Semi-supervised learning SSL (on graphs)

Size: px
Start display at page:

Download "Semi-supervised learning SSL (on graphs)"

Transcription

1 Semi-supervised learning SSL (on graphs) 1

2 Announcement No office hour for William after class today! 2

3 Semi-supervised learning Given: A pool of labeled examples L A (usually larger) pool of unlabeled examples U Option 1 for using L and U : Ignore U and use supervised learning on L Option 2: Ignore labels in L+U and use k-means, etc find clusters; then label each cluster using L Question: Can you use both L and U to do better? 3

4 SSL is Somewhere Between Clustering and Supervised Learning 4

5 SSL is Between Clustering and SL 5

6 What is a natural grouping among these objects? slides: Bhavana Dalvi 6

7 SSL is Between Clustering and SL clustering is unconstrained and may not give you what you want maybe this clustering is as good as the other 7

8 SSL is Between Clustering and SL 8

9 SSL is Between Clustering and SL 9

10 SSL is Between Clustering and SL supervised learning with few labels is also unconstrained and may not give you what you want 10

11 SSL is Between Clustering and SL 11

12 SSL is Between Clustering and SL This clustering isn t consistent with the labels 12

13 SSL is Between Clustering and SL 13

14 SSL in Action: The NELL System 14

15 Type of SSL Margin-based: transductive SVM Logistic regression with entropic regularization Generative: seeded k-means Nearest-neighbor like: graph-based SSL 15

16 Harmonic Fields aka coem aka wvrn 16

17 Idea: construct a graph connecting the most similar examples (k-nn graph) Intuition: nearby points should have similar labels labels should propagate through the graph Formalization: try and minimize energy defined as: In this example y is a length- 10 vector Harmonic fields Gharamani, Lafferty and Zhu Observed label 17

18 Result 1: at the minimal energy state, each node s value is a weighted average of its neighbor s weights: Harmonic fields Gharamani, Lafferty and Zhu Observed label 18

19 Harmonic field LP algorithm Result 2: you can reach the minimal energy state with a simple iterative algorithm: Step 1: For each seed example (x i,y i ): Let V 0 (i,c) = [ y i = c ] Step 2: for t=1,,t --- T is about 5 Let V t+1 (i,c) =weighted average of V t+1 (j,c) for all j that are linked to i, and renormalize V t +1 (i,c) = 1 Z j w i, j V t ( j,c) For seeds, reset V t+1 (i,c) = [ y i = c ] 19

20 Harmonic fields Gharamani, Lafferty and Zhu This family of techniques is called Label propagation 20

21 Harmonic fields Gharamani, Lafferty and Zhu This experiment points out some of the issues with LP: 1. What distance metric do you use? 2. What energy function do you minimize? 3. What is the right value for K in your K-NN graph? Is a K-NN graph right? 4. If you have lots of data, how expensive is it to build the graph? This family of techniques is called Label propagation 21

22 NELL: Uses Co-EM ~= HF Extract cities: Paris Pittsburgh Seattle Cupertino Examples San Francisco Austin denial anxiety selfishness Berlin mayor of arg1 live in arg1 arg1 is home of traits such as arg1 Features 22

23 Semi-Supervised Bootstrapped Learning via Label Propagation mayor of arg1 arg1 is home of Paris Pittsburgh San Francisco Austin anxiety live in arg1 traits such as arg1 Seattle denial selfishness 23

24 Semi-Supervised Bootstrapped Learning via Label Propagation mayor of arg1 arg1 is home of Paris Pittsburgh San Francisco Austin Information from other categories tells you anxiety how far (when to stop propagating) Seattle live in arg1 denial denial traits such as arg1 traits such as arg1 arrogance selfishness selfishness Nodes near seeds Nodes far from seeds 24

25 Difference: graph construction is not instance-to-instance but instance-to-feature Paris Pittsburgh San Francisco Austin Important reformulation: the k- NN graph is expensive to build, the instancefeature graph may not anxiety be Seattle denial selfishness 25

26 Some other general issues with SSL How much unlabeled data do you want? Suppose you re optimizing J = J L (L) + J U (U) If U >> L does J U dominate J? If so you re basically just clustering Often we need to balance J L and J U Besides L, what other information about the task is useful (or necessary)? Common choice: relative frequency of classes Various ways of incorporating this into the optimization problem 26

27 ASONAM-2010 (Advances in Social Networks Analysis and Mining) 27

28 Network Datasets with Known Classes UBMCBlog AGBlog MSPBlog Cora Citeseer 28

29 RWR - fixpoint of: aka Personalized PageRank Seed selection 1. order by PageRank, degree, or randomly 2. go down list until you have at least k examples/class 29

30 HF method Results Blog data Random Degree PageRank 30

31 Results More blog data Random Degree PageRank 31

32 Results Citation data Random Degree PageRank 32

33 Seeding MultiRankWalk 33

34 Seeding HF/wvRN 34

35 MultiRank Walk vs HF/wvRN/CoEM Seeds are marked S HF MRW 35

36 Back to Experiments: Network Datasets with Known Classes UBMCBlog AGBlog MSPBlog Cora Citeseer 36

37 MultiRankWalk vs wvrn/hf/coem 37

38 Harmonic Fields aka coem aka wvrn 38

39 CoEM/HF/wvRN One definition [MacKassey & Provost, JMLR 2007]: Simple relational classifier is same as the harmonic field the score of each node in the graph is the harmonic (linearly weighted) average of its neighbors scores. 39

40 CoEM/wvRN/HF Another justification of the same algorithm goes back to 2003 start with cotraining with a naïve Bayes learner 40

41 CoEM/wvRN/HF One algorithm with several justifications. One is to start with co-training with a naïve Bayes learner And compare to an EM version of naïve Bayes E: soft-classify unlabeled examples with NB classifier M: re-train classifier with soft-labeled examples 41

42 CoEM/wvRN/HF A second experiment each + example: concatenate features from two documents, one of class A+, one of class B+ each - example: concatenate features from two documents, one of class A-, one of class B- features are prefixed with A, B è disjoint 42

43 CoEM/wvRN/HF A second experiment each + example: concatenate features from two documents, one of class A+, one of class B+ each - example: concatenate features from two documents, one of class A-, one of class B- features are prefixed with A, B è disjoint NOW co-training outperforms EM 43

44 CoEM/wvRN/HF Co-training with a naïve Bayes learner vs an EM version of naïve Bayes E: soft-classify unlabeled examples with NB classifier M: re-train classifier with soft-labeled examples incremental hard assignments iterative soft assignments 44

45 Co-EM for a Rote Learner: equivalent to HF on a bipartite graph Pittsburgh NPs contexts lives in _ 45

46 SSL AS OPTIMIZATION 46

47 SSL as optimization and Modified Adsorption slides from Partha Talukdar 47

48 48

49 yet another name for HF/wvRN/coEM 49

50 match seeds smoothness prior 50

51 Adsorption SSL algorithm 51

52 52

53 53

54 How to do this minimization? First, differentiate to find min is at Jacobi method: To solve Ax=b for x Iterate: or: 54

55 55

56 56

57 /HF/ precisionrecall break even point 57

58 /HF/ 58

59 /HF/ 59

60 from HTML tables on the web that are used for data, not formatting from mining patterns like musicians such as Bob Dylan 60

61 61

62 62

63 MAD SKETCHES 63

64 Followup work (AIStats 2014) Propagating labels requires usually small number of optimization passes Basically like label propagation passes Each is linear in the number of edges and the number of labels being propagated Can you do better? basic idea: store labels in a countmin sketch which is basically an compact approximation of an objectàdouble mapping 64

65 Count-min sketches split a real vector into k ranges, one for each hash function cm.inc( fred flintstone, 3): h1 h2 h3 add the value to each hash location cm.inc( barney rubble,5): h1 h2 h

66 Count-min sketches split a real vector into k ranges, one for each hash function cm.get( fred flintstone ): h1 h2 3 h3 take min when retrieving a value cm.get( barney rubble): h1 h2 5 h

67 Followup work (AIStats 2014) Propagating labels requires usually small number of optimization passes Basically like label propagation passes Each is linear in the number of edges and the number of labels being propagated the sketch size sketches can be combined linearly without unpacking them: sketch(av + bw) = a*sketch(v)+b*sketch(w) sketchs are good at storing skewed distributions 67

68 Followup work (AIStats 2014) Label distributions are often very skewed sparse initial labels community structure: labels from other subcommunities have small weight 68

69 Followup work (AIStats 2014) self-injection : similarity computation Freebase Flick-10k 69

70 Followup work (AIStats 2014) Freebase 70

71 Followup work (AIStats 2014) 100 Gb available 71

72 Even more recent work AIStats

73 Differences: objective function seeds smoothness close to uniform label distribution normalized predictions 73

74 Differences: scaling up Updates done in parallel with Pregel Replace count-min sketch with streaming approach updates from neighbors are a stream break stream into sections maintain a list of (y, Prob(y), Δ) filter out labels and end of section if Prob(y)+Δ is small 74

75 Results with EXPANDER 75

INTRO TO SEMI-SUPERVISED LEARNING (SSL)

INTRO TO SEMI-SUPERVISED LEARNING (SSL) SSL (on graphs) 1 INTRO TO SEMI-SUPERVISED LEARNING (SSL) Semi-supervised learning Given: A pool of labeled examples L A (usually larger) pool of unlabeled examples U Option 1 for using L and U : Ignore

More information

Semi-Supervised Learning: Lecture Notes

Semi-Supervised Learning: Lecture Notes Semi-Supervised Learning: Lecture Notes William W. Cohen March 30, 2018 1 What is Semi-Supervised Learning? In supervised learning, a learner is given a dataset of m labeled examples {(x 1, y 1 ),...,

More information

Semi-supervised Learning

Semi-supervised Learning Semi-supervised Learning Piyush Rai CS5350/6350: Machine Learning November 8, 2011 Semi-supervised Learning Supervised Learning models require labeled data Learning a reliable model usually requires plenty

More information

Thorsten Joachims Then: Universität Dortmund, Germany Now: Cornell University, USA

Thorsten Joachims Then: Universität Dortmund, Germany Now: Cornell University, USA Retrospective ICML99 Transductive Inference for Text Classification using Support Vector Machines Thorsten Joachims Then: Universität Dortmund, Germany Now: Cornell University, USA Outline The paper in

More information

Semi-supervised learning and active learning

Semi-supervised learning and active learning Semi-supervised learning and active learning Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Combining classifiers Ensemble learning: a machine learning paradigm where multiple learners

More information

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

Transductive Phoneme Classification Using Local Scaling And Confidence

Transductive Phoneme Classification Using Local Scaling And Confidence 202 IEEE 27-th Convention of Electrical and Electronics Engineers in Israel Transductive Phoneme Classification Using Local Scaling And Confidence Matan Orbach Dept. of Electrical Engineering Technion

More information

Graph-based Semi- Supervised Learning as Optimization

Graph-based Semi- Supervised Learning as Optimization Graph-based Semi- Supervised Learning as Optimization Partha Pratim Talukdar CMU Machine Learning with Large Datasets (10-605) April 3, 2012 Graph-based Semi-Supervised Learning 0.2 0.1 0.2 0.3 0.3 0.2

More information

A Taxonomy of Semi-Supervised Learning Algorithms

A Taxonomy of Semi-Supervised Learning Algorithms A Taxonomy of Semi-Supervised Learning Algorithms Olivier Chapelle Max Planck Institute for Biological Cybernetics December 2005 Outline 1 Introduction 2 Generative models 3 Low density separation 4 Graph

More information

Graph-based Techniques for Searching Large-Scale Noisy Multimedia Data

Graph-based Techniques for Searching Large-Scale Noisy Multimedia Data Graph-based Techniques for Searching Large-Scale Noisy Multimedia Data Shih-Fu Chang Department of Electrical Engineering Department of Computer Science Columbia University Joint work with Jun Wang (IBM),

More information

Semi-Supervised Clustering with Partial Background Information

Semi-Supervised Clustering with Partial Background Information Semi-Supervised Clustering with Partial Background Information Jing Gao Pang-Ning Tan Haibin Cheng Abstract Incorporating background knowledge into unsupervised clustering algorithms has been the subject

More information

DATA MINING LECTURE 10B. Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines

DATA MINING LECTURE 10B. Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines DATA MINING LECTURE 10B Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines NEAREST NEIGHBOR CLASSIFICATION 10 10 Illustrating Classification Task Tid Attrib1

More information

LDA for Big Data - Outline

LDA for Big Data - Outline LDA FOR BIG DATA 1 LDA for Big Data - Outline Quick review of LDA model clustering words-in-context Parallel LDA ~= IPM Fast sampling tricks for LDA Sparsified sampler Alias table Fenwick trees LDA for

More information

Adaptation of Graph-Based Semi-Supervised Methods to Large-Scale Text Data

Adaptation of Graph-Based Semi-Supervised Methods to Large-Scale Text Data Adaptation of Graph-Based Semi-Supervised Methods to Large-Scale Text Data ABSTRACT Frank Lin Carnegie Mellon University 5 Forbes Ave. Pittsburgh, PA 15213 frank@cs.cmu.edu Graph-based semi-supervised

More information

Large Scale Manifold Transduction

Large Scale Manifold Transduction Large Scale Manifold Transduction Michael Karlen, Jason Weston, Ayse Erkan & Ronan Collobert NEC Labs America, Princeton, USA Ećole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland New York University,

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 16: Machine Learning Topics 12/7/2010 Luke Zettlemoyer Most slides over the course adapted from Dan Klein. 1 Announcements Syllabus revised Machine

More information

Classification: Feature Vectors

Classification: Feature Vectors Classification: Feature Vectors Hello, Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just # free YOUR_NAME MISSPELLED FROM_FRIEND... : : : : 2 0 2 0 PIXEL 7,12

More information

Semi- Supervised Learning

Semi- Supervised Learning Semi- Supervised Learning Aarti Singh Machine Learning 10-601 Dec 1, 2011 Slides Courtesy: Jerry Zhu 1 Supervised Learning Feature Space Label Space Goal: Optimal predictor (Bayes Rule) depends on unknown

More information

Collective classification in network data

Collective classification in network data 1 / 50 Collective classification in network data Seminar on graphs, UCSB 2009 Outline 2 / 50 1 Problem 2 Methods Local methods Global methods 3 Experiments Outline 3 / 50 1 Problem 2 Methods Local methods

More information

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Kernels + K-Means Matt Gormley Lecture 29 April 25, 2018 1 Reminders Homework 8:

More information

Efficient Iterative Semi-supervised Classification on Manifold

Efficient Iterative Semi-supervised Classification on Manifold . Efficient Iterative Semi-supervised Classification on Manifold... M. Farajtabar, H. R. Rabiee, A. Shaban, A. Soltani-Farani Sharif University of Technology, Tehran, Iran. Presented by Pooria Joulani

More information

Multi-label classification using rule-based classifier systems

Multi-label classification using rule-based classifier systems Multi-label classification using rule-based classifier systems Shabnam Nazmi (PhD candidate) Department of electrical and computer engineering North Carolina A&T state university Advisor: Dr. A. Homaifar

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate Density estimation In density estimation problems, we are given a random sample from an unknown density Our objective is to estimate? Applications Classification If we estimate the density for each class,

More information

Introduction to Machine Learning. Xiaojin Zhu

Introduction to Machine Learning. Xiaojin Zhu Introduction to Machine Learning Xiaojin Zhu jerryzhu@cs.wisc.edu Read Chapter 1 of this book: Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi- Supervised Learning. http://www.morganclaypool.com/doi/abs/10.2200/s00196ed1v01y200906aim006

More information

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering Erik Velldal University of Oslo Sept. 18, 2012 Topics for today 2 Classification Recap Evaluating classifiers Accuracy, precision,

More information

9 Classification: KNN and SVM

9 Classification: KNN and SVM CSE4334/5334 Data Mining 9 Classification: KNN and SVM Chengkai Li Department of Computer Science and Engineering University of Texas at Arlington Fall 2017 (Slides courtesy of Pang-Ning Tan, Michael Steinbach

More information

Based on Raymond J. Mooney s slides

Based on Raymond J. Mooney s slides Instance Based Learning Based on Raymond J. Mooney s slides University of Texas at Austin 1 Example 2 Instance-Based Learning Unlike other learning algorithms, does not involve construction of an explicit

More information

Accurate Semi-supervised Classification for Graph Data

Accurate Semi-supervised Classification for Graph Data Accurate Semi-supervised Classification for Graph Data Frank Lin Carnegie Mellon University 5000 Forbes Ave Pittsburgh, PA 523 frank@cs.cmu.edu William W. Cohen Carnegie Mellon University 5000 Forbes Ave

More information

Scaling Graph-based Semi Supervised Learning to Large Number of Labels Using Count-Min Sketch

Scaling Graph-based Semi Supervised Learning to Large Number of Labels Using Count-Min Sketch Scaling Graph-based Semi Supervised Learning to Large Number of Labels Using Count-Min Sketch Graph-based SSL using a count-min sketch has a number of properties that are desirable, and somewhat surprising.

More information

Learning Better Data Representation using Inference-Driven Metric Learning

Learning Better Data Representation using Inference-Driven Metric Learning Learning Better Data Representation using Inference-Driven Metric Learning Paramveer S. Dhillon CIS Deptt., Univ. of Penn. Philadelphia, PA, U.S.A dhillon@cis.upenn.edu Partha Pratim Talukdar Search Labs,

More information

Lecture #11: The Perceptron

Lecture #11: The Perceptron Lecture #11: The Perceptron Mat Kallada STAT2450 - Introduction to Data Mining Outline for Today Welcome back! Assignment 3 The Perceptron Learning Method Perceptron Learning Rule Assignment 3 Will be

More information

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors Dejan Sarka Anomaly Detection Sponsors About me SQL Server MVP (17 years) and MCT (20 years) 25 years working with SQL Server Authoring 16 th book Authoring many courses, articles Agenda Introduction Simple

More information

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/20/2010 Announcements W7 due Thursday [that s your last written for the semester!] Project 5 out Thursday Contest running

More information

SOCIAL MEDIA MINING. Data Mining Essentials

SOCIAL MEDIA MINING. Data Mining Essentials SOCIAL MEDIA MINING Data Mining Essentials Dear instructors/users of these slides: Please feel free to include these slides in your own material, or modify them as you see fit. If you decide to incorporate

More information

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia UVA CS 6316/4501 Fall 2016 Machine Learning Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff Dr. Yanjun Qi University of Virginia Department of Computer Science 11/9/16 1 Rough Plan HW5

More information

Supervised Learning: Nearest Neighbors

Supervised Learning: Nearest Neighbors CS 2750: Machine Learning Supervised Learning: Nearest Neighbors Prof. Adriana Kovashka University of Pittsburgh February 1, 2016 Today: Supervised Learning Part I Basic formulation of the simplest classifier:

More information

Large-Scale Face Manifold Learning

Large-Scale Face Manifold Learning Large-Scale Face Manifold Learning Sanjiv Kumar Google Research New York, NY * Joint work with A. Talwalkar, H. Rowley and M. Mohri 1 Face Manifold Learning 50 x 50 pixel faces R 2500 50 x 50 pixel random

More information

10601 Machine Learning. Model and feature selection

10601 Machine Learning. Model and feature selection 10601 Machine Learning Model and feature selection Model selection issues We have seen some of this before Selecting features (or basis functions) Logistic regression SVMs Selecting parameter value Prior

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART VII Moving on: Engineering the input and output 10/25/2000 2 Applying a learner is not all Already

More information

1 Case study of SVM (Rob)

1 Case study of SVM (Rob) DRAFT a final version will be posted shortly COS 424: Interacting with Data Lecturer: Rob Schapire and David Blei Lecture # 8 Scribe: Indraneel Mukherjee March 1, 2007 In the previous lecture we saw how

More information

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate Density estimation In density estimation problems, we are given a random sample from an unknown density Our objective is to estimate? Applications Classification If we estimate the density for each class,

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule. CS 188: Artificial Intelligence Fall 2008 Lecture 24: Perceptrons II 11/24/2008 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit

More information

Composite Likelihood Data Augmentation for Within-Network Statistical Relational Learning

Composite Likelihood Data Augmentation for Within-Network Statistical Relational Learning Composite Likelihood Data Augmentation for Within-Network Statistical Relational Learning Joseph J. Pfeiffer III 1 Jennifer Neville 1 Paul Bennett 2 1 Purdue University 2 Microsoft Research ICDM 2014,

More information

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points]

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points] CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, 2015. 11:59pm, PDF to Canvas [100 points] Instructions. Please write up your responses to the following problems clearly and concisely.

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu [Kumar et al. 99] 2/13/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

More information

Machine Learning (CSE 446): Unsupervised Learning

Machine Learning (CSE 446): Unsupervised Learning Machine Learning (CSE 446): Unsupervised Learning Sham M Kakade c 2018 University of Washington cse446-staff@cs.washington.edu 1 / 19 Announcements HW2 posted. Due Feb 1. It is long. Start this week! Today:

More information

UVA CS 4501: Machine Learning. Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia

UVA CS 4501: Machine Learning. Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia UVA CS 4501: Machine Learning Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff Dr. Yanjun Qi University of Virginia Department of Computer Science 1 Where are we? è Five major secfons

More information

All lecture slides will be available at CSC2515_Winter15.html

All lecture slides will be available at  CSC2515_Winter15.html CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 9: Support Vector Machines All lecture slides will be available at http://www.cs.toronto.edu/~urtasun/courses/csc2515/ CSC2515_Winter15.html Many

More information

Data mining. Classification k-nn Classifier. Piotr Paszek. (Piotr Paszek) Data mining k-nn 1 / 20

Data mining. Classification k-nn Classifier. Piotr Paszek. (Piotr Paszek) Data mining k-nn 1 / 20 Data mining Piotr Paszek Classification k-nn Classifier (Piotr Paszek) Data mining k-nn 1 / 20 Plan of the lecture 1 Lazy Learner 2 k-nearest Neighbor Classifier 1 Distance (metric) 2 How to Determine

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

(Graph-based) Semi-Supervised Learning. Partha Pratim Talukdar Indian Institute of Science

(Graph-based) Semi-Supervised Learning. Partha Pratim Talukdar Indian Institute of Science (Graph-based) Semi-Supervised Learning Partha Pratim Talukdar Indian Institute of Science ppt@serc.iisc.in April 7, 2015 Supervised Learning Labeled Data Learning Algorithm Model 2 Supervised Learning

More information

Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p.

Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p. Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p. 6 What is Web Mining? p. 6 Summary of Chapters p. 8 How

More information

Machine Learning: Algorithms and Applications Mockup Examination

Machine Learning: Algorithms and Applications Mockup Examination Machine Learning: Algorithms and Applications Mockup Examination 14 May 2012 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students Write First Name, Last Name, Student Number and Signature

More information

Machine Learning. Semi-Supervised Learning. Manfred Huber

Machine Learning. Semi-Supervised Learning. Manfred Huber Machine Learning Semi-Supervised Learning Manfred Huber 2015 1 Semi-Supervised Learning Semi-supervised learning refers to learning from data where part contains desired output information and the other

More information

Announcements: projects

Announcements: projects Announcements: projects 805 students: Project proposals are due Sun 10/1. If you d like to work with 605 students then indicate this on your proposal. 605 students: the week after 10/1 I will post the

More information

Evaluation. Evaluate what? For really large amounts of data... A: Use a validation set.

Evaluation. Evaluate what? For really large amounts of data... A: Use a validation set. Evaluate what? Evaluation Charles Sutton Data Mining and Exploration Spring 2012 Do you want to evaluate a classifier or a learning algorithm? Do you want to predict accuracy or predict which one is better?

More information

What to come. There will be a few more topics we will cover on supervised learning

What to come. There will be a few more topics we will cover on supervised learning Summary so far Supervised learning learn to predict Continuous target regression; Categorical target classification Linear Regression Classification Discriminative models Perceptron (linear) Logistic regression

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Kernels and Clustering Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

Classification Algorithms in Data Mining

Classification Algorithms in Data Mining August 9th, 2016 Suhas Mallesh Yash Thakkar Ashok Choudhary CIS660 Data Mining and Big Data Processing -Dr. Sunnie S. Chung Classification Algorithms in Data Mining Deciding on the classification algorithms

More information

Supervised Learning. Decision trees Artificial neural nets K-nearest neighbor Support vectors Linear regression Logistic regression...

Supervised Learning. Decision trees Artificial neural nets K-nearest neighbor Support vectors Linear regression Logistic regression... Supervised Learning Decision trees Artificial neural nets K-nearest neighbor Support vectors Linear regression Logistic regression... Supervised Learning y=f(x): true function (usually not known) D: training

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University January 24 2019 Logistics HW 1 is due on Friday 01/25 Project proposal: due Feb 21 1 page description

More information

Part I: Data Mining Foundations

Part I: Data Mining Foundations Table of Contents 1. Introduction 1 1.1. What is the World Wide Web? 1 1.2. A Brief History of the Web and the Internet 2 1.3. Web Data Mining 4 1.3.1. What is Data Mining? 6 1.3.2. What is Web Mining?

More information

Linear methods for supervised learning

Linear methods for supervised learning Linear methods for supervised learning LDA Logistic regression Naïve Bayes PLA Maximum margin hyperplanes Soft-margin hyperplanes Least squares resgression Ridge regression Nonlinear feature maps Sometimes

More information

Python With Data Science

Python With Data Science Course Overview This course covers theoretical and technical aspects of using Python in Applied Data Science projects and Data Logistics use cases. Who Should Attend Data Scientists, Software Developers,

More information

Unlabeled Data Classification by Support Vector Machines

Unlabeled Data Classification by Support Vector Machines Unlabeled Data Classification by Support Vector Machines Glenn Fung & Olvi L. Mangasarian University of Wisconsin Madison www.cs.wisc.edu/ olvi www.cs.wisc.edu/ gfung The General Problem Given: Points

More information

A Note on Semi-Supervised Learning using Markov Random Fields

A Note on Semi-Supervised Learning using Markov Random Fields A Note on Semi-Supervised Learning using Markov Random Fields Wei Li and Andrew McCallum {weili, mccallum}@cs.umass.edu Computer Science Department University of Massachusetts Amherst February 3, 2004

More information

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat K Nearest Neighbor Wrap Up K- Means Clustering Slides adapted from Prof. Carpuat K Nearest Neighbor classification Classification is based on Test instance with Training Data K: number of neighbors that

More information

Data Preprocessing. Supervised Learning

Data Preprocessing. Supervised Learning Supervised Learning Regression Given the value of an input X, the output Y belongs to the set of real values R. The goal is to predict output accurately for a new input. The predictions or outputs y are

More information

Ensemble Learning. Another approach is to leverage the algorithms we have via ensemble methods

Ensemble Learning. Another approach is to leverage the algorithms we have via ensemble methods Ensemble Learning Ensemble Learning So far we have seen learning algorithms that take a training set and output a classifier What if we want more accuracy than current algorithms afford? Develop new learning

More information

Kernels and Clustering

Kernels and Clustering Kernels and Clustering Robert Platt Northeastern University All slides in this file are adapted from CS188 UC Berkeley Case-Based Learning Non-Separable Data Case-Based Reasoning Classification from similarity

More information

Exam Review Session. William Cohen

Exam Review Session. William Cohen Exam Review Session William Cohen 1 General hints in studying Understand what you ve done and why There will be questions that test your understanding of the techniques implemented why will/won t this

More information

Using PageRank in Feature Selection

Using PageRank in Feature Selection Using PageRank in Feature Selection Dino Ienco, Rosa Meo, and Marco Botta Dipartimento di Informatica, Università di Torino, Italy fienco,meo,bottag@di.unito.it Abstract. Feature selection is an important

More information

Link prediction in graph construction for supervised and semi-supervised learning

Link prediction in graph construction for supervised and semi-supervised learning Link prediction in graph construction for supervised and semi-supervised learning Lilian Berton, Jorge Valverde-Rebaza and Alneu de Andrade Lopes Laboratory of Computational Intelligence (LABIC) University

More information

Introduction to Automated Text Analysis. bit.ly/poir599

Introduction to Automated Text Analysis. bit.ly/poir599 Introduction to Automated Text Analysis Pablo Barberá School of International Relations University of Southern California pablobarbera.com Lecture materials: bit.ly/poir599 Today 1. Solutions for last

More information

Nearest neighbors classifiers

Nearest neighbors classifiers Nearest neighbors classifiers James McInerney Adapted from slides by Daniel Hsu Sept 11, 2017 1 / 25 Housekeeping We received 167 HW0 submissions on Gradescope before midnight Sept 10th. From a random

More information

Classifiers and Detection. D.A. Forsyth

Classifiers and Detection. D.A. Forsyth Classifiers and Detection D.A. Forsyth Classifiers Take a measurement x, predict a bit (yes/no; 1/-1; 1/0; etc) Detection with a classifier Search all windows at relevant scales Prepare features Classify

More information

Mining di Dati Web. Lezione 3 - Clustering and Classification

Mining di Dati Web. Lezione 3 - Clustering and Classification Mining di Dati Web Lezione 3 - Clustering and Classification Introduction Clustering and classification are both learning techniques They learn functions describing data Clustering is also known as Unsupervised

More information

Parametrizing the easiness of machine learning problems. Sanjoy Dasgupta, UC San Diego

Parametrizing the easiness of machine learning problems. Sanjoy Dasgupta, UC San Diego Parametrizing the easiness of machine learning problems Sanjoy Dasgupta, UC San Diego Outline Linear separators Mixture models Nonparametric clustering Nonparametric classification and regression Nearest

More information

Weka ( )

Weka (  ) Weka ( http://www.cs.waikato.ac.nz/ml/weka/ ) The phases in which classifier s design can be divided are reflected in WEKA s Explorer structure: Data pre-processing (filtering) and representation Supervised

More information

Edge Classification in Networks

Edge Classification in Networks Charu C. Aggarwal, Peixiang Zhao, and Gewen He Florida State University IBM T J Watson Research Center Edge Classification in Networks ICDE Conference, 2016 Introduction We consider in this paper the edge

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule. CS 188: Artificial Intelligence Fall 2007 Lecture 26: Kernels 11/29/2007 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit your

More information

Link Prediction for Social Network

Link Prediction for Social Network Link Prediction for Social Network Ning Lin Computer Science and Engineering University of California, San Diego Email: nil016@eng.ucsd.edu Abstract Friendship recommendation has become an important issue

More information

Data Mining Classification: Alternative Techniques. Lecture Notes for Chapter 4. Instance-Based Learning. Introduction to Data Mining, 2 nd Edition

Data Mining Classification: Alternative Techniques. Lecture Notes for Chapter 4. Instance-Based Learning. Introduction to Data Mining, 2 nd Edition Data Mining Classification: Alternative Techniques Lecture Notes for Chapter 4 Instance-Based Learning Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Instance Based Classifiers

More information

Search Engines. Information Retrieval in Practice

Search Engines. Information Retrieval in Practice Search Engines Information Retrieval in Practice All slides Addison Wesley, 2008 Classification and Clustering Classification and clustering are classical pattern recognition / machine learning problems

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Problem 1: Complexity of Update Rules for Logistic Regression

Problem 1: Complexity of Update Rules for Logistic Regression Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 16 th, 2014 1

More information

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering INF4820 Algorithms for AI and NLP Evaluating Classifiers Clustering Murhaf Fares & Stephan Oepen Language Technology Group (LTG) September 27, 2017 Today 2 Recap Evaluation of classifiers Unsupervised

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Classification Advanced Reading: Chapter 8 & 9 Han, Chapters 4 & 5 Tan Anca Doloc-Mihu, Ph.D. Slides courtesy of Li Xiong, Ph.D., 2011 Han, Kamber & Pei. Data Mining.

More information

Bipartite Edge Prediction via Transductive Learning over Product Graphs

Bipartite Edge Prediction via Transductive Learning over Product Graphs Bipartite Edge Prediction via Transductive Learning over Product Graphs Hanxiao Liu, Yiming Yang School of Computer Science, Carnegie Mellon University July 8, 2015 ICML 2015 Bipartite Edge Prediction

More information

MapReduce ML & Clustering Algorithms

MapReduce ML & Clustering Algorithms MapReduce ML & Clustering Algorithms Reminder MapReduce: A trade-off between ease of use & possible parallelism Graph Algorithms Approaches: Reduce input size (filtering) Graph specific optimizations (Pregel

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Classification Evaluation and Practical Issues Instructor: Yizhou Sun yzsun@cs.ucla.edu April 24, 2017 Homework 2 out Announcements Due May 3 rd (11:59pm) Course project proposal

More information

Midterm Examination CS540-2: Introduction to Artificial Intelligence

Midterm Examination CS540-2: Introduction to Artificial Intelligence Midterm Examination CS540-2: Introduction to Artificial Intelligence March 15, 2018 LAST NAME: FIRST NAME: Problem Score Max Score 1 12 2 13 3 9 4 11 5 8 6 13 7 9 8 16 9 9 Total 100 Question 1. [12] Search

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

Chapter 4: Non-Parametric Techniques

Chapter 4: Non-Parametric Techniques Chapter 4: Non-Parametric Techniques Introduction Density Estimation Parzen Windows Kn-Nearest Neighbor Density Estimation K-Nearest Neighbor (KNN) Decision Rule Supervised Learning How to fit a density

More information

CS512 (Spring 2012) Advanced Data Mining : Midterm Exam I

CS512 (Spring 2012) Advanced Data Mining : Midterm Exam I CS512 (Spring 2012) Advanced Data Mining : Midterm Exam I (Thursday, March 1, 2012, 90 minutes, 100 marks brief answers directly written on the exam paper) Note: Closed book and notes but one reference

More information

6.034 Quiz 2, Spring 2005

6.034 Quiz 2, Spring 2005 6.034 Quiz 2, Spring 2005 Open Book, Open Notes Name: Problem 1 (13 pts) 2 (8 pts) 3 (7 pts) 4 (9 pts) 5 (8 pts) 6 (16 pts) 7 (15 pts) 8 (12 pts) 9 (12 pts) Total (100 pts) Score 1 1 Decision Trees (13

More information