Normal Distributions

Size: px
Start display at page:

Download "Normal Distributions"

Transcription

1 Normal Distributios Stacey Hacock Look at these three differet data sets Each histogram is overlaid with a curve : A B C A) Weights (g) of ewly bor lab rat pups B) Mea aual temperatures ( F ) i A Arbor, Michiga C) Heights (cm) of 14 year old boys i Oxford, Eglad What differs betwee these three distributios? What characteristics are similar? May distributios we look at have a shape similar to those above: most of the data lies close to the mea, ad the left ad right sides are symmetric We call it bell-shaped ad the best example is called the Normal distributio Normal distributios all have the same shape; they differ oly i mea µ ad stadard deviatio σ Importat fact: Statistics vary from sample to sample, ad the patter is predictable For may statistics, the patter of the samplig distributio resembles a ormal distributio with a bell-shaped curve Studyig the ormal distributio will allow us to fid probabilities for statistical iferece which do ot require ruig simulatios 1 Properties of Normal Distributios The Stadard Normal Distributio has mea µ = 0 ad stadard deviatio σ = 1 We ca stadardize ay ormal distributio to make it have mea 0 ad stadard deviatio 1 by subtractig µ ad dividig by σ If a radom variable, X, has a ormal distributio with mea µ ad stadard deviatio σ, the Z = X µ σ has a Stadard Normal Distributio We use the stadardized versios to say how may stadard deviatios (σ s) a observatio is from the mea (µ) For example, suppose birth weights of full term babies have a ormal distributio with mea µ = 3000 grams ad stadard deviatio σ = 700 grams 1

2 The a baby who weighs 3500 grams is ( )/700 = 0714 stadard deviatios above the mea birth weight The Empirical Rule states that for variable X that has a ormal distributio with mea µ ad stadard deviatio σ, approximately 68% of the values of X fall withi 1 stadard deviatio of the mea i either directio (µ ± σ) 95% of the values of X fall withi 2 stadard deviatios of the mea i either directio (µ ± 2σ) 997% (almost all) of the values of X fall withi 3 stadard deviatios of the mea i either directio (µ ± 3σ) For example, approximately 95% of babies have birth weights betwee (700) = 1600 grams ad (700) = 4400 grams We calculate probabilities of a ormally distributed radom variable by fidig areas uder the ormal curve The applet will calculate these areas for us Use the applet to aswer the followig questios about the distributio of birth weights specified previously (mea 3000 grams ad stadard deviatio 700 grams) For all questios below, eter Birth weight for the Variable ame, 3000 for the Mea, ad 700 for the SD The click Scale to Fit (You ca igore the secod row of Mea ad SD this would add aother ormal distributio to the plot 1 What proportio of babies have birth weights below 2000 grams? Aswer: Check the box ext to the first row of probability calculatios ad select < Iput 2000 for X 2

3 2 What is the probability that a radomly selected baby will have a birth weight betwee 3100 ad 4500 grams? Aswer: Check both boxes of probability calculatios Iput 3100 for X i the first row ad 4500 for X i the secod row 3 What is the 25th percetile of birth weights? That is, at what birth weight do 25% of babies fall below ad 75% of babies fall above? Aswer: grams Check the box ext to the first row of probability calculatios ad select < Iput 025 for Probability 2 Samplig Distributios of Statistics A samplig distributio is a probability distributio of a sample statistic For large sample sizes, the samplig distributio of a sample proportio has a approximate ormal distributio with a 3

4 mea equal to the populatio proportio π ad stadard deviatio SD() = The sample size is large eough for this approximatio to be valid if both π ad (1 π) are at least 10 (or if the umber of successes ad the umber of failures i your sample are both at least 10) Example: Suppose i the populatio of all messages, 80% are spam, ad 20% are ot spam We pla o takig a simple radom sample of s ad measurig the sample proportio of s that are spam The for large, the samplig distributio of sample proportios is approximately ormal 08(1 08) with mea E() = 080 ad stadard deviatio SD() = For istace, if = 50, the π = 50(08) = 40 ad (1 π) = 50(02) = 10 are both at least 10, so our sample size is large eough ad the samplig distributio of sample proportios will be 08(1 08) approximately ormal with mea 080 ad stadard deviatio 50 = The figure below visualizes this process: We start with the populatio of all s, for which 80% are spam ad 20% are ot spam (Note that each observatioal uit is oe The variable is whether a is spam or ot spam, which is categorical) Imagie selectig a sample of s ad calculate the sample proportio of s that are spam, We repeat this process may times, each time givig us a ew value for these may samples are represeted by pik circles Lastly, we plot all these values of o a dotplot, which will have the shape of the plot o the right as log as we have a large eough sample size Probability Populatio Distributio π = 08 Not Spam Spam POPULATION (eg, all messages) SAMPLING DISTRIBUTION of a Sample Proportio May may radom samples of size, with varyig sample proportios Samplig Distributio of the Sample Proportio (if π ad (1-π) are both greater tha or equal to 10) Std Dev = Populatio Proportio = π (eg, proportio of all messages that are spam) Sample Proportio = (eg, proportio of spam messages i our sample) Mea = π 4

5 We use this property of sample proportios whe we assess statistical sigificace usig a stadardized statistic I Exploratio 12, you leared how to calculate a stadardized sample proportio as: observed statistic mea of ull distributio SD of ull distributio The stadard deviatio of the ull distributio ca be calculated through simulatio, or through the formula above If the ceter of the ull distributio is π, this stadardizatio matches 3 Refereces π Robiso-Cox, J (2016) Stat 216 Course Pack Fall 2016: Activities ad Notes Licese: Creative Commos BY-SA 30 Utts, J M, & Heckard, R F (2015) Mid o Statistics, 5th ed, Chapters 7 ad 8 Stamford, CT: Cegage Learig 5

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals UNIT 4 Sectio 8 Estimatig Populatio Parameters usig Cofidece Itervals To make ifereces about a populatio that caot be surveyed etirely, sample statistics ca be take from a SRS of the populatio ad used

More information

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb Chapter 3 Descriptive Measures Measures of Ceter (Cetral Tedecy) These measures will tell us where is the ceter of our data or where most typical value of a data set lies Mode the value that occurs most

More information

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics ENGI 44 Probability ad Statistics Faculty of Egieerig ad Applied Sciece Problem Set Descriptive Statistics. If, i the set of values {,, 3, 4, 5, 6, 7 } a error causes the value 5 to be replaced by 50,

More information

OCR Statistics 1. Working with data. Section 3: Measures of spread

OCR Statistics 1. Working with data. Section 3: Measures of spread Notes ad Eamples OCR Statistics 1 Workig with data Sectio 3: Measures of spread Just as there are several differet measures of cetral tedec (averages), there are a variet of statistical measures of spread.

More information

Descriptive Statistics Summary Lists

Descriptive Statistics Summary Lists Chapter 209 Descriptive Statistics Summary Lists Itroductio This procedure is used to summarize cotiuous data. Large volumes of such data may be easily summarized i statistical lists of meas, couts, stadard

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

Intermediate Statistics

Intermediate Statistics Gait Learig Guides Itermediate Statistics Data processig & display, Cetral tedecy Author: Raghu M.D. STATISTICS DATA PROCESSING AND DISPLAY Statistics is the study of data or umerical facts of differet

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

Arithmetic Sequences

Arithmetic Sequences . Arithmetic Sequeces COMMON CORE Learig Stadards HSF-IF.A. HSF-BF.A.1a HSF-BF.A. HSF-LE.A. Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

SAMPLE VERSUS POPULATION. Population - consists of all possible measurements that can be made on a particular item or procedure.

SAMPLE VERSUS POPULATION. Population - consists of all possible measurements that can be made on a particular item or procedure. SAMPLE VERSUS POPULATION Populatio - cosists of all possible measuremets that ca be made o a particular item or procedure. Ofte a populatio has a ifiite umber of data elemets Geerally expese to determie

More information

Data Analysis. Concepts and Techniques. Chapter 2. Chapter 2: Getting to Know Your Data. Data Objects and Attribute Types

Data Analysis. Concepts and Techniques. Chapter 2. Chapter 2: Getting to Know Your Data. Data Objects and Attribute Types Data Aalysis Cocepts ad Techiques Chapter 2 1 Chapter 2: Gettig to Kow Your Data Data Objects ad Attribute Types Basic Statistical Descriptios of Data Data Visualizatio Measurig Data Similarity ad Dissimilarity

More information

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised

More information

Learning to Shoot a Goal Lecture 8: Learning Models and Skills

Learning to Shoot a Goal Lecture 8: Learning Models and Skills Learig to Shoot a Goal Lecture 8: Learig Models ad Skills How do we acquire skill at shootig goals? CS 344R/393R: Robotics Bejami Kuipers Learig to Shoot a Goal The robot eeds to shoot the ball i the goal.

More information

Area As A Limit & Sigma Notation

Area As A Limit & Sigma Notation Area As A Limit & Sigma Notatio SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should referece Chapter 5.4 of the recommeded textbook (or the equivalet chapter i your

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

An (or ) is a sequence in which each term after the first differs from the preceding term by a fixed constant, called the.

An (or ) is a sequence in which each term after the first differs from the preceding term by a fixed constant, called the. Sectio.2 Arithmetic Sequeces ad Series -.2 Arithmetic Sequeces ad Series Arithmetic Sequeces Arithmetic Series Key Terms: arithmetic sequece (arithmetic progressio), commo differece, arithmetic series

More information

1 Graph Sparsfication

1 Graph Sparsfication CME 305: Discrete Mathematics ad Algorithms 1 Graph Sparsficatio I this sectio we discuss the approximatio of a graph G(V, E) by a sparse graph H(V, F ) o the same vertex set. I particular, we cosider

More information

3D Model Retrieval Method Based on Sample Prediction

3D Model Retrieval Method Based on Sample Prediction 20 Iteratioal Coferece o Computer Commuicatio ad Maagemet Proc.of CSIT vol.5 (20) (20) IACSIT Press, Sigapore 3D Model Retrieval Method Based o Sample Predictio Qigche Zhag, Ya Tag* School of Computer

More information

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence?

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence? 6. Recursive Procedures I Sectio 6.1, you used fuctio otatio to write a explicit formula to determie the value of ay term i a Sometimes it is easier to calculate oe term i a sequece usig the previous terms.

More information

Lecture 13: Validation

Lecture 13: Validation Lecture 3: Validatio Resampli methods Holdout Cross Validatio Radom Subsampli -Fold Cross-Validatio Leave-oe-out The Bootstrap Bias ad variace estimatio Three-way data partitioi Itroductio to Patter Recoitio

More information

Describing data with graphics and numbers

Describing data with graphics and numbers Describig data with graphics ad umbers Types of Data Categorical Variables also kow as class variables, omial variables Quatitative Variables aka umerical ariables either cotiuous or discrete. Graphig

More information

Name Date Hr. ALGEBRA 1-2 SPRING FINAL MULTIPLE CHOICE REVIEW #2

Name Date Hr. ALGEBRA 1-2 SPRING FINAL MULTIPLE CHOICE REVIEW #2 Name Date Hr. ALGEBRA - SPRING FINAL MULTIPLE CHOICE REVIEW # 5. Which measure of ceter is most appropriate for the followig data set? {7, 7, 75, 77,, 9, 9, 90} Mea Media Stadard Deviatio Rage 5. The umber

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming Lecture Notes 6 Itroductio to algorithm aalysis CSS 501 Data Structures ad Object-Orieted Programmig Readig for this lecture: Carrao, Chapter 10 To be covered i this lecture: Itroductio to algorithm aalysis

More information

Heaps. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Heaps. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Presetatio for use with the textbook Algorithm Desig ad Applicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 201 Heaps 201 Goodrich ad Tamassia xkcd. http://xkcd.com/83/. Tree. Used with permissio uder

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Package popkorn. R topics documented: February 20, Type Package

Package popkorn. R topics documented: February 20, Type Package Type Pacage Pacage popkor February 20, 2015 Title For iterval estimatio of mea of selected populatios Versio 0.3-0 Date 2014-07-04 Author Vi Gopal, Claudio Fuetes Maitaier Vi Gopal Depeds

More information

Random Graphs and Complex Networks T

Random Graphs and Complex Networks T Radom Graphs ad Complex Networks T-79.7003 Charalampos E. Tsourakakis Aalto Uiversity Lecture 3 7 September 013 Aoucemet Homework 1 is out, due i two weeks from ow. Exercises: Probabilistic iequalities

More information

Performance Plus Software Parameter Definitions

Performance Plus Software Parameter Definitions Performace Plus+ Software Parameter Defiitios/ Performace Plus Software Parameter Defiitios Chapma Techical Note-TG-5 paramete.doc ev-0-03 Performace Plus+ Software Parameter Defiitios/2 Backgroud ad Defiitios

More information

ECE4050 Data Structures and Algorithms. Lecture 6: Searching

ECE4050 Data Structures and Algorithms. Lecture 6: Searching ECE4050 Data Structures ad Algorithms Lecture 6: Searchig 1 Search Give: Distict keys k 1, k 2,, k ad collectio L of records of the form (k 1, I 1 ), (k 2, I 2 ),, (k, I ) where I j is the iformatio associated

More information

Name Date Hr. ALGEBRA 1-2 SPRING FINAL MULTIPLE CHOICE REVIEW #1

Name Date Hr. ALGEBRA 1-2 SPRING FINAL MULTIPLE CHOICE REVIEW #1 Name Date Hr. ALGEBRA - SPRING FINAL MULTIPLE CHOICE REVIEW #. The high temperatures for Phoeix i October of 009 are listed below. Which measure of ceter will provide the most accurate estimatio of the

More information

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only Edited: Yeh-Liag Hsu (998--; recommeded: Yeh-Liag Hsu (--9; last updated: Yeh-Liag Hsu (9--7. Note: This is the course material for ME55 Geometric modelig ad computer graphics, Yua Ze Uiversity. art of

More information

Lower Bounds for Sorting

Lower Bounds for Sorting Liear Sortig Topics Covered: Lower Bouds for Sortig Coutig Sort Radix Sort Bucket Sort Lower Bouds for Sortig Compariso vs. o-compariso sortig Decisio tree model Worst case lower boud Compariso Sortig

More information

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence _9.qxd // : AM Page Chapter 9 Sequeces, Series, ad Probability 9. Sequeces ad Series What you should lear Use sequece otatio to write the terms of sequeces. Use factorial otatio. Use summatio otatio to

More information

arxiv: v2 [cs.ds] 24 Mar 2018

arxiv: v2 [cs.ds] 24 Mar 2018 Similar Elemets ad Metric Labelig o Complete Graphs arxiv:1803.08037v [cs.ds] 4 Mar 018 Pedro F. Felzeszwalb Brow Uiversity Providece, RI, USA pff@brow.edu March 8, 018 We cosider a problem that ivolves

More information

Ch 9.3 Geometric Sequences and Series Lessons

Ch 9.3 Geometric Sequences and Series Lessons Ch 9.3 Geometric Sequeces ad Series Lessos SKILLS OBJECTIVES Recogize a geometric sequece. Fid the geeral, th term of a geometric sequece. Evaluate a fiite geometric series. Evaluate a ifiite geometric

More information

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis Itro to Algorithm Aalysis Aalysis Metrics Slides. Table of Cotets. Aalysis Metrics 3. Exact Aalysis Rules 4. Simple Summatio 5. Summatio Formulas 6. Order of Magitude 7. Big-O otatio 8. Big-O Theorems

More information

Lecture 28: Data Link Layer

Lecture 28: Data Link Layer Automatic Repeat Request (ARQ) 2. Go ack N ARQ Although the Stop ad Wait ARQ is very simple, you ca easily show that it has very the low efficiecy. The low efficiecy comes from the fact that the trasmittig

More information

Tutorial on Packet Time Metrics

Tutorial on Packet Time Metrics Power Matters. Tutorial o Packet Time Metrics Lee Cosart lee.cosart@microsemi.com ITS 204 204 Microsemi Corporatio. COMPANY POPIETAY Itroductio requecy trasport Oe-way: forward & reverse packet streams

More information

Investigation Monitoring Inventory

Investigation Monitoring Inventory Ivestigatio Moitorig Ivetory Name Period Date Art Smith has bee providig the prits of a egravig to FieArt Gallery. He plas to make just 2000 more prits. FieArt has already received 70 of Art s prits. The

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

New Results on Energy of Graphs of Small Order

New Results on Energy of Graphs of Small Order Global Joural of Pure ad Applied Mathematics. ISSN 0973-1768 Volume 13, Number 7 (2017), pp. 2837-2848 Research Idia Publicatios http://www.ripublicatio.com New Results o Eergy of Graphs of Small Order

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

Lecture 2: Spectra of Graphs

Lecture 2: Spectra of Graphs Spectral Graph Theory ad Applicatios WS 20/202 Lecture 2: Spectra of Graphs Lecturer: Thomas Sauerwald & He Su Our goal is to use the properties of the adjacecy/laplacia matrix of graphs to first uderstad

More information

Using the Keyboard. Using the Wireless Keyboard. > Using the Keyboard

Using the Keyboard. Using the Wireless Keyboard. > Using the Keyboard 1 A wireless keyboard is supplied with your computer. The wireless keyboard uses a stadard key arragemet with additioal keys that perform specific fuctios. Usig the Wireless Keyboard Two AA alkalie batteries

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

Mathematical Stat I: solutions of homework 1

Mathematical Stat I: solutions of homework 1 Mathematical Stat I: solutios of homework Name: Studet Id N:. Suppose we tur over cards simultaeously from two well shuffled decks of ordiary playig cards. We say we obtai a exact match o a particular

More information

Octahedral Graph Scaling

Octahedral Graph Scaling Octahedral Graph Scalig Peter Russell Jauary 1, 2015 Abstract There is presetly o strog iterpretatio for the otio of -vertex graph scalig. This paper presets a ew defiitio for the term i the cotext of

More information

So we find a sample mean but what can we say about the General Education Statistics

So we find a sample mean but what can we say about the General Education Statistics So we fid a ample mea but what ca we ay about the Geeral Educatio Statitic populatio? Cla Note Cofidece Iterval for Populatio Mea (Sectio 9.) We will be doig early the ame tuff a we did i the firt ectio

More information

Improving Template Based Spike Detection

Improving Template Based Spike Detection Improvig Template Based Spike Detectio Kirk Smith, Member - IEEE Portlad State Uiversity petra@ee.pdx.edu Abstract Template matchig algorithms like SSE, Covolutio ad Maximum Likelihood are well kow for

More information

Optimized Aperiodic Concentric Ring Arrays

Optimized Aperiodic Concentric Ring Arrays 24th Aual Review of Progress i Applied Computatioal Electromagetics March 30 - April 4, 2008 - iagara Falls, Caada 2008 ACES Optimized Aperiodic Cocetric Rig Arrays Rady L Haupt The Pesylvaia State Uiversity

More information

One advantage that SONAR has over any other music-sequencing product I ve worked

One advantage that SONAR has over any other music-sequencing product I ve worked *gajedra* D:/Thomso_Learig_Projects/Garrigus_163132/z_productio/z_3B2_3D_files/Garrigus_163132_ch17.3d, 14/11/08/16:26:39, 16:26, page: 647 17 CAL 101 Oe advatage that SONAR has over ay other music-sequecig

More information

The VSS CCD photometry spreadsheet

The VSS CCD photometry spreadsheet The VSS CCD photometry spreadsheet Itroductio This Excel spreadsheet has bee developed ad tested by the BAA VSS for aalysig results files produced by the multi-image CCD photometry procedure i AIP4Wi v2.

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

Exercise 6 (Week 42) For the foreign students only.

Exercise 6 (Week 42) For the foreign students only. These are the last exercises of the course. Please, remember that to pass exercises, the sum of the poits gathered by solvig the questios ad attedig the exercise groups must be at least 4% ( poits) of

More information

SOFTWARE usually does not work alone. It must have

SOFTWARE usually does not work alone. It must have Proceedigs of the 203 Federated Coferece o Computer Sciece ad Iformatio Systems pp. 343 348 A method for selectig eviromets for software compatibility testig Łukasz Pobereżik AGH Uiversity of Sciece ad

More information

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS I this uit of the course we ivestigate fittig a straight lie to measured (x, y) data pairs. The equatio we wat to fit

More information

Apparent Depth. B' l'

Apparent Depth. B' l' REFRACTION by PLANE SURFACES Apparet Depth Suppose we have a object B i a medium of idex which is viewed from a medium of idex '. If '

More information

Algorithms Chapter 3 Growth of Functions

Algorithms Chapter 3 Growth of Functions Algorithms Chapter 3 Growth of Fuctios Istructor: Chig Chi Li 林清池助理教授 chigchi.li@gmail.com Departmet of Computer Sciece ad Egieerig Natioal Taiwa Ocea Uiversity Outlie Asymptotic otatio Stadard otatios

More information

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015 15-859E: Advaced Algorithms CMU, Sprig 2015 Lecture #2: Radomized MST ad MST Verificatio Jauary 14, 2015 Lecturer: Aupam Gupta Scribe: Yu Zhao 1 Prelimiaries I this lecture we are talkig about two cotets:

More information

15 UNSUPERVISED LEARNING

15 UNSUPERVISED LEARNING 15 UNSUPERVISED LEARNING [My father] advised me to sit every few moths i my readig chair for a etire eveig, close my eyes ad try to thik of ew problems to solve. I took his advice very seriously ad have

More information

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5 Morga Kaufma Publishers 26 February, 28 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 5 Set-Associative Cache Architecture Performace Summary Whe CPU performace icreases:

More information

Optimal Mapped Mesh on the Circle

Optimal Mapped Mesh on the Circle Koferece ANSYS 009 Optimal Mapped Mesh o the Circle doc. Ig. Jaroslav Štigler, Ph.D. Bro Uiversity of Techology, aculty of Mechaical gieerig, ergy Istitut, Abstract: This paper brigs out some ideas ad

More information

COMP 558 lecture 6 Sept. 27, 2010

COMP 558 lecture 6 Sept. 27, 2010 Radiometry We have discussed how light travels i straight lies through space. We would like to be able to talk about how bright differet light rays are. Imagie a thi cylidrical tube ad cosider the amout

More information

Capability Analysis (Variable Data)

Capability Analysis (Variable Data) Capability Aalysis (Variable Data) Revised: 0/0/07 Summary... Data Iput... 3 Capability Plot... 5 Aalysis Summary... 6 Aalysis Optios... 8 Capability Idices... Prefereces... 6 Tests for Normality... 7

More information

State-space feedback 6 challenges of pole placement

State-space feedback 6 challenges of pole placement State-space feedbac 6 challeges of pole placemet J Rossiter Itroductio The earlier videos itroduced the cocept of state feedbac ad demostrated that it moves the poles. x u x Kx Bu It was show that whe

More information

CSE 111 Bio: Program Design I Lecture 17: software development, list methods

CSE 111 Bio: Program Design I Lecture 17: software development, list methods CSE 111 Bio: Program Desig I Lecture 17: software developmet, list methods Robert H. Sloa(CS) & Rachel Poretsky(Bio) Uiversity of Illiois, Chicago October 19, 2017 NESTED LOOPS: REVIEW Geerate times table

More information

Fuzzy Rule Selection by Data Mining Criteria and Genetic Algorithms

Fuzzy Rule Selection by Data Mining Criteria and Genetic Algorithms Fuzzy Rule Selectio by Data Miig Criteria ad Geetic Algorithms Hisao Ishibuchi Dept. of Idustrial Egieerig Osaka Prefecture Uiversity 1-1 Gakue-cho, Sakai, Osaka 599-8531, JAPAN E-mail: hisaoi@ie.osakafu-u.ac.jp

More information

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov Sortig i Liear Time Data Structures ad Algorithms Adrei Bulatov Algorithms Sortig i Liear Time 7-2 Compariso Sorts The oly test that all the algorithms we have cosidered so far is compariso The oly iformatio

More information

CS 683: Advanced Design and Analysis of Algorithms

CS 683: Advanced Design and Analysis of Algorithms CS 683: Advaced Desig ad Aalysis of Algorithms Lecture 6, February 1, 2008 Lecturer: Joh Hopcroft Scribes: Shaomei Wu, Etha Feldma February 7, 2008 1 Threshold for k CNF Satisfiability I the previous lecture,

More information

Module 8-7: Pascal s Triangle and the Binomial Theorem

Module 8-7: Pascal s Triangle and the Binomial Theorem Module 8-7: Pascal s Triagle ad the Biomial Theorem Gregory V. Bard April 5, 017 A Note about Notatio Just to recall, all of the followig mea the same thig: ( 7 7C 4 C4 7 7C4 5 4 ad they are (all proouced

More information

Computational Geometry

Computational Geometry Computatioal Geometry Chapter 4 Liear programmig Duality Smallest eclosig disk O the Ageda Liear Programmig Slides courtesy of Craig Gotsma 4. 4. Liear Programmig - Example Defie: (amout amout cosumed

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

On Computing the Fuzzy Weighted Average Using the KM Algorithms

On Computing the Fuzzy Weighted Average Using the KM Algorithms O Computig the Fuzzy Weighted Average Usig the KM Algorithms Feilog iu ad Jerry M Medel Sigal ad Image Processig Istitute, Departmet of Electrical Egieerig Uiversity of Souther Califoria, 3740 McClitock

More information

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria.

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria. Computer Sciece Foudatio Exam August, 005 Computer Sciece Sectio A No Calculators! Name: SSN: KEY Solutios ad Gradig Criteria Score: 50 I this sectio of the exam, there are four (4) problems. You must

More information

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 5 Fuctios for All Subtasks Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 5.1 void Fuctios 5.2 Call-By-Referece Parameters 5.3 Usig Procedural Abstractio 5.4 Testig ad Debuggig

More information

Using The Central Limit Theorem for Belief Network Learning

Using The Central Limit Theorem for Belief Network Learning Usig The Cetral Limit Theorem for Belief Network Learig Ia Davidso, Mioo Amiia Computer Sciece Dept, SUNY Albay Albay, NY, USA,. davidso@cs.albay.edu Abstract. Learig the parameters (coditioal ad margial

More information

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design College of Computer ad Iformatio Scieces Departmet of Computer Sciece CSC 220: Computer Orgaizatio Uit 11 Basic Computer Orgaizatio ad Desig 1 For the rest of the semester, we ll focus o computer architecture:

More information

Weston Anniversary Fund

Weston Anniversary Fund Westo Olie Applicatio Guide 2018 1 This guide is desiged to help charities applyig to the Westo to use our olie applicatio form. The Westo is ope to applicatios from 5th Jauary 2018 ad closes o 30th Jue

More information

Designing a learning system

Designing a learning system CS 75 Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square, x-5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please try

More information

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8)

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8) CIS 11 Data Structures ad Algorithms with Java Fall 017 Big-Oh Notatio Tuesday, September 5 (Make-up Friday, September 8) Learig Goals Review Big-Oh ad lear big/small omega/theta otatios Practice solvig

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical

More information

ENGR Spring Exam 1

ENGR Spring Exam 1 ENGR 300 Sprig 03 Exam INSTRUCTIONS: Duratio: 60 miutes Keep your eyes o your ow work! Keep your work covered at all times!. Each studet is resposible for followig directios. Read carefully.. MATLAB ad

More information

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein 068.670 Subliear Time Algorithms November, 0 Lecture 6 Lecturer: Roitt Rubifeld Scribes: Che Ziv, Eliav Buchik, Ophir Arie, Joatha Gradstei Lesso overview. Usig the oracle reductio framework for approximatig

More information

DATA MINING II - 1DL460

DATA MINING II - 1DL460 DATA MINING II - 1DL460 Sprig 2017 A secod course i data miig http://www.it.uu.se/edu/course/homepage/ifoutv2/vt17/ Kjell Orsbor Uppsala Database Laboratory Departmet of Iformatio Techology, Uppsala Uiversity,

More information

The Nature of Light. Chapter 22. Geometric Optics Using a Ray Approximation. Ray Approximation

The Nature of Light. Chapter 22. Geometric Optics Using a Ray Approximation. Ray Approximation The Nature of Light Chapter Reflectio ad Refractio of Light Sectios: 5, 8 Problems: 6, 7, 4, 30, 34, 38 Particles of light are called photos Each photo has a particular eergy E = h ƒ h is Plack s costat

More information

Project 2.5 Improved Euler Implementation

Project 2.5 Improved Euler Implementation Project 2.5 Improved Euler Implemetatio Figure 2.5.10 i the text lists TI-85 ad BASIC programs implemetig the improved Euler method to approximate the solutio of the iitial value problem dy dx = x+ y,

More information

Math 3201 Notes Chapter 4: Rational Expressions & Equations

Math 3201 Notes Chapter 4: Rational Expressions & Equations Learig Goals: See p. tet.. Equivalet Ratioal Epressios ( classes) Read Goal p. 6 tet. Math 0 Notes Chapter : Ratioal Epressios & Equatios. Defie ad give a eample of a ratioal epressio. p. 6. Defie o-permissible

More information

The following algorithms have been tested as a method of converting an I.F. from 16 to 512 MHz to 31 real 16 MHz USB channels:

The following algorithms have been tested as a method of converting an I.F. from 16 to 512 MHz to 31 real 16 MHz USB channels: DBE Memo#1 MARK 5 MEMO #18 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 1886 November 19, 24 Telephoe: 978-692-4764 Fax: 781-981-59 To: From: Mark 5 Developmet Group

More information

LU Decomposition Method

LU Decomposition Method SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS LU Decompositio Method Jamie Traha, Autar Kaw, Kevi Marti Uiversity of South Florida Uited States of America kaw@eg.usf.edu http://umericalmethods.eg.usf.edu Itroductio

More information

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com)

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com) wwwtheopguptacom wwwimathematiciacom For all the Math-Gya Buy books by OP Gupta A Compilatio By : OP Gupta (WhatsApp @ +9-9650 350 0) For more stuffs o Maths, please visit : wwwtheopguptacom Time Allowed

More information

ANN WHICH COVERS MLP AND RBF

ANN WHICH COVERS MLP AND RBF ANN WHICH COVERS MLP AND RBF Josef Boští, Jaromír Kual Faculty of Nuclear Scieces ad Physical Egieerig, CTU i Prague Departmet of Software Egieerig Abstract Two basic types of artificial eural etwors Multi

More information

Designing a learning system

Designing a learning system CS 75 Itro to Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@pitt.edu 539 Seott Square, -5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please

More information

CMPT 125 Assignment 2 Solutions

CMPT 125 Assignment 2 Solutions CMPT 25 Assigmet 2 Solutios Questio (20 marks total) a) Let s cosider a iteger array of size 0. (0 marks, each part is 2 marks) it a[0]; I. How would you assig a poiter, called pa, to store the address

More information

An Improved Shuffled Frog-Leaping Algorithm for Knapsack Problem

An Improved Shuffled Frog-Leaping Algorithm for Knapsack Problem A Improved Shuffled Frog-Leapig Algorithm for Kapsack Problem Zhoufag Li, Ya Zhou, ad Peg Cheg School of Iformatio Sciece ad Egieerig Hea Uiversity of Techology ZhegZhou, Chia lzhf1978@126.com Abstract.

More information