VI Regularization and model selection Suppose we are trying select among several different models for a learning problem. For instance, we might be using a polynomial

More information

Linear Modeling with Bayesian Statistics

Linear Modeling with Bayesian Statistics Linear Modeling with Bayesian Statistics Bayesian Approach I I I I I Estimate probability of a parameter State degree of believe in specific parameter values Evaluate probability of hypothesis given the

More information

MCMC Methods for data modeling

MCMC Methods for data modeling MCMC Methods for data modeling Kenneth Scerri Department of Automatic Control and Systems Engineering Introduction 1. Symposium on Data Modelling 2. Outline: a. Definition and uses of MCMC b. MCMC algorithms

More information

Relational Dependency Networks

Relational Dependency Networks University of Massachusetts Amherst ScholarWorks@UMass Amherst Computer Science Department Faculty Publication Series Computer Science 2007 Relational Dependency Networks Jennifer Neville Purdue University

More information

Semi-supervised Learning

Semi-supervised Learning Semi-supervised Learning Piyush Rai CS5350/6350: Machine Learning November 8, 2011 Semi-supervised Learning Supervised Learning models require labeled data Learning a reliable model usually requires plenty

More information

Influence Maximization in Location-Based Social Networks Ivan Suarez, Sudarshan Seshadri, Patrick Cho CS224W Final Project Report

Influence Maximization in Location-Based Social Networks Ivan Suarez, Sudarshan Seshadri, Patrick Cho CS224W Final Project Report Influence Maximization in Location-Based Social Networks Ivan Suarez, Sudarshan Seshadri, Patrick Cho CS224W Final Project Report Abstract The goal of influence maximization has led to research into different

More information

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov ECE521: Week 11, Lecture 20 27 March 2017: HMM learning/inference With thanks to Russ Salakhutdinov Examples of other perspectives Murphy 17.4 End of Russell & Norvig 15.2 (Artificial Intelligence: A Modern

More information

Bayesian Modelling with JAGS and R

Bayesian Modelling with JAGS and R Bayesian Modelling with JAGS and R Martyn Plummer International Agency for Research on Cancer Rencontres R, 3 July 2012 CRAN Task View Bayesian Inference The CRAN Task View Bayesian Inference is maintained

More information

Semi-supervised learning SSL (on graphs)

Semi-supervised learning SSL (on graphs) Semi-supervised learning SSL (on graphs) 1 Announcement No office hour for William after class today! 2 Semi-supervised learning Given: A pool of labeled examples L A (usually larger) pool of unlabeled

More information

Bayesian Statistics Group 8th March Slice samplers. (A very brief introduction) The basic idea

Bayesian Statistics Group 8th March Slice samplers. (A very brief introduction) The basic idea Bayesian Statistics Group 8th March 2000 Slice samplers (A very brief introduction) The basic idea lacements To sample from a distribution, simply sample uniformly from the region under the density function

More information

Graph Classification in Heterogeneous

Graph Classification in Heterogeneous Title: Graph Classification in Heterogeneous Networks Name: Xiangnan Kong 1, Philip S. Yu 1 Affil./Addr.: Department of Computer Science University of Illinois at Chicago Chicago, IL, USA E-mail: {xkong4,

More information

From Bayesian Analysis of Item Response Theory Models Using SAS. Full book available for purchase here.

From Bayesian Analysis of Item Response Theory Models Using SAS. Full book available for purchase here. From Bayesian Analysis of Item Response Theory Models Using SAS. Full book available for purchase here. Contents About this Book...ix About the Authors... xiii Acknowledgments... xv Chapter 1: Item Response

More information

Analysis of Incomplete Multivariate Data

Analysis of Incomplete Multivariate Data Analysis of Incomplete Multivariate Data J. L. Schafer Department of Statistics The Pennsylvania State University USA CHAPMAN & HALL/CRC A CR.C Press Company Boca Raton London New York Washington, D.C.

More information

Link Prediction for Social Network

Link Prediction for Social Network Link Prediction for Social Network Ning Lin Computer Science and Engineering University of California, San Diego Email: nil016@eng.ucsd.edu Abstract Friendship recommendation has become an important issue

More information

ActiveClean: Interactive Data Cleaning For Statistical Modeling. Safkat Islam Carolyn Zhang CS 590

ActiveClean: Interactive Data Cleaning For Statistical Modeling. Safkat Islam Carolyn Zhang CS 590 ActiveClean: Interactive Data Cleaning For Statistical Modeling Safkat Islam Carolyn Zhang CS 590 Outline Biggest Takeaways, Strengths, and Weaknesses Background System Architecture Updating the Model

More information

Logistic Regression. Abstract

Logistic Regression. Abstract Logistic Regression Tsung-Yi Lin, Chen-Yu Lee Department of Electrical and Computer Engineering University of California, San Diego {tsl008, chl60}@ucsd.edu January 4, 013 Abstract Logistic regression

More information

A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data

A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data Seyoung Kim, Padhraic Smyth, and Hal Stern Bren School of Information and Computer Sciences University of California,

More information

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford Department of Engineering Science University of Oxford January 27, 2017 Many datasets consist of multiple heterogeneous subsets. Cluster analysis: Given an unlabelled data, want algorithms that automatically

More information

Structured Learning. Jun Zhu

Structured Learning. Jun Zhu Structured Learning Jun Zhu Supervised learning Given a set of I.I.D. training samples Learn a prediction function b r a c e Supervised learning (cont d) Many different choices Logistic Regression Maximum

More information

SUPERVISED LEARNING METHODS. Stanley Liang, PhD Candidate, Lassonde School of Engineering, York University Helix Science Engagement Programs 2018

SUPERVISED LEARNING METHODS. Stanley Liang, PhD Candidate, Lassonde School of Engineering, York University Helix Science Engagement Programs 2018 SUPERVISED LEARNING METHODS Stanley Liang, PhD Candidate, Lassonde School of Engineering, York University Helix Science Engagement Programs 2018 2 CHOICE OF ML You cannot know which algorithm will work

More information

Package binomlogit. February 19, 2015

Package binomlogit. February 19, 2015 Type Package Title Efficient MCMC for Binomial Logit Models Version 1.2 Date 2014-03-12 Author Agnes Fussl Maintainer Agnes Fussl Package binomlogit February 19, 2015 Description The R package

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Unsupervised learning Daniel Hennes 29.01.2018 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Supervised learning Regression (linear

More information

Modeling the Variance of Network Populations with Mixed Kronecker Product Graph Models

Modeling the Variance of Network Populations with Mixed Kronecker Product Graph Models Modeling the Variance of Networ Populations with Mixed Kronecer Product Graph Models Sebastian Moreno, Jennifer Neville Department of Computer Science Purdue University West Lafayette, IN 47906 {smorenoa,neville@cspurdueedu

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

Machine Learning. Supervised Learning. Manfred Huber

Machine Learning. Supervised Learning. Manfred Huber Machine Learning Supervised Learning Manfred Huber 2015 1 Supervised Learning Supervised learning is learning where the training data contains the target output of the learning system. Training data D

More information

José Miguel Hernández Lobato Zoubin Ghahramani Computational and Biological Learning Laboratory Cambridge University

José Miguel Hernández Lobato Zoubin Ghahramani Computational and Biological Learning Laboratory Cambridge University José Miguel Hernández Lobato Zoubin Ghahramani Computational and Biological Learning Laboratory Cambridge University 20/09/2011 1 Evaluation of data mining and machine learning methods in the task of modeling

More information

Monte Carlo for Spatial Models

Monte Carlo for Spatial Models Monte Carlo for Spatial Models Murali Haran Department of Statistics Penn State University Penn State Computational Science Lectures April 2007 Spatial Models Lots of scientific questions involve analyzing

More information

Network-based auto-probit modeling for protein function prediction

Network-based auto-probit modeling for protein function prediction Network-based auto-probit modeling for protein function prediction Supplementary material Xiaoyu Jiang, David Gold, Eric D. Kolaczyk Derivation of Markov Chain Monte Carlo algorithm with the GO annotation

More information

A Scalable, Accurate Hybrid Recommender System

A Scalable, Accurate Hybrid Recommender System A Scalable, Accurate Hybrid Recommender System Mustansar Ali Ghazanfar and Adam Prugel-Bennett School of Electronics and Computer Science University of Southampton Highfield Campus, SO17 1BJ, United Kingdom

More information

Document Information

Document Information Horizon 2020 Framework Programme Grant Agreement: 732328 FashionBrain Document Information Deliverable number: D5.3 Deliverable title: Early Demo for Trend Prediction Deliverable description: This early

More information

Demystifying movie ratings 224W Project Report. Amritha Raghunath Vignesh Ganapathi Subramanian

Demystifying movie ratings 224W Project Report. Amritha Raghunath Vignesh Ganapathi Subramanian Demystifying movie ratings 224W Project Report Amritha Raghunath (amrithar@stanford.edu) Vignesh Ganapathi Subramanian (vigansub@stanford.edu) 9 December, 2014 Introduction The past decade or so has seen

More information

fast and flexible probabilistic modeling in python

fast and flexible probabilistic modeling in python fast and flexible probabilistic modeling in python Maxwell Libbrecht Postdoc, Department of Genome Sciences, University of Washington, Seattle WA Assistant Professor, Simon Fraser University, Vancouver

More information

Clustering web search results

Clustering web search results Clustering K-means Machine Learning CSE546 Emily Fox University of Washington November 4, 2013 1 Clustering images Set of Images [Goldberger et al.] 2 1 Clustering web search results 3 Some Data 4 2 K-means

More information

Analysis of Panel Data. Third Edition. Cheng Hsiao University of Southern California CAMBRIDGE UNIVERSITY PRESS

Analysis of Panel Data. Third Edition. Cheng Hsiao University of Southern California CAMBRIDGE UNIVERSITY PRESS Analysis of Panel Data Third Edition Cheng Hsiao University of Southern California CAMBRIDGE UNIVERSITY PRESS Contents Preface to the ThirdEdition Preface to the Second Edition Preface to the First Edition

More information

A Semi-Supervised Approach for Web Spam Detection using Combinatorial Feature-Fusion

A Semi-Supervised Approach for Web Spam Detection using Combinatorial Feature-Fusion A Semi-Supervised Approach for Web Spam Detection using Combinatorial Feature-Fusion Ye Tian, Gary M. Weiss, Qiang Ma Department of Computer and Information Science Fordham University 441 East Fordham

More information

Empirical Bayesian Motion Segmentation

Empirical Bayesian Motion Segmentation 1 Empirical Bayesian Motion Segmentation Nuno Vasconcelos, Andrew Lippman Abstract We introduce an empirical Bayesian procedure for the simultaneous segmentation of an observed motion field estimation

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

Adaptive Dropout Training for SVMs

Adaptive Dropout Training for SVMs Department of Computer Science and Technology Adaptive Dropout Training for SVMs Jun Zhu Joint with Ning Chen, Jingwei Zhuo, Jianfei Chen, Bo Zhang Tsinghua University ShanghaiTech Symposium on Data Science,

More information

Machine Learning Methods in Visualisation for Big Data 2018

Machine Learning Methods in Visualisation for Big Data 2018 Machine Learning Methods in Visualisation for Big Data 2018 Daniel Archambault1 Ian Nabney2 Jaakko Peltonen3 1 Swansea University 2 University of Bristol 3 University of Tampere, Aalto University Evaluating

More information

CS299 Detailed Plan. Shawn Tice. February 5, The high-level steps for classifying web pages in Yioop are as follows:

CS299 Detailed Plan. Shawn Tice. February 5, The high-level steps for classifying web pages in Yioop are as follows: CS299 Detailed Plan Shawn Tice February 5, 2013 Overview The high-level steps for classifying web pages in Yioop are as follows: 1. Create a new classifier for a unique label. 2. Train it on a labelled

More information

Naïve Bayes for text classification

Naïve Bayes for text classification Road Map Basic concepts Decision tree induction Evaluation of classifiers Rule induction Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Support

More information

A study of classification algorithms using Rapidminer

A study of classification algorithms using Rapidminer Volume 119 No. 12 2018, 15977-15988 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu A study of classification algorithms using Rapidminer Dr.J.Arunadevi 1, S.Ramya 2, M.Ramesh Raja

More information

DS504/CS586: Big Data Analytics Graph Mining Prof. Yanhua Li

DS504/CS586: Big Data Analytics Graph Mining Prof. Yanhua Li Welcome to DS504/CS586: Big Data Analytics Graph Mining Prof. Yanhua Li Time: 6:00pm 8:50pm R Location: AK232 Fall 2016 Graph Data: Social Networks Facebook social graph 4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna,

More information

10601 Machine Learning. Model and feature selection

10601 Machine Learning. Model and feature selection 10601 Machine Learning Model and feature selection Model selection issues We have seen some of this before Selecting features (or basis functions) Logistic regression SVMs Selecting parameter value Prior

More information

Supervised Learning for Image Segmentation

Supervised Learning for Image Segmentation Supervised Learning for Image Segmentation Raphael Meier 06.10.2016 Raphael Meier MIA 2016 06.10.2016 1 / 52 References A. Ng, Machine Learning lecture, Stanford University. A. Criminisi, J. Shotton, E.

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

PIANOS requirements specifications

PIANOS requirements specifications PIANOS requirements specifications Group Linja Helsinki 7th September 2005 Software Engineering Project UNIVERSITY OF HELSINKI Department of Computer Science Course 581260 Software Engineering Project

More information

Markov Random Fields and Gibbs Sampling for Image Denoising

Markov Random Fields and Gibbs Sampling for Image Denoising Markov Random Fields and Gibbs Sampling for Image Denoising Chang Yue Electrical Engineering Stanford University changyue@stanfoed.edu Abstract This project applies Gibbs Sampling based on different Markov

More information

Multi-Class Logistic Regression and Perceptron

Multi-Class Logistic Regression and Perceptron Multi-Class Logistic Regression and Perceptron Instructor: Wei Xu Some slides adapted from Dan Jurfasky, Brendan O Connor and Marine Carpuat MultiClass Classification Q: what if we have more than 2 categories?

More information

Bayes Net Learning. EECS 474 Fall 2016

Bayes Net Learning. EECS 474 Fall 2016 Bayes Net Learning EECS 474 Fall 2016 Homework Remaining Homework #3 assigned Homework #4 will be about semi-supervised learning and expectation-maximization Homeworks #3-#4: the how of Graphical Models

More information

The framework of the BCLA and its applications

The framework of the BCLA and its applications NOTE: Please cite the references as: Zhu, T.T., Dunkley, N., Behar, J., Clifton, D.A., and Clifford, G.D.: Fusing Continuous-Valued Medical Labels Using a Bayesian Model Annals of Biomedical Engineering,

More information

CLUSTERING. JELENA JOVANOVIĆ Web:

CLUSTERING. JELENA JOVANOVIĆ   Web: CLUSTERING JELENA JOVANOVIĆ Email: jeljov@gmail.com Web: http://jelenajovanovic.net OUTLINE What is clustering? Application domains K-Means clustering Understanding it through an example The K-Means algorithm

More information