Outline. The History of Histograms. Yannis Ioannidis University of Athens, Hellas

Size: px
Start display at page:

Download "Outline. The History of Histograms. Yannis Ioannidis University of Athens, Hellas"

Transcription

1 The History of Histograms Yannis Ioannidis University of Athens, Hellas Outline Prehistory Definitions and Framework The Early Past 10 Years Ago The Recent Past Industry Competitors The Future

2 Prehistory Word `histogram of Greek origin `histo-s = `mast `gram-ma = `something written Not used originally in the Greek language! Introduced by Karl Pearson in 1892 for a common form of graphical representation Prehistory

3 Prehistory 1662: Concept exists at least since then in mortality tables of J. Graunt 1786: Bar charts introduced by W. Playfair to capture Scottish imports/exports 1833: Histograms introduced by A. M. Guerry as discrete approximations to distribution functions 1859: Florence Nightingale used them to compare mortality of soldiers and civilians Prehistory

4 Prehistory Playfair s bar chart Definitions Data Distributions One-dimensional data distribution = Set of (attribute value, frequency) pairs Large and non-uniform need compression and approximation Concentrate on numeric attributes

5 Definitions Data Distributions Freq Area Spread Definitions Data Distributions Combinations of multiple attribute values Joint frequency Multidimensional data distributions = Set of (value combination, joint frequency) pairs

6 Definitions Multidimensional Data Distributions Motivation Selectivity estimation Approximate query answering within Query optimization Query profiling for user feedback Load balancing for parallel join execution Partition-based temporal join execution

7 Definitions Histograms Partition data distribution into β disjoint buckets Approximate values (value combinations) and frequencies within each bucket Definitions Histograms Freq

8 Definitions Histograms Freq bucket 1 bucket 2 Framework Histogram Parameters Partition rule: 4 orthogonal parameters Partition class Sort parameter Partition constraint Source parameter Construction algorithm

9 Framework Histogram Parameters approximation within bucket Frequency approximation within bucket Error guarantees Framework Partition Class Indicates restrictions on partitioning Serial: non-overlapping ranges of sort parameter values End-biased: at most one non-singleton bucket

10 Framework Sort Parameter Derivative of data distribution element (its value and/or frequency) Attribute values (V) Frequencies (F) Areas (A) = spread x frequency Serial: buckets must contain contiguous sort parameter values Framework Partition Class and Sort Parameter VALUE FREQUENCY

11 Framework Partition Class and Sort Parameter VALUE FREQUENCY SORT PAR B B B B4 Framework Partition Class and Sort Parameter VALUE FREQUENCY SORT PAR B B B B4

12 Framework Partition Class and Sort Parameter VALUE FREQUENCY SORT PAR B B B B Framework Source Parameter Derivative of data distribution element (its value and/or frequency) Spreads (S) Frequencies (F) Cumulative frequencies (C) Areas (A) Partition constraint applied on source parameter

13 Framework Partition Constraint Mathematical constraint on the source parameter that partitioning must satisfy General direction: Avoid grouping vastly different source parameter values Framework Partition Constraint Equi-sum: equalize sums V-optimal: minimize variance Maxdiff: minimize maximum difference of adjacent source values Compressed: preserve high source values and equalize sums of the rest Spline-based: minimize square root of error

14 Framework Partition Constr. and Source Parameter VALUE FREQ SORT PAR SOURCE PAR B B B3 B4 Framework Histogram Parameters Notation class : constraint (sort, source) Special notation for serial partition class constraint (sort, source)

15 Framework Histogram Parameters Same parameters for multidimensional histograms Partition rule more intricate: not always analyzable into 4 orthogonal parameters No sort parameter often The Early Past Dark Ages Essentially, use of 1-bucket histograms Large errors

16 The Early Past First Appearance Kooi s PhD Thesis equi-width histograms equi-width = equi-sum (V, S) Adopted by INGRES The Early Past First Appearance Freq

17 The Early Past First Appearance Freq The Early Past First Alternative Don t equalize ranges of values but number of tuples in bucket equi-depth histograms equi-depth = equi-sum (V, F) Source is only difference Adopted by several commercial systems

18 The Early Past First Alternative Freq The Early Past Optimal Sort Parameter Theorem: For single join queries and accurate knowledge of values, serial histograms with frequency as sort parameter are optimal. Generalization of practice to keep highfrequency values accurately.

19 The Early Past Optimal Sort Parameters Freq 10 Years Ago Theorem: For single join queries and accurate knowledge of values, serial histograms with frequency as sort parameter are optimal.

20 The Recent Past Optimal partition constraints and source parameters? Optimality when values are not known accurately? Optimal values of other histogram characteristics? The Recent Past Optimal Constraint and Source Theorem: For the average join query and accurate knowledge of values, v-optimal histograms with frequency as source parameter are optimal. v-optimal (F, F) v-optimal: minimize variance of source values

21 The Recent Past Optimal Constraint and Source Freq The Recent Past If values are not known accurately, no optimality result on any histogram characteristic Several experimental results identify key choices

22 The Recent Past New Partition Constraints All try to group similar source values max-diff: bucket borders at highest differences of adjacent source values compressed: Preserve high values of source and equalize sums of the rest The Recent Past maxdiff Freq

23 The Recent Past compressed Freq The Recent Past Alternative Partition Constraints Variations on the optimal knot placement problem Linear splines only Discontinuous across bucket boundaries

24 Choices The Recent Past New Sort and Source Parameters Attribute values (V) Spreads (S) Frequencies (F) Areas (A) Cumulative frequencies (C) value is best sort parameter overall area and frequency are best source parameters overall The Recent Past Multidimensional Partition Rules Multidimensional value domain cannot be sorted to serve as sort parameter Many alternatives to partition the space of values into buckets Although possible, frequency has not been used as sort parameter

25 The Recent Past Multidimensional Partition Class A la Grid File A la K-D-B-Tree (MHIST) GENHIST STHoles The Recent Past Multidimensional Data Distributions

26 The Recent Past M-D Partition Class: Grid File 2 1 The Recent Past M-D Partition Class: MHIST 2 1

27 The Recent Past M-D Partition Class: GENHIST 2 1 The Recent Past M-D Partition Class: GENHIST 2 1

28 The Recent Past M-D Partition Class: GENHIST 2 1 The Recent Past M-D Partition Class: STHoles 2 1

29 The Recent Past Histogram Framework Partition rule Partition class Sort parameter Partition constraint Source parameter Construction algorithm and frequency approximation Error guarantees The Recent Past Approximation Continuous value assumption: (min and) max value Uniform spread assumption: above + number of unique values Popularity-based spread: above with fake num of unique values Kernel estimation

30 The Recent Past Approximation Freq 7 min max The Recent Past Approximation Freq 24 min max

31 The Recent Past Approximation All generalized to multidimensional case Tradeoff between number of buckets and information kept within each bucket The Recent Past Frequency Approximation Uniform distribution assumption: average frequency Linear spline approximation: above + spline s angle

32 The Recent Past Frequency Approximation Freq Industrial Presence Only 1-dimensional histograms 1970 s: trivial histograms (1 bucket) 1980 s: equi-width histograms 1990 s: equi-depth histograms 2000 s:

33 Industrial Presence DB2 compressed (V, F) Default of 10 singleton and 20 nonsingleton buckets Store cumulative frequencies Construction based on reservoir sample Indices used to quantify dependencies LEO learning is key Industrial Presence ORACLE equi-depth = equi-sum (V, F) Indices used to quantify dependencies On-the-fly dependence estimation Past selectivities stored for future use

34 Industrial Presence SQL Server max-diff (V, F) Up to 199 buckets Store cumulative frequencies Store frequency of max accurately Construction based on sample Indices use to quantify dependencies Histogram Competitors Wavelets Sampling (usually complementary) Specialized techniques

35 The Future Histograms and clustering Bucket recognition and representation Histograms and tree indices approximation Comprehensive technique comparison Other data types The Future Histograms and Clustering Clustering is identical problem! Grouping of similar elements into buckets (bucket = cluster = pattern) Small approximation within bucket Multidimensional elements are attribute value combinations above + frequency

36 The Future Histograms and Clustering Freq The Future Histograms and Clustering Freq

37 The Future Histograms and Clustering Freq The Future Histograms and Clustering Very different techniques Apply on one problem techniques developed for the other Partition rules Construction algorithms Approximate representations within bucket

38 The Future Bucket Recognition and Representation Essence of histograms or clustering Identify groups of similar elements Similarity on few characteristics (source) Store approximation of these characteristics Which are the similar characteristics? [Pattern Recognition] The Future Bucket Recognition and Representation Maybe not original element dimensions Maybe not the same for all groups

39 The Future Bucket Recognition and Representation Freq The Future Bucket Recognition and Representation Freq

40 The Future Bucket Recognition and Representation Freq The Future Bucket Recognition and Representation Freq

41 The Future Bucket Recognition and Representation Not clustering in the value-frequency space, but the spread-frequency space Why the difference in treatment? Is this always better? How can we recognize winner? Freq The Future Bucket Recognition and Representation

42 Freq The Future Bucket Recognition and Representation Freq The Future Bucket Recognition and Representation

43 Freq The Future Bucket Recognition and Representation The Future Histograms and Tree Indices Root of the B+ tree partitions space of values into non-overlapping buckets Each bucket further subdivided into smaller buckets Appropriate info next to each bucket turns each node into a histogram Entire B+ tree becomes Hierarchical Histogram

44 The Future Histograms and Tree Indices The Future Histograms and Tree Indices - Index fanout decreases +Indexing and estimation in one + Incremental estimation with increasing estimate accuracy

45 The Future Histograms and Tree Indices B+ tree node is equi-depth histogram What kind of trees with other constraints? V-optimal Max-diff Compressed Unbalanced trees: exact search slower Unbalanced trees: approximate answers more accurate The Future Histograms and Tree Indices Take into account query frequency Represent popular values more accurately higher in the tree New hierarchical histograms/indices may be faster than traditional ones

46 Conclusions Histograms very successful in databases Possibly best tradeoff between Simplicity Efficiency Effectiveness Applicability The Future New approaches to some characteristics Untouched foundational problems The next 10 years even more exciting!

Improved Histograms for Selectivity Estimation of Range Predicates

Improved Histograms for Selectivity Estimation of Range Predicates Improved Histograms for Selectivity Estimation of Range Predicates Abstract Viswanath Poosala University of Wisconsin-Madison poosala@cs.wisc.edu Peter J. Haas IBM Almaden Research Center peterh@almaden.ibm.com

More information

Preprocessing Short Lecture Notes cse352. Professor Anita Wasilewska

Preprocessing Short Lecture Notes cse352. Professor Anita Wasilewska Preprocessing Short Lecture Notes cse352 Professor Anita Wasilewska Data Preprocessing Why preprocess the data? Data cleaning Data integration and transformation Data reduction Discretization and concept

More information

International Journal of Foundations of Computer Science c World Scientic Publishing Company DFT TECHNIQUES FOR SIZE ESTIMATION OF DATABASE JOIN OPERA

International Journal of Foundations of Computer Science c World Scientic Publishing Company DFT TECHNIQUES FOR SIZE ESTIMATION OF DATABASE JOIN OPERA International Journal of Foundations of Computer Science c World Scientic Publishing Company DFT TECHNIQUES FOR SIZE ESTIMATION OF DATABASE JOIN OPERATIONS KAM_IL SARAC, OMER E GEC_IO GLU, AMR EL ABBADI

More information

Approximations in Database Systems

Approximations in Database Systems Approximations in Database Systems Yannis Ioannidis Dept. of Informatics and Telecommunications, University of Athens, Hellas (Greece) yannis@di.uoa.gr http://www.di.uoa.gr/ yannis Abstract. The need for

More information

Mining Data Streams. Outline [Garofalakis, Gehrke & Rastogi 2002] Introduction. Summarization Methods. Clustering Data Streams

Mining Data Streams. Outline [Garofalakis, Gehrke & Rastogi 2002] Introduction. Summarization Methods. Clustering Data Streams Mining Data Streams Outline [Garofalakis, Gehrke & Rastogi 2002] Introduction Summarization Methods Clustering Data Streams Data Stream Classification Temporal Models CMPT 843, SFU, Martin Ester, 1-06

More information

Optimization Overview

Optimization Overview Lecture 17 Optimization Overview Lecture 17 Lecture 17 Today s Lecture 1. Logical Optimization 2. Physical Optimization 3. Course Summary 2 Lecture 17 Logical vs. Physical Optimization Logical optimization:

More information

Module 9: Selectivity Estimation

Module 9: Selectivity Estimation Module 9: Selectivity Estimation Module Outline 9.1 Query Cost and Selectivity Estimation 9.2 Database profiles 9.3 Sampling 9.4 Statistics maintained by commercial DBMS Web Forms Transaction Manager Lock

More information

UNIT 2 Data Preprocessing

UNIT 2 Data Preprocessing UNIT 2 Data Preprocessing Lecture Topic ********************************************** Lecture 13 Why preprocess the data? Lecture 14 Lecture 15 Lecture 16 Lecture 17 Data cleaning Data integration and

More information

COMP 465: Data Mining Still More on Clustering

COMP 465: Data Mining Still More on Clustering 3/4/015 Exercise COMP 465: Data Mining Still More on Clustering Slides Adapted From : Jiawei Han, Micheline Kamber & Jian Pei Data Mining: Concepts and Techniques, 3 rd ed. Describe each of the following

More information

Cost Models. the query database statistics description of computational resources, e.g.

Cost Models. the query database statistics description of computational resources, e.g. Cost Models An optimizer estimates costs for plans so that it can choose the least expensive plan from a set of alternatives. Inputs to the cost model include: the query database statistics description

More information

Summary of Last Chapter. Course Content. Chapter 3 Objectives. Chapter 3: Data Preprocessing. Dr. Osmar R. Zaïane. University of Alberta 4

Summary of Last Chapter. Course Content. Chapter 3 Objectives. Chapter 3: Data Preprocessing. Dr. Osmar R. Zaïane. University of Alberta 4 Principles of Knowledge Discovery in Data Fall 2004 Chapter 3: Data Preprocessing Dr. Osmar R. Zaïane University of Alberta Summary of Last Chapter What is a data warehouse and what is it for? What is

More information

1 Introduction Computing approximate answers to multi-dimensional range queries is a problem that arises in query optimization, data mining and data w

1 Introduction Computing approximate answers to multi-dimensional range queries is a problem that arises in query optimization, data mining and data w Paper Number 42 Approximating multi-dimensional aggregate range queries over real attributes Dimitrios Gunopulos George Kollios y Vassilis J. Tsotras z Carlotta Domeniconi x Abstract Finding approximate

More information

A popular method for moving beyond linearity. 2. Basis expansion and regularization 1. Examples of transformations. Piecewise-polynomials and splines

A popular method for moving beyond linearity. 2. Basis expansion and regularization 1. Examples of transformations. Piecewise-polynomials and splines A popular method for moving beyond linearity 2. Basis expansion and regularization 1 Idea: Augment the vector inputs x with additional variables which are transformation of x use linear models in this

More information

Data Preprocessing. Why Data Preprocessing? MIT-652 Data Mining Applications. Chapter 3: Data Preprocessing. Multi-Dimensional Measure of Data Quality

Data Preprocessing. Why Data Preprocessing? MIT-652 Data Mining Applications. Chapter 3: Data Preprocessing. Multi-Dimensional Measure of Data Quality Why Data Preprocessing? Data in the real world is dirty incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data e.g., occupation = noisy: containing

More information

Project Participants

Project Participants Annual Report for Period:10/2004-10/2005 Submitted on: 06/21/2005 Principal Investigator: Yang, Li. Award ID: 0414857 Organization: Western Michigan Univ Title: Projection and Interactive Exploration of

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

University of Florida CISE department Gator Engineering. Clustering Part 4

University of Florida CISE department Gator Engineering. Clustering Part 4 Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

More information

ECLT 5810 Data Preprocessing. Prof. Wai Lam

ECLT 5810 Data Preprocessing. Prof. Wai Lam ECLT 5810 Data Preprocessing Prof. Wai Lam Why Data Preprocessing? Data in the real world is imperfect incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate

More information

Introduction to Spatial Database Systems

Introduction to Spatial Database Systems Introduction to Spatial Database Systems by Cyrus Shahabi from Ralf Hart Hartmut Guting s VLDB Journal v3, n4, October 1994 Data Structures & Algorithms 1. Implementation of spatial algebra in an integrated

More information

Clustering Part 4 DBSCAN

Clustering Part 4 DBSCAN Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

More information

Indexing. Week 14, Spring Edited by M. Naci Akkøk, , Contains slides from 8-9. April 2002 by Hector Garcia-Molina, Vera Goebel

Indexing. Week 14, Spring Edited by M. Naci Akkøk, , Contains slides from 8-9. April 2002 by Hector Garcia-Molina, Vera Goebel Indexing Week 14, Spring 2005 Edited by M. Naci Akkøk, 5.3.2004, 3.3.2005 Contains slides from 8-9. April 2002 by Hector Garcia-Molina, Vera Goebel Overview Conventional indexes B-trees Hashing schemes

More information

Approximation Algorithms for Geometric Intersection Graphs

Approximation Algorithms for Geometric Intersection Graphs Approximation Algorithms for Geometric Intersection Graphs Subhas C. Nandy (nandysc@isical.ac.in) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 700108, India. Outline

More information

Data Preprocessing. Slides by: Shree Jaswal

Data Preprocessing. Slides by: Shree Jaswal Data Preprocessing Slides by: Shree Jaswal Topics to be covered Why Preprocessing? Data Cleaning; Data Integration; Data Reduction: Attribute subset selection, Histograms, Clustering and Sampling; Data

More information

CMSC424: Database Design. Instructor: Amol Deshpande

CMSC424: Database Design. Instructor: Amol Deshpande CMSC424: Database Design Instructor: Amol Deshpande amol@cs.umd.edu Databases Data Models Conceptual representa1on of the data Data Retrieval How to ask ques1ons of the database How to answer those ques1ons

More information

High-Performance Parallel Database Processing and Grid Databases

High-Performance Parallel Database Processing and Grid Databases High-Performance Parallel Database Processing and Grid Databases David Taniar Monash University, Australia Clement H.C. Leung Hong Kong Baptist University and Victoria University, Australia Wenny Rahayu

More information

CMPT 354: Database System I. Lecture 7. Basics of Query Optimization

CMPT 354: Database System I. Lecture 7. Basics of Query Optimization CMPT 354: Database System I Lecture 7. Basics of Query Optimization 1 Why should you care? https://databricks.com/glossary/catalyst-optimizer https://sigmod.org/sigmod-awards/people/goetz-graefe-2017-sigmod-edgar-f-codd-innovations-award/

More information

Chapter 9. Cardinality Estimation. How Many Rows Does a Query Yield? Architecture and Implementation of Database Systems Winter 2010/11

Chapter 9. Cardinality Estimation. How Many Rows Does a Query Yield? Architecture and Implementation of Database Systems Winter 2010/11 Chapter 9 How Many Rows Does a Query Yield? Architecture and Implementation of Database Systems Winter 2010/11 Wilhelm-Schickard-Institut für Informatik Universität Tübingen 9.1 Web Forms Applications

More information

By Mahesh R. Sanghavi Associate professor, SNJB s KBJ CoE, Chandwad

By Mahesh R. Sanghavi Associate professor, SNJB s KBJ CoE, Chandwad By Mahesh R. Sanghavi Associate professor, SNJB s KBJ CoE, Chandwad Data Analytics life cycle Discovery Data preparation Preprocessing requirements data cleaning, data integration, data reduction, data

More information

Query Processing and Advanced Queries. Query Optimization (4)

Query Processing and Advanced Queries. Query Optimization (4) Query Processing and Advanced Queries Query Optimization (4) Two-Pass Algorithms Based on Hashing R./S If both input relations R and S are too large to be stored in the buffer, hash all the tuples of both

More information

a. divided by the. 1) Always round!! a) Even if class width comes out to a, go up one.

a. divided by the. 1) Always round!! a) Even if class width comes out to a, go up one. Probability and Statistics Chapter 2 Notes I Section 2-1 A Steps to Constructing Frequency Distributions 1 Determine number of (may be given to you) a Should be between and classes 2 Find the Range a The

More information

Review: Query Evaluation Steps. Example Query: Logical Plan 1. What We Already Know. Example Query: Logical Plan 2.

Review: Query Evaluation Steps. Example Query: Logical Plan 1. What We Already Know. Example Query: Logical Plan 2. Review: Query Evaluation Steps CSE 444: Database Internals SQL query Parse & Rewrite Query Lecture 10 Query Optimization (part 1) Query optimization Select Logical Plan Select Physical Plan Query Execution

More information

Multivariate Standard Normal Transformation

Multivariate Standard Normal Transformation Multivariate Standard Normal Transformation Clayton V. Deutsch Transforming K regionalized variables with complex multivariate relationships to K independent multivariate standard normal variables is an

More information

Storage hierarchy. Textbook: chapters 11, 12, and 13

Storage hierarchy. Textbook: chapters 11, 12, and 13 Storage hierarchy Cache Main memory Disk Tape Very fast Fast Slower Slow Very small Small Bigger Very big (KB) (MB) (GB) (TB) Built-in Expensive Cheap Dirt cheap Disks: data is stored on concentric circular

More information

Data Preprocessing. S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha

Data Preprocessing. S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Data Preprocessing S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha 1 Why Data Preprocessing? Data in the real world is dirty incomplete: lacking attribute values, lacking

More information

Maximum Differential Graph Coloring

Maximum Differential Graph Coloring Maximum Differential Graph Coloring Sankar Veeramoni University of Arizona Joint work with Yifan Hu at AT&T Research and Stephen Kobourov at University of Arizona Motivation Map Coloring Problem Related

More information

On Multi-Stack Boundary Labeling Problems

On Multi-Stack Boundary Labeling Problems On Multi-Stack Boundary Labeling Problems MICHAEL A. BEKOS 1, MICHAEL KAUFMANN 2, KATERINA POTIKA 1, ANTONIOS SYMVONIS 1 1 National Technical University of Athens School of Applied Mathematical & Physical

More information

ECT7110. Data Preprocessing. Prof. Wai Lam. ECT7110 Data Preprocessing 1

ECT7110. Data Preprocessing. Prof. Wai Lam. ECT7110 Data Preprocessing 1 ECT7110 Data Preprocessing Prof. Wai Lam ECT7110 Data Preprocessing 1 Why Data Preprocessing? Data in the real world is dirty incomplete: lacking attribute values, lacking certain attributes of interest,

More information

Chap4: Spatial Storage and Indexing. 4.1 Storage:Disk and Files 4.2 Spatial Indexing 4.3 Trends 4.4 Summary

Chap4: Spatial Storage and Indexing. 4.1 Storage:Disk and Files 4.2 Spatial Indexing 4.3 Trends 4.4 Summary Chap4: Spatial Storage and Indexing 4.1 Storage:Disk and Files 4.2 Spatial Indexing 4.3 Trends 4.4 Summary Learning Objectives Learning Objectives (LO) LO1: Understand concept of a physical data model

More information

Multidimensional Data and Modelling - DBMS

Multidimensional Data and Modelling - DBMS Multidimensional Data and Modelling - DBMS 1 DBMS-centric approach Summary: l Spatial data is considered as another type of data beside conventional data in a DBMS. l Enabling advantages of DBMS (data

More information

Data Mining: Exploring Data. Lecture Notes for Chapter 3

Data Mining: Exploring Data. Lecture Notes for Chapter 3 Data Mining: Exploring Data Lecture Notes for Chapter 3 1 What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include

More information

Introduction to Indexing R-trees. Hong Kong University of Science and Technology

Introduction to Indexing R-trees. Hong Kong University of Science and Technology Introduction to Indexing R-trees Dimitris Papadias Hong Kong University of Science and Technology 1 Introduction to Indexing 1. Assume that you work in a government office, and you maintain the records

More information

2. Data Preprocessing

2. Data Preprocessing 2. Data Preprocessing Contents of this Chapter 2.1 Introduction 2.2 Data cleaning 2.3 Data integration 2.4 Data transformation 2.5 Data reduction Reference: [Han and Kamber 2006, Chapter 2] SFU, CMPT 459

More information

CS 521 Data Mining Techniques Instructor: Abdullah Mueen

CS 521 Data Mining Techniques Instructor: Abdullah Mueen CS 521 Data Mining Techniques Instructor: Abdullah Mueen LECTURE 2: DATA TRANSFORMATION AND DIMENSIONALITY REDUCTION Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major Tasks

More information

3. Data Preprocessing. 3.1 Introduction

3. Data Preprocessing. 3.1 Introduction 3. Data Preprocessing Contents of this Chapter 3.1 Introduction 3.2 Data cleaning 3.3 Data integration 3.4 Data transformation 3.5 Data reduction SFU, CMPT 740, 03-3, Martin Ester 84 3.1 Introduction Motivation

More information

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar What is data exploration? A preliminary exploration of the data to better understand its characteristics.

More information

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York Clustering Robert M. Haralick Computer Science, Graduate Center City University of New York Outline K-means 1 K-means 2 3 4 5 Clustering K-means The purpose of clustering is to determine the similarity

More information

Data Mining: Exploring Data. Lecture Notes for Data Exploration Chapter. Introduction to Data Mining

Data Mining: Exploring Data. Lecture Notes for Data Exploration Chapter. Introduction to Data Mining Data Mining: Exploring Data Lecture Notes for Data Exploration Chapter Introduction to Data Mining by Tan, Steinbach, Karpatne, Kumar 02/03/2018 Introduction to Data Mining 1 What is data exploration?

More information

Database System Concepts

Database System Concepts Chapter 13: Query Processing s Departamento de Engenharia Informática Instituto Superior Técnico 1 st Semester 2008/2009 Slides (fortemente) baseados nos slides oficiais do livro c Silberschatz, Korth

More information

Edge Equalized Treemaps

Edge Equalized Treemaps Edge Equalized Treemaps Aimi Kobayashi Department of Computer Science University of Tsukuba Ibaraki, Japan kobayashi@iplab.cs.tsukuba.ac.jp Kazuo Misue Faculty of Engineering, Information and Systems University

More information

6. Parallel Volume Rendering Algorithms

6. Parallel Volume Rendering Algorithms 6. Parallel Volume Algorithms This chapter introduces a taxonomy of parallel volume rendering algorithms. In the thesis statement we claim that parallel algorithms may be described by "... how the tasks

More information

Data Preprocessing Yudho Giri Sucahyo y, Ph.D , CISA

Data Preprocessing Yudho Giri Sucahyo y, Ph.D , CISA Obj ti Objectives Motivation: Why preprocess the Data? Data Preprocessing Techniques Data Cleaning Data Integration and Transformation Data Reduction Data Preprocessing Lecture 3/DMBI/IKI83403T/MTI/UI

More information

Segmentation of Images

Segmentation of Images Segmentation of Images SEGMENTATION If an image has been preprocessed appropriately to remove noise and artifacts, segmentation is often the key step in interpreting the image. Image segmentation is a

More information

Indexing Techniques. Indexing Techniques in Warehousing The UB-Tree Algorithm. Prepared by: Supervised by: March 24, 2003

Indexing Techniques. Indexing Techniques in Warehousing The UB-Tree Algorithm. Prepared by: Supervised by: March 24, 2003 Indexing Techniques Indexing Techniques in Warehousing The UB-Tree Algorithm Prepared by: Supervised by: March 24, 2003 1 Outline! Indexing Techniques Overview! Indexing Issues! Introduction to the UB-Tree

More information

CS54100: Database Systems

CS54100: Database Systems CS54100: Database Systems Query Optimization 26 March 2012 Prof. Chris Clifton Query Optimization --> Generating and comparing plans Query Generate Plans Pruning x x Estimate Cost Cost Select Pick Min

More information

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 )

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 ) f f f f f (/2).9.8.7.6.5.4.3.2. S Knots.7.6.5.4.3.2. 5 5.2.8.6.4.2 S Knots.2 5 5.9.8.7.6.5.4.3.2..9.8.7.6.5.4.3.2. S Knots 5 5 S Knots 5 5 5 5.35.3.25.2.5..5 5 5.6.5.4.3.2. 5 5 4 x 3 3.5 3 2.5 2.5.5 5

More information

Evaluating Multidimensional Histograms in ProstgreSQL

Evaluating Multidimensional Histograms in ProstgreSQL Evaluating Multidimensional Histograms in ProstgreSQL Dougal Sutherland Swarthmore College 500 College Ave Swarthmore, PA dsuther1@swarthmore.edu Ryan Carlson Swarthmore College 500 College Ave Swarthmore,

More information

Chapter 12: Query Processing. Chapter 12: Query Processing

Chapter 12: Query Processing. Chapter 12: Query Processing Chapter 12: Query Processing Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 12: Query Processing Overview Measures of Query Cost Selection Operation Sorting Join

More information

Principles of Data Management. Lecture #13 (Query Optimization II)

Principles of Data Management. Lecture #13 (Query Optimization II) Principles of Data Management Lecture #13 (Query Optimization II) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Today s Notable News v Reminder:

More information

THE EFFECT OF JOIN SELECTIVITIES ON OPTIMAL NESTING ORDER

THE EFFECT OF JOIN SELECTIVITIES ON OPTIMAL NESTING ORDER THE EFFECT OF JOIN SELECTIVITIES ON OPTIMAL NESTING ORDER Akhil Kumar and Michael Stonebraker EECS Department University of California Berkeley, Ca., 94720 Abstract A heuristic query optimizer must choose

More information

Dimension reduction : PCA and Clustering

Dimension reduction : PCA and Clustering Dimension reduction : PCA and Clustering By Hanne Jarmer Slides by Christopher Workman Center for Biological Sequence Analysis DTU The DNA Array Analysis Pipeline Array design Probe design Question Experimental

More information

Processing and Others. Xiaojun Qi -- REU Site Program in CVMA

Processing and Others. Xiaojun Qi -- REU Site Program in CVMA Advanced Digital Image Processing and Others Xiaojun Qi -- REU Site Program in CVMA (0 Summer) Segmentation Outline Strategies and Data Structures Overview of Algorithms Region Splitting Region Merging

More information

Data Organization and Processing

Data Organization and Processing Data Organization and Processing Spatial Join (NDBI007) David Hoksza http://siret.ms.mff.cuni.cz/hoksza Outline Spatial join basics Relational join Spatial join Spatial join definition (1) Given two sets

More information

Norwegian University of Science and Technology Technical Report IDI-TR-02/2008. DYTAF: Dynamic Table Fragmentation in Distributed Database Systems

Norwegian University of Science and Technology Technical Report IDI-TR-02/2008. DYTAF: Dynamic Table Fragmentation in Distributed Database Systems Norwegian University of Science and Technology Technical Report IDI-TR-02/2008 DYTAF: Dynamic Table Fragmentation in Distributed Database Systems Jon Olav Hauglid, Kjetil Nørvåg and Norvald H. Ryeng DASCOSA

More information

AUTOMATIC CLUSTERING PRASANNA RAJAPERUMAL I MARCH Snowflake Computing Inc. All Rights Reserved

AUTOMATIC CLUSTERING PRASANNA RAJAPERUMAL I MARCH Snowflake Computing Inc. All Rights Reserved AUTOMATIC CLUSTERING PRASANNA RAJAPERUMAL I MARCH 2019 SNOWFLAKE Our vision Allow our customers to access all their data in one place so they can make actionable decisions anytime, anywhere, with any number

More information

Query Processing. Introduction to Databases CompSci 316 Fall 2017

Query Processing. Introduction to Databases CompSci 316 Fall 2017 Query Processing Introduction to Databases CompSci 316 Fall 2017 2 Announcements (Tue., Nov. 14) Homework #3 sample solution posted in Sakai Homework #4 assigned today; due on 12/05 Project milestone #2

More information

Chapter 6: DESCRIPTIVE STATISTICS

Chapter 6: DESCRIPTIVE STATISTICS Chapter 6: DESCRIPTIVE STATISTICS Random Sampling Numerical Summaries Stem-n-Leaf plots Histograms, and Box plots Time Sequence Plots Normal Probability Plots Sections 6-1 to 6-5, and 6-7 Random Sampling

More information

Mesh Decimation. Mark Pauly

Mesh Decimation. Mark Pauly Mesh Decimation Mark Pauly Applications Oversampled 3D scan data ~150k triangles ~80k triangles Mark Pauly - ETH Zurich 280 Applications Overtessellation: E.g. iso-surface extraction Mark Pauly - ETH Zurich

More information

An Introduction to Spatial Databases

An Introduction to Spatial Databases An Introduction to Spatial Databases R. H. Guting VLDB Journal v3, n4, October 1994 Speaker: Giovanni Conforti Outline: a rather old (but quite complete) survey on Spatial DBMS Introduction & definition

More information

Learning to Recognize Faces in Realistic Conditions

Learning to Recognize Faces in Realistic Conditions 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Database Systems. Announcement. December 13/14, 2006 Lecture #10. Assignment #4 is due next week.

Database Systems. Announcement. December 13/14, 2006 Lecture #10. Assignment #4 is due next week. Database Systems ( 料 ) December 13/14, 2006 Lecture #10 1 Announcement Assignment #4 is due next week. 2 1 Overview of Query Evaluation Chapter 12 3 Outline Query evaluation (Overview) Relational Operator

More information

Binary Image Processing. Introduction to Computer Vision CSE 152 Lecture 5

Binary Image Processing. Introduction to Computer Vision CSE 152 Lecture 5 Binary Image Processing CSE 152 Lecture 5 Announcements Homework 2 is due Apr 25, 11:59 PM Reading: Szeliski, Chapter 3 Image processing, Section 3.3 More neighborhood operators Binary System Summary 1.

More information

Repeating Segment Detection in Songs using Audio Fingerprint Matching

Repeating Segment Detection in Songs using Audio Fingerprint Matching Repeating Segment Detection in Songs using Audio Fingerprint Matching Regunathan Radhakrishnan and Wenyu Jiang Dolby Laboratories Inc, San Francisco, USA E-mail: regu.r@dolby.com Institute for Infocomm

More information

Chapters 15 and 16b: Query Optimization

Chapters 15 and 16b: Query Optimization Chapters 15 and 16b: Query Optimization (Slides by Hector Garcia-Molina, http://wwwdb.stanford.edu/~hector/cs245/notes.htm) Chapters 15-16b 1 Query Optimization --> Generating and comparing plans Query

More information

Chapter 13: Query Processing

Chapter 13: Query Processing Chapter 13: Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 13.1 Basic Steps in Query Processing 1. Parsing

More information

Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2014/15

Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2014/15 Systems Infrastructure for Data Science Web Science Group Uni Freiburg WS 2014/15 Lecture II: Indexing Part I of this course Indexing 3 Database File Organization and Indexing Remember: Database tables

More information

Points Lines Connected points X-Y Scatter. X-Y Matrix Star Plot Histogram Box Plot. Bar Group Bar Stacked H-Bar Grouped H-Bar Stacked

Points Lines Connected points X-Y Scatter. X-Y Matrix Star Plot Histogram Box Plot. Bar Group Bar Stacked H-Bar Grouped H-Bar Stacked Plotting Menu: QCExpert Plotting Module graphs offers various tools for visualization of uni- and multivariate data. Settings and options in different types of graphs allow for modifications and customizations

More information

STA Module 2B Organizing Data and Comparing Distributions (Part II)

STA Module 2B Organizing Data and Comparing Distributions (Part II) STA 2023 Module 2B Organizing Data and Comparing Distributions (Part II) Learning Objectives Upon completing this module, you should be able to 1 Explain the purpose of a measure of center 2 Obtain and

More information

STA Learning Objectives. Learning Objectives (cont.) Module 2B Organizing Data and Comparing Distributions (Part II)

STA Learning Objectives. Learning Objectives (cont.) Module 2B Organizing Data and Comparing Distributions (Part II) STA 2023 Module 2B Organizing Data and Comparing Distributions (Part II) Learning Objectives Upon completing this module, you should be able to 1 Explain the purpose of a measure of center 2 Obtain and

More information

ATYPICAL RELATIONAL QUERY OPTIMIZER

ATYPICAL RELATIONAL QUERY OPTIMIZER 14 ATYPICAL RELATIONAL QUERY OPTIMIZER Life is what happens while you re busy making other plans. John Lennon In this chapter, we present a typical relational query optimizer in detail. We begin by discussing

More information

Database Applications (15-415)

Database Applications (15-415) Database Applications (15-415) DBMS Internals- Part VI Lecture 17, March 24, 2015 Mohammad Hammoud Today Last Two Sessions: DBMS Internals- Part V External Sorting How to Start a Company in Five (maybe

More information

Hierarchical Minimum Spanning Trees for Lossy Image Set Compression

Hierarchical Minimum Spanning Trees for Lossy Image Set Compression Hierarchical Minimum Spanning Trees for Lossy Image Set Compression Anthony Schmieder, Barry Gergel, and Howard Cheng Department of Mathematics and Computer Science University of Lethbridge, Alberta, Canada

More information

(Lec 14) Placement & Partitioning: Part III

(Lec 14) Placement & Partitioning: Part III Page (Lec ) Placement & Partitioning: Part III What you know That there are big placement styles: iterative, recursive, direct Placement via iterative improvement using simulated annealing Recursive-style

More information

HOW TO USE THIS BOOK... V 1 GETTING STARTED... 2

HOW TO USE THIS BOOK... V 1 GETTING STARTED... 2 TABLE OF CONTENTS HOW TO USE THIS BOOK...................... V 1 GETTING STARTED.......................... 2 Introducing Data Analysis with Excel...2 Tour the Excel Window...3 Explore the Ribbon...4 Using

More information

Efficient Range Query Processing on Uncertain Data

Efficient Range Query Processing on Uncertain Data Efficient Range Query Processing on Uncertain Data Andrew Knight Rochester Institute of Technology Department of Computer Science Rochester, New York, USA andyknig@gmail.com Manjeet Rege Rochester Institute

More information

Temporal Aggregation and Join

Temporal Aggregation and Join TSDB15, SL05 1/49 A. Dignös Temporal and Spatial Database 2014/2015 2nd semester Temporal Aggregation and Join SL05 Temporal aggregation Span, instant, moving window aggregation Aggregation tree, balanced

More information

Differentially Private H-Tree

Differentially Private H-Tree GeoPrivacy: 2 nd Workshop on Privacy in Geographic Information Collection and Analysis Differentially Private H-Tree Hien To, Liyue Fan, Cyrus Shahabi Integrated Media System Center University of Southern

More information

An Efficient Transformation for Klee s Measure Problem in the Streaming Model Abstract Given a stream of rectangles over a discrete space, we consider the problem of computing the total number of distinct

More information

Cluster Analysis and Visualization. Workshop on Statistics and Machine Learning 2004/2/6

Cluster Analysis and Visualization. Workshop on Statistics and Machine Learning 2004/2/6 Cluster Analysis and Visualization Workshop on Statistics and Machine Learning 2004/2/6 Outlines Introduction Stages in Clustering Clustering Analysis and Visualization One/two-dimensional Data Histogram,

More information

Machine Learning Classifiers and Boosting

Machine Learning Classifiers and Boosting Machine Learning Classifiers and Boosting Reading Ch 18.6-18.12, 20.1-20.3.2 Outline Different types of learning problems Different types of learning algorithms Supervised learning Decision trees Naïve

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Fall 2013 Reading: Chapter 3 Han, Chapter 2 Tan Anca Doloc-Mihu, Ph.D. Some slides courtesy of Li Xiong, Ph.D. and 2011 Han, Kamber & Pei. Data Mining. Morgan Kaufmann.

More information

Query Optimization. Vishy Poosala Bell Labs

Query Optimization. Vishy Poosala Bell Labs Query Optimization Vishy Poosala Bell Labs 1 Outline Introduction Necessary Details Cost Estimation Result Size Estimation Standard approach for query optimization Other ways Related Concepts 2 Given a

More information

An Adaptive and Deterministic Method for Initializing the Lloyd-Max Algorithm

An Adaptive and Deterministic Method for Initializing the Lloyd-Max Algorithm An Adaptive and Deterministic Method for Initializing the Lloyd-Max Algorithm Jared Vicory and M. Emre Celebi Department of Computer Science Louisiana State University, Shreveport, LA, USA ABSTRACT Gray-level

More information

Wavelet-Based Histograms for Selectivity Estimation

Wavelet-Based Histograms for Selectivity Estimation Wavelet-Based Histograms for Selectivity Estimation Yossi Matias Department of Computer Science Tel Aviv University Tel Aviv 69978, Israel matias+www@math.tau.ac.il Jeffrey Scott Vitter Purdue University

More information

Data Analytics for. Transmission Expansion Planning. Andrés Ramos. January Estadística II. Transmission Expansion Planning GITI/GITT

Data Analytics for. Transmission Expansion Planning. Andrés Ramos. January Estadística II. Transmission Expansion Planning GITI/GITT Data Analytics for Andrés Ramos January 2018 1 1 Introduction 2 Definition Determine which lines and transformers and when to build optimizing total investment and operation costs 3 Challenges for TEP

More information

Image Segmentation. Shengnan Wang

Image Segmentation. Shengnan Wang Image Segmentation Shengnan Wang shengnan@cs.wisc.edu Contents I. Introduction to Segmentation II. Mean Shift Theory 1. What is Mean Shift? 2. Density Estimation Methods 3. Deriving the Mean Shift 4. Mean

More information

Clustering, Histograms, Sampling, MDS, and PCA

Clustering, Histograms, Sampling, MDS, and PCA Clustering, Histograms, Sampling, MDS, and PCA Class 11 1 Recall: The MRV Model 2 1 Recall: Simplification Simplification operators - today! Simplification operands Data space (structure level) Data item

More information

Fractal Compression. Related Topic Report. Henry Xiao. Queen s University. Kingston, Ontario, Canada. April 2004

Fractal Compression. Related Topic Report. Henry Xiao. Queen s University. Kingston, Ontario, Canada. April 2004 Fractal Compression Related Topic Report By Henry Xiao Queen s University Kingston, Ontario, Canada April 2004 Fractal Introduction Fractal is first introduced in geometry field. The birth of fractal geometry

More information

! A relational algebra expression may have many equivalent. ! Cost is generally measured as total elapsed time for

! A relational algebra expression may have many equivalent. ! Cost is generally measured as total elapsed time for Chapter 13: Query Processing Basic Steps in Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 1. Parsing and

More information

Chapter 13: Query Processing Basic Steps in Query Processing

Chapter 13: Query Processing Basic Steps in Query Processing Chapter 13: Query Processing Basic Steps in Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 1. Parsing and

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe CHAPTER 19 Query Optimization Introduction Query optimization Conducted by a query optimizer in a DBMS Goal: select best available strategy for executing query Based on information available Most RDBMSs

More information