Lecture 13: Validation

Size: px
Start display at page:

Download "Lecture 13: Validation"

Transcription

1 Lecture 3: Validatio Resampli methods Holdout Cross Validatio Radom Subsampli -Fold Cross-Validatio Leave-oe-out The Bootstrap Bias ad variace estimatio Three-way data partitioi Itroductio to Patter Recoitio Ricardo Gutierrez-Osua Wriht State Uiversity

2 Itroductio Almost ivariably, all the patter recoitio techiques that we have itroduced have oe or more free parameters The umber of eihbors i a k classificatio rule (or the k desity estimatio method) The badwidth of the kerel fuctio i kerel desity estimatio The etwork size, leari parameters ad weihts i Multilayer Perceptros Two questios arise at this poit How do we select the optimal parameter(s) for a ive classificatio problem? Oce we have chose a model, how do we estimate its true error rate? The true error rate is the classifier s error rate whe tested o the ETIRE POPULATIO If we had access to a ulimited umber of examples these questios have a straihtforward aswer Choose the model that provides the lowest error rate o the etire populatio Ad, of course, that error rate is the true error rate I real applicatios we oly have access to a fiite set of examples, usually smaller tha we wated Oe approach is to use the etire traii data to select our classifier ad estimate the error rate This aïve approach has two fudametal problems The fial model will ormally overfit the traii data: it will ot be able to eeralize to ew data The problem of overfitti is more proouced with models that have a lare umber of parameters The error rate estimate will be overly optimistic (lower tha the true error rate) I fact, it is ot ucommo to have 00% correct classificatio o traii data A much better approach is to split the traii data ito disjoit subsets: the holdout method Itroductio to Patter Recoitio Ricardo Gutierrez-Osua Wriht State Uiversity 2

3 The holdout method () Split dataset ito two roups Traii set: used to trai the classifier Test set: used to estimate the error rate of the traied classifier Total umber of examples Traii Set Test Set A typical applicatio the holdout method is determii a stoppi poit for the back propaatio error MSE Stoppi poit Test set error Traii set error Epochs Itroductio to Patter Recoitio Ricardo Gutierrez-Osua Wriht State Uiversity 3

4 The holdout method (2) The holdout method has two basic drawbacks I problems where we have a sparse dataset we may ot be able to afford the luxury of setti aside a portio of the dataset for testi Sice it is a sile trai-ad-test experimet, the holdout estimate of error rate will be misleadi if we happe to et a ufortuate split The limitatios of the holdout ca be overcome with a family of resampli methods at the expese of hiher computatioal cost Cross Validatio Radom Subsampli -Fold Cross-Validatio Leave-oe-out Cross-Validatio Bootstrap Itroductio to Patter Recoitio Ricardo Gutierrez-Osua Wriht State Uiversity 4

5 Radom Subsampli Radom Subsampli performs data splits of the etire dataset Each data split radomly selects a (fixed) umber of examples without replacemet For each data split we retrai the classifier from scratch with the traii examples ad the estimate E i with the test examples Total umber of examples Experimet Test example Experimet 2 Experimet 3 The true error estimate is obtaied as the averae of the separate estimates E i This estimate is siificatly better tha the holdout estimate E = i= E i Itroductio to Patter Recoitio Ricardo Gutierrez-Osua Wriht State Uiversity 5

6 -Fold Cross-validatio Create a -fold partitio of the the dataset For each of experimets, use - folds for traii ad a differet fold for testi This procedure is illustrated i the followi diaram for =4 Total umber of examples Experimet Experimet 2 Experimet 3 Experimet 4 Test examples -Fold Cross validatio is similar to Radom Subsampli The advatae of -Fold Cross validatio is that all the examples i the dataset are evetually used for both traii ad testi As before, the true error is estimated as the averae error rate o test examples E = E i i= Itroductio to Patter Recoitio Ricardo Gutierrez-Osua Wriht State Uiversity 6

7 Leave-oe-out Cross Validatio Leave-oe-out is the deeerate case of -Fold Cross Validatio, where is chose as the total umber of examples For a dataset with examples, perform experimets For each experimet use - examples for traii ad the remaii example for testi Total umber of examples Experimet Experimet 2 Experimet 3 Sile test example Experimet As usual, the true error is estimated as the averae error rate o test examples E = E i i= Itroductio to Patter Recoitio Ricardo Gutierrez-Osua Wriht State Uiversity 7

8 How may folds are eeded? With a lare umber of folds + The bias of the true error rate estimator will be small (the estimator will be very accurate) - The variace of the true error rate estimator will be lare - The computatioal time will be very lare as well (may experimets) With a small umber of folds + The umber of experimets ad, therefore, computatio time are reduced + The variace of the estimator will be small - The bias of the estimator will be lare (coservative or smaller tha the true error rate) I practice, the choice of the umber of folds depeds o the size of the dataset For lare datasets, eve 3-Fold Cross Validatio will be quite accurate For very sparse datasets, we may have to use leave-oe-out i order to trai o as may examples as possible A commo choice for -Fold Cross Validatio is =0 Itroductio to Patter Recoitio Ricardo Gutierrez-Osua Wriht State Uiversity 8

9 The bootstrap () The bootstrap is a resampli techique with replacemet From a dataset with examples Radomly select (with replacemet) examples ad use this set for traii The remaii examples that were ot selected for traii are used for testi This value is likely to chae from fold to fold Repeat this process for a specified umber of folds () Complete dataset X X 2 X 3 X 5 Experimet X 3 X X 3 X 3 X 5 X 2 Experimet 2 X 5 X 5 X 3 X X 2 Experimet 3 X 5 X 5 X X 2 X X 3 Experimet X X 2 X 3 X 5 Traii sets Validatio sets As usual, the true error is estimated as the averae error rate o test examples E = i= E i Itroductio to Patter Recoitio Ricardo Gutierrez-Osua Wriht State Uiversity 9

10 The bootstrap (2) Compared to basic cross-validatio, the bootstrap icreases the variace that ca occur i each fold [Efro ad Tibshirai, 993] This is a desirable property sice it is a more realistic simulatio of the real-life experimet from which we obtaied out dataset Cosider a classificatio problem with C classes, a total of examples ad i examples for each class ω i The a priori probability of choosi a example from class ω i is i / Oce we choose a example from class ω i, if we do ot replace it for the ext selectio, the the a priori probabilities will have chaed sice the probability of choosi a example from class ω i will ow be ( i -)/ Sampli with replacemet preserves the a priori probabilities of the classes throuhout the radom selectio process A additioal beefit of the bootstrap is its ability to obtai accurate measures of BOTH the bias ad variace of the true error estimate Itroductio to Patter Recoitio Ricardo Gutierrez-Osua Wriht State Uiversity 0

11 Bias ad variace of a statistical estimate Cosider the problem of estimati a parameter α of ukow distributio G To emphasize the fact that α cocers G we will refer to it as α(g) We collect examples X={x, x 2,, x } from the distributio G These examples defie a discrete distributio G with mass / at each of the examples We compute the statistic α =α(g ) as a estimator of α(g) I the cotext of this lecture, α(g ) is the estimate of the true error rate for our classifier How ood is this estimator? The oodess of a statistical estimator is measured by BIAS: How much it deviates from the true value VARIACE: How much variability it shows for differet samples X={x, x 2,, x } of the populatio G Var = E E 2 If we are tryi to estimate the mea of the populatio with the sample mea = E [ ( G) ] ( G) where E [ X] x ( x) Bias G [( [ ]) ] G G The bias of the sample mea is kow to be ZERO The stadard deviatio of the sample mea is, from elemetary statistics, equal to 2 std( x) = ( x i x) ( ) i= This term is also kow i statistics as the STADARD ERROR Ufortuately, there is o such a eat alebraic formula for almost ay estimate other tha the sample mea G + = dx Itroductio to Patter Recoitio Ricardo Gutierrez-Osua Wriht State Uiversity

12 Bias ad variace estimates with the bootstrap The bootstrap, with its eleat simplicity, allows us to estimate bias ad variace for practically ay statistical estimate, be it a scalar or vector (matrix) Here we will oly describe the estimatio procedure Timothy Masters has a excellet itroductio to the bootstrap i his textbook Advaced alorithms for eural etworks if you are iterested i the details The bootstrap estimate of bias ad variace Cosider a dataset of examples X={x, x 2,, x } from the distributio G This dataset defies a discrete distributio G Compute α =α(g ) as our iitial estimate of α(g) Let {x *, x 2 *,, x *} be a bootstrap dataset draw from X={x, x 2,, x } Estimate the parameter α usi this bootstrap dataset α*(g*) Geerate bootstrap datasets ad obtai estimates {α* (G*), α* 2 (G*),, α* (G*)} The ratioale i the bootstrap method is that the effect of eerati a bootstrap dataset from the distributio G is similar to the effect of obtaii the dataset X={x, x 2,, x } from the oriial distributio I other words, the distributio {α* (G*), α* 2 (G*),, α* (G*)} is related to the iitial estimate α i the same fashio as multiple estimates α are related to the true value α, so the bias ad variace estimates of α are Bias Var ( ) = i= i i ( ) = i= i= i Itroductio to Patter Recoitio Ricardo Gutierrez-Osua Wriht State Uiversity 2

13 Three-way data splits () If model selectio ad true error estimates are to be computed simultaeously, the data eeds to be divided ito three disjoit sets [Ripley, 996] Traii set: a set of examples used for leari: to fit the parameters of the classifier I the MLP case, we would use the traii set to fid the optimal weihts with the back-prop rule Validatio set: a set of examples used to tue the parameters of of a classifier I the MLP case, we would use the validatio set to fid the optimal umber of hidde uits or determie a stoppi poit for the back propaatio alorithm Test set: a set of examples used oly to assess the performace of a fully-traied classifier I the MLP case, we would use the test to estimate the error rate after we have chose the fial model (MLP size ad actual weihts) After assessi the fial model with the test set, YOU MUST OT further tue the model Why separate test ad validatio sets? The error rate estimate of the fial model o validatio data will be biased (smaller tha the true error rate) sice the validatio set is used to select the fial model After assessi the fial model with the test set, YOU MUST OT tue the model ay further Procedure outlie. Divide the available data ito traii, validatio ad test set 2. Select architecture ad traii parameters 3. Trai the model usi the traii set 4. Evaluate the model usi the validatio set 5. Repeat steps 2 throuh 4 usi differet architectures ad traii parameters 6. Select the best model ad trai it it usi data from the traii ad validatio set 7. Assess this fial model usi the test set This outlie assumes a holdout method If CV or Bootstrap are used, steps 3 ad 4 have to be repeated for each of the folds Itroductio to Patter Recoitio Ricardo Gutierrez-Osua Wriht State Uiversity 3

14 Three-way data splits (2) Test set Traii set Validatio set Model Error Model 2 Model 3 Error 2 Error 3 Mi + Fial Model Expected Error Model M Error M Model selectio True error rate estimatio Itroductio to Patter Recoitio Ricardo Gutierrez-Osua Wriht State Uiversity 4

Lecture 17: Feature Subset Selection II

Lecture 17: Feature Subset Selection II Lecture 17: Feature Subset Selectio II Expoetial search methods Brach ad Boud Approximate Mootoicity with Brach ad Boud Beam Search Radomized alorithms Radom Geeratio plus Sequetial Selectio Simulated

More information

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised

More information

Our Learning Problem, Again

Our Learning Problem, Again Noparametric Desity Estimatio Matthew Stoe CS 520, Sprig 2000 Lecture 6 Our Learig Problem, Agai Use traiig data to estimate ukow probabilities ad probability desity fuctios So far, we have depeded o describig

More information

Our second algorithm. Comp 135 Machine Learning Computer Science Tufts University. Decision Trees. Decision Trees. Decision Trees.

Our second algorithm. Comp 135 Machine Learning Computer Science Tufts University. Decision Trees. Decision Trees. Decision Trees. Comp 135 Machie Learig Computer Sciece Tufts Uiversity Fall 2017 Roi Khardo Some of these slides were adapted from previous slides by Carla Brodley Our secod algorithm Let s look at a simple dataset for

More information

Lecture 11: PI/T parallel I/O, part I

Lecture 11: PI/T parallel I/O, part I Lecture 11: PI/T parallel I/O, part I Geeral descriptio of the parallel I/O fuctio Bufferi Hadshaki Iput ad Output trasfers Timi Diarams Reister model of the 68230 Port Geeral Cotrol Reister (PGCR) Port

More information

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals UNIT 4 Sectio 8 Estimatig Populatio Parameters usig Cofidece Itervals To make ifereces about a populatio that caot be surveyed etirely, sample statistics ca be take from a SRS of the populatio ad used

More information

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics ENGI 44 Probability ad Statistics Faculty of Egieerig ad Applied Sciece Problem Set Descriptive Statistics. If, i the set of values {,, 3, 4, 5, 6, 7 } a error causes the value 5 to be replaced by 50,

More information

Designing a learning system

Designing a learning system CS 75 Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square, x-5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please try

More information

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical

More information

Normal Distributions

Normal Distributions Normal Distributios Stacey Hacock Look at these three differet data sets Each histogram is overlaid with a curve : A B C A) Weights (g) of ewly bor lab rat pups B) Mea aual temperatures ( F ) i A Arbor,

More information

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb Chapter 3 Descriptive Measures Measures of Ceter (Cetral Tedecy) These measures will tell us where is the ceter of our data or where most typical value of a data set lies Mode the value that occurs most

More information

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5 Morga Kaufma Publishers 26 February, 28 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 5 Set-Associative Cache Architecture Performace Summary Whe CPU performace icreases:

More information

Designing a learning system

Designing a learning system CS 75 Itro to Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@pitt.edu 539 Seott Square, -5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please

More information

1 Graph Sparsfication

1 Graph Sparsfication CME 305: Discrete Mathematics ad Algorithms 1 Graph Sparsficatio I this sectio we discuss the approximatio of a graph G(V, E) by a sparse graph H(V, F ) o the same vertex set. I particular, we cosider

More information

DATA MINING II - 1DL460

DATA MINING II - 1DL460 DATA MINING II - 1DL460 Sprig 2017 A secod course i data miig http://www.it.uu.se/edu/course/homepage/ifoutv2/vt17/ Kjell Orsbor Uppsala Database Laboratory Departmet of Iformatio Techology, Uppsala Uiversity,

More information

Random Graphs and Complex Networks T

Random Graphs and Complex Networks T Radom Graphs ad Complex Networks T-79.7003 Charalampos E. Tsourakakis Aalto Uiversity Lecture 3 7 September 013 Aoucemet Homework 1 is out, due i two weeks from ow. Exercises: Probabilistic iequalities

More information

Improving Template Based Spike Detection

Improving Template Based Spike Detection Improvig Template Based Spike Detectio Kirk Smith, Member - IEEE Portlad State Uiversity petra@ee.pdx.edu Abstract Template matchig algorithms like SSE, Covolutio ad Maximum Likelihood are well kow for

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

CMSC Computer Architecture Lecture 11: More Caches. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 11: More Caches. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 11: More Caches Prof. Yajig Li Uiversity of Chicago Lecture Outlie Caches 2 Review Memory hierarchy Cache basics Locality priciples Spatial ad temporal How to access

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

Mathematical Stat I: solutions of homework 1

Mathematical Stat I: solutions of homework 1 Mathematical Stat I: solutios of homework Name: Studet Id N:. Suppose we tur over cards simultaeously from two well shuffled decks of ordiary playig cards. We say we obtai a exact match o a particular

More information

Using The Central Limit Theorem for Belief Network Learning

Using The Central Limit Theorem for Belief Network Learning Usig The Cetral Limit Theorem for Belief Network Learig Ia Davidso, Mioo Amiia Computer Sciece Dept, SUNY Albay Albay, NY, USA,. davidso@cs.albay.edu Abstract. Learig the parameters (coditioal ad margial

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method A ew Morphological 3D Shape Decompositio: Grayscale Iterframe Iterpolatio Method D.. Vizireau Politehica Uiversity Bucharest, Romaia ae@comm.pub.ro R. M. Udrea Politehica Uiversity Bucharest, Romaia mihea@comm.pub.ro

More information

Master Informatics Eng. 2017/18. A.J.Proença. Memory Hierarchy. (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 2017/18 1

Master Informatics Eng. 2017/18. A.J.Proença. Memory Hierarchy. (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 2017/18 1 Advaced Architectures Master Iformatics Eg. 2017/18 A.J.Proeça Memory Hierarchy (most slides are borrowed) AJProeça, Advaced Architectures, MiEI, UMiho, 2017/18 1 Itroductio Programmers wat ulimited amouts

More information

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming Lecture Notes 6 Itroductio to algorithm aalysis CSS 501 Data Structures ad Object-Orieted Programmig Readig for this lecture: Carrao, Chapter 10 To be covered i this lecture: Itroductio to algorithm aalysis

More information

Probabilistic Fuzzy Time Series Method Based on Artificial Neural Network

Probabilistic Fuzzy Time Series Method Based on Artificial Neural Network America Joural of Itelliget Systems 206, 6(2): 42-47 DOI: 0.5923/j.ajis.2060602.02 Probabilistic Fuzzy Time Series Method Based o Artificial Neural Network Erol Egrioglu,*, Ere Bas, Cagdas Haka Aladag

More information

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8)

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8) CIS 11 Data Structures ad Algorithms with Java Fall 017 Big-Oh Notatio Tuesday, September 5 (Make-up Friday, September 8) Learig Goals Review Big-Oh ad lear big/small omega/theta otatios Practice solvig

More information

An Efficient Algorithm for Graph Bisection of Triangularizations

An Efficient Algorithm for Graph Bisection of Triangularizations A Efficiet Algorithm for Graph Bisectio of Triagularizatios Gerold Jäger Departmet of Computer Sciece Washigto Uiversity Campus Box 1045 Oe Brookigs Drive St. Louis, Missouri 63130-4899, USA jaegerg@cse.wustl.edu

More information

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein 068.670 Subliear Time Algorithms November, 0 Lecture 6 Lecturer: Roitt Rubifeld Scribes: Che Ziv, Eliav Buchik, Ophir Arie, Joatha Gradstei Lesso overview. Usig the oracle reductio framework for approximatig

More information

3D Model Retrieval Method Based on Sample Prediction

3D Model Retrieval Method Based on Sample Prediction 20 Iteratioal Coferece o Computer Commuicatio ad Maagemet Proc.of CSIT vol.5 (20) (20) IACSIT Press, Sigapore 3D Model Retrieval Method Based o Sample Predictio Qigche Zhag, Ya Tag* School of Computer

More information

CSCI 5090/7090- Machine Learning. Spring Mehdi Allahyari Georgia Southern University

CSCI 5090/7090- Machine Learning. Spring Mehdi Allahyari Georgia Southern University CSCI 5090/7090- Machie Learig Sprig 018 Mehdi Allahyari Georgia Souther Uiversity Clusterig (slides borrowed from Tom Mitchell, Maria Floria Balca, Ali Borji, Ke Che) 1 Clusterig, Iformal Goals Goal: Automatically

More information

Euclidean Distance Based Feature Selection for Fault Detection Prediction Model in Semiconductor Manufacturing Process

Euclidean Distance Based Feature Selection for Fault Detection Prediction Model in Semiconductor Manufacturing Process Vol.133 (Iformatio Techology ad Computer Sciece 016), pp.85-89 http://dx.doi.org/10.1457/astl.016. Euclidea Distace Based Feature Selectio for Fault Detectio Predictio Model i Semicoductor Maufacturig

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

prerequisites: 6.046, 6.041/2, ability to do proofs Randomized algorithms: make random choices during run. Main benefits:

prerequisites: 6.046, 6.041/2, ability to do proofs Randomized algorithms: make random choices during run. Main benefits: Itro Admiistrivia. Sigup sheet. prerequisites: 6.046, 6.041/2, ability to do proofs homework weekly (first ext week) collaboratio idepedet homeworks gradig requiremet term project books. questio: scribig?

More information

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs CHAPTER IV: GRAPH THEORY Sectio : Itroductio to Graphs Sice this class is called Number-Theoretic ad Discrete Structures, it would be a crime to oly focus o umber theory regardless how woderful those topics

More information

Chapter 3 Classification of FFT Processor Algorithms

Chapter 3 Classification of FFT Processor Algorithms Chapter Classificatio of FFT Processor Algorithms The computatioal complexity of the Discrete Fourier trasform (DFT) is very high. It requires () 2 complex multiplicatios ad () complex additios [5]. As

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

The golden search method: Question 1

The golden search method: Question 1 1. Golde Sectio Search for the Mode of a Fuctio The golde search method: Questio 1 Suppose the last pair of poits at which we have a fuctio evaluatio is x(), y(). The accordig to the method, If f(x())

More information

An Efficient Algorithm for Graph Bisection of Triangularizations

An Efficient Algorithm for Graph Bisection of Triangularizations Applied Mathematical Scieces, Vol. 1, 2007, o. 25, 1203-1215 A Efficiet Algorithm for Graph Bisectio of Triagularizatios Gerold Jäger Departmet of Computer Sciece Washigto Uiversity Campus Box 1045, Oe

More information

Name Date Hr. ALGEBRA 1-2 SPRING FINAL MULTIPLE CHOICE REVIEW #1

Name Date Hr. ALGEBRA 1-2 SPRING FINAL MULTIPLE CHOICE REVIEW #1 Name Date Hr. ALGEBRA - SPRING FINAL MULTIPLE CHOICE REVIEW #. The high temperatures for Phoeix i October of 009 are listed below. Which measure of ceter will provide the most accurate estimatio of the

More information

Reliable Transmission. Spring 2018 CS 438 Staff - University of Illinois 1

Reliable Transmission. Spring 2018 CS 438 Staff - University of Illinois 1 Reliable Trasmissio Sprig 2018 CS 438 Staff - Uiversity of Illiois 1 Reliable Trasmissio Hello! My computer s ame is Alice. Alice Bob Hello! Alice. Sprig 2018 CS 438 Staff - Uiversity of Illiois 2 Reliable

More information

Project 2.5 Improved Euler Implementation

Project 2.5 Improved Euler Implementation Project 2.5 Improved Euler Implemetatio Figure 2.5.10 i the text lists TI-85 ad BASIC programs implemetig the improved Euler method to approximate the solutio of the iitial value problem dy dx = x+ y,

More information

IMAGE-BASED MODELING AND RENDERING 1. HISTOGRAM AND GMM. I-Chen Lin, Dept. of CS, National Chiao Tung University

IMAGE-BASED MODELING AND RENDERING 1. HISTOGRAM AND GMM. I-Chen Lin, Dept. of CS, National Chiao Tung University IMAGE-BASED MODELING AND RENDERING. HISTOGRAM AND GMM I-Che Li, Dept. of CS, Natioal Chiao Tug Uiversity Outlie What s the itesity/color histogram? What s the Gaussia Mixture Model (GMM? Their applicatios

More information

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015 15-859E: Advaced Algorithms CMU, Sprig 2015 Lecture #2: Radomized MST ad MST Verificatio Jauary 14, 2015 Lecturer: Aupam Gupta Scribe: Yu Zhao 1 Prelimiaries I this lecture we are talkig about two cotets:

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 19 Query Optimizatio Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio Query optimizatio Coducted by a query optimizer i a DBMS Goal:

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

Data Structures Week #9. Sorting

Data Structures Week #9. Sorting Data Structures Week #9 Sortig Outlie Motivatio Types of Sortig Elemetary (O( 2 )) Sortig Techiques Other (O(*log())) Sortig Techiques 21.Aralık.2010 Boraha Tümer, Ph.D. 2 Sortig 21.Aralık.2010 Boraha

More information

The Extended Weibull Geometric Family

The Extended Weibull Geometric Family The Exteded Weibull Geometric Family Giovaa Oliveira Silva 1 Gauss M. Cordeiro 2 Edwi M. M. Ortega 3 1 Itroductio The literature o Weibull models is vast, disjoited, ad scattered across may differet jourals.

More information

Strong Complementary Acyclic Domination of a Graph

Strong Complementary Acyclic Domination of a Graph Aals of Pure ad Applied Mathematics Vol 8, No, 04, 83-89 ISSN: 79-087X (P), 79-0888(olie) Published o 7 December 04 wwwresearchmathsciorg Aals of Strog Complemetary Acyclic Domiatio of a Graph NSaradha

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpeCourseWare http://ocw.mit.edu 6.854J / 18.415J Advaced Algorithms Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advaced Algorithms

More information

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria.

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria. Computer Sciece Foudatio Exam August, 005 Computer Sciece Sectio A No Calculators! Name: SSN: KEY Solutios ad Gradig Criteria Score: 50 I this sectio of the exam, there are four (4) problems. You must

More information

27 Refraction, Dispersion, Internal Reflection

27 Refraction, Dispersion, Internal Reflection Chapter 7 Refractio, Dispersio, Iteral Reflectio 7 Refractio, Dispersio, Iteral Reflectio Whe we talked about thi film iterferece, we said that whe light ecouters a smooth iterface betwee two trasparet

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Recursive Estimation

Recursive Estimation Recursive Estimatio Raffaello D Adrea Sprig 2 Problem Set: Probability Review Last updated: February 28, 2 Notes: Notatio: Uless otherwise oted, x, y, ad z deote radom variables, f x (x) (or the short

More information

Effect of control points distribution on the orthorectification accuracy of an Ikonos II image through rational polynomial functions

Effect of control points distribution on the orthorectification accuracy of an Ikonos II image through rational polynomial functions Effect of cotrol poits distributio o the orthorectificatio accuracy of a Ikoos II image through ratioal polyomial fuctios Marcela do Valle Machado 1, Mauro Homem Atues 1 ad Paula Debiasi 1 1 Federal Rural

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

Load balanced Parallel Prime Number Generator with Sieve of Eratosthenes on Cluster Computers *

Load balanced Parallel Prime Number Generator with Sieve of Eratosthenes on Cluster Computers * Load balaced Parallel Prime umber Geerator with Sieve of Eratosthees o luster omputers * Soowook Hwag*, Kyusik hug**, ad Dogseug Kim* *Departmet of Electrical Egieerig Korea Uiversity Seoul, -, Rep. of

More information

Consider the following population data for the state of California. Year Population

Consider the following population data for the state of California. Year Population Assigmets for Bradie Fall 2016 for Chapter 5 Assigmet sheet for Sectios 5.1, 5.3, 5.5, 5.6, 5.7, 5.8 Read Pages 341-349 Exercises for Sectio 5.1 Lagrage Iterpolatio #1, #4, #7, #13, #14 For #1 use MATLAB

More information

A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON

A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON Roberto Lopez ad Eugeio Oñate Iteratioal Ceter for Numerical Methods i Egieerig (CIMNE) Edificio C1, Gra Capitá s/, 08034 Barceloa, Spai ABSTRACT I this work

More information

Nodal Circuit Analysis Using KCL. Most useful for when we have mostly current sources Node analysis uses KCL to establish the currents

Nodal Circuit Analysis Using KCL. Most useful for when we have mostly current sources Node analysis uses KCL to establish the currents Nodal Circuit Aalysis Usi KCL Most useful for whe we have mostly curret sources Node aalysis uses KCL to establish the currets Procedure () Choose oe ode as the commo (or datum) ode Number (label) the

More information

CMPT 125 Assignment 2 Solutions

CMPT 125 Assignment 2 Solutions CMPT 25 Assigmet 2 Solutios Questio (20 marks total) a) Let s cosider a iteger array of size 0. (0 marks, each part is 2 marks) it a[0]; I. How would you assig a poiter, called pa, to store the address

More information

Performance Plus Software Parameter Definitions

Performance Plus Software Parameter Definitions Performace Plus+ Software Parameter Defiitios/ Performace Plus Software Parameter Defiitios Chapma Techical Note-TG-5 paramete.doc ev-0-03 Performace Plus+ Software Parameter Defiitios/2 Backgroud ad Defiitios

More information

EE260: Digital Design, Spring /16/18. n Example: m 0 (=x 1 x 2 ) is adjacent to m 1 (=x 1 x 2 ) and m 2 (=x 1 x 2 ) but NOT m 3 (=x 1 x 2 )

EE260: Digital Design, Spring /16/18. n Example: m 0 (=x 1 x 2 ) is adjacent to m 1 (=x 1 x 2 ) and m 2 (=x 1 x 2 ) but NOT m 3 (=x 1 x 2 ) EE26: Digital Desig, Sprig 28 3/6/8 EE 26: Itroductio to Digital Desig Combiatioal Datapath Yao Zheg Departmet of Electrical Egieerig Uiversity of Hawaiʻi at Māoa Combiatioal Logic Blocks Multiplexer Ecoders/Decoders

More information

Lecture 28: Data Link Layer

Lecture 28: Data Link Layer Automatic Repeat Request (ARQ) 2. Go ack N ARQ Although the Stop ad Wait ARQ is very simple, you ca easily show that it has very the low efficiecy. The low efficiecy comes from the fact that the trasmittig

More information

Appendix D. Controller Implementation

Appendix D. Controller Implementation COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Appedix D Cotroller Implemetatio Cotroller Implemetatios Combiatioal logic (sigle-cycle); Fiite state machie (multi-cycle, pipelied);

More information

CMSC Computer Architecture Lecture 10: Caches. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 10: Caches. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 10: Caches Prof. Yajig Li Uiversity of Chicago Midterm Recap Overview ad fudametal cocepts ISA Uarch Datapath, cotrol Sigle cycle, multi cycle Pipeliig Basic idea,

More information

1. The lines intersect. There is one solution, the point where they intersect. The system is called a consistent system.

1. The lines intersect. There is one solution, the point where they intersect. The system is called a consistent system. Commo Core Math 3 Notes Uit Day Systems I. Systems of Liear Equatios A system of two liear equatios i two variables is two equatios cosidered together. To solve a system is to fid all the ordered pairs

More information

COMP 558 lecture 6 Sept. 27, 2010

COMP 558 lecture 6 Sept. 27, 2010 Radiometry We have discussed how light travels i straight lies through space. We would like to be able to talk about how bright differet light rays are. Imagie a thi cylidrical tube ad cosider the amout

More information

Private Key Cryptography. TELE3119: Week2

Private Key Cryptography. TELE3119: Week2 Private Key Cryptography TELE3119: Week2 Private Key Ecryptio Also referred to as: covetioal ecryptio symmetric key ecryptio secret-key or sigle-key ecryptio Oly alterative before public-key ecryptio i

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

ENGR Spring Exam 1

ENGR Spring Exam 1 ENGR 300 Sprig 03 Exam INSTRUCTIONS: Duratio: 60 miutes Keep your eyes o your ow work! Keep your work covered at all times!. Each studet is resposible for followig directios. Read carefully.. MATLAB ad

More information

Analysis of Non-adjacent channel crosstalk level of AWG based. DWDM components induced by random phase errors

Analysis of Non-adjacent channel crosstalk level of AWG based. DWDM components induced by random phase errors Aalysis of No-adacet chael crosstalk level of AWG based DWDM compoets iduced by radom phase errors Wei i, Ju He, Demi iu Departmet of Optoelectroic Eieeri Huazho Uiversity of Sciece ad Techoloy Wuha, 4374,P.R.Chia,

More information

5.3 Recursive definitions and structural induction

5.3 Recursive definitions and structural induction /8/05 5.3 Recursive defiitios ad structural iductio CSE03 Discrete Computatioal Structures Lecture 6 A recursively defied picture Recursive defiitios e sequece of powers of is give by a = for =0,,, Ca

More information

Message Integrity and Hash Functions. TELE3119: Week4

Message Integrity and Hash Functions. TELE3119: Week4 Message Itegrity ad Hash Fuctios TELE3119: Week4 Outlie Message Itegrity Hash fuctios ad applicatios Hash Structure Popular Hash fuctios 4-2 Message Itegrity Goal: itegrity (ot secrecy) Allows commuicatig

More information

Image Segmentation EEE 508

Image Segmentation EEE 508 Image Segmetatio Objective: to determie (etract) object boudaries. It is a process of partitioig a image ito distict regios by groupig together eighborig piels based o some predefied similarity criterio.

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

Investigating methods for improving Bagged k-nn classifiers

Investigating methods for improving Bagged k-nn classifiers Ivestigatig methods for improvig Bagged k-nn classifiers Fuad M. Alkoot Telecommuicatio & Navigatio Istitute, P.A.A.E.T. P.O.Box 4575, Alsalmia, 22046 Kuwait Abstract- We experimet with baggig knn classifiers

More information

A Multi-Partitioning Approach to Building Fast and Accurate Counting Bloom Filters

A Multi-Partitioning Approach to Building Fast and Accurate Counting Bloom Filters 2013 IEEE 27th Iteratioal Symposium o Parallel & Distributed Processi A Multi-Partitioi Approach to Buildi Fast ad Accurate Couti Bloom Filters Ku Hua, Jie Zha, Dafa Zha,GaoaXie, Kave Salamatia+,AlexX.Liu,

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19 CIS Data Structures ad Algorithms with Java Sprig 09 Stacks, Queues, ad Heaps Moday, February 8 / Tuesday, February 9 Stacks ad Queues Recall the stack ad queue ADTs (abstract data types from lecture.

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

Package popkorn. R topics documented: February 20, Type Package

Package popkorn. R topics documented: February 20, Type Package Type Pacage Pacage popkor February 20, 2015 Title For iterval estimatio of mea of selected populatios Versio 0.3-0 Date 2014-07-04 Author Vi Gopal, Claudio Fuetes Maitaier Vi Gopal Depeds

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

A new algorithm to build feed forward neural networks.

A new algorithm to build feed forward neural networks. A ew algorithm to build feed forward eural etworks. Amit Thombre Cetre of Excellece, Software Techologies ad Kowledge Maagemet, Tech Mahidra, Pue, Idia Abstract The paper presets a ew algorithm to build

More information

Intrusion Detection using Fuzzy Clustering and Artificial Neural Network

Intrusion Detection using Fuzzy Clustering and Artificial Neural Network Itrusio Detectio usig Fuzzy Clusterig ad Artificial Neural Network Shraddha Suraa Research Scholar, Departmet of Computer Egieerig, Vishwakarma Istitute of Techology, Pue Idia shraddha.suraa@gmail.com

More information

Octahedral Graph Scaling

Octahedral Graph Scaling Octahedral Graph Scalig Peter Russell Jauary 1, 2015 Abstract There is presetly o strog iterpretatio for the otio of -vertex graph scalig. This paper presets a ew defiitio for the term i the cotext of

More information

SAMPLE VERSUS POPULATION. Population - consists of all possible measurements that can be made on a particular item or procedure.

SAMPLE VERSUS POPULATION. Population - consists of all possible measurements that can be made on a particular item or procedure. SAMPLE VERSUS POPULATION Populatio - cosists of all possible measuremets that ca be made o a particular item or procedure. Ofte a populatio has a ifiite umber of data elemets Geerally expese to determie

More information

Introduction to Wireless & Mobile Systems. Chapter 6. Multiple Radio Access Cengage Learning Engineering. All Rights Reserved.

Introduction to Wireless & Mobile Systems. Chapter 6. Multiple Radio Access Cengage Learning Engineering. All Rights Reserved. Itroductio to Wireless & Mobile Systems Chapter 6 Multiple Radio Access 1 Outlie Itroductio Multiple Radio Access Protocols Cotetio-based Protocols Pure ALOHA Slotted ALOHA CSMA (Carrier Sese Multiple

More information

An Improved Shuffled Frog-Leaping Algorithm for Knapsack Problem

An Improved Shuffled Frog-Leaping Algorithm for Knapsack Problem A Improved Shuffled Frog-Leapig Algorithm for Kapsack Problem Zhoufag Li, Ya Zhou, ad Peg Cheg School of Iformatio Sciece ad Egieerig Hea Uiversity of Techology ZhegZhou, Chia lzhf1978@126.com Abstract.

More information

Accuracy Improvement in Camera Calibration

Accuracy Improvement in Camera Calibration Accuracy Improvemet i Camera Calibratio FaJie L Qi Zag ad Reihard Klette CITR, Computer Sciece Departmet The Uiversity of Aucklad Tamaki Campus, Aucklad, New Zealad fli006, qza001@ec.aucklad.ac.z r.klette@aucklad.ac.z

More information

Improved Random Graph Isomorphism

Improved Random Graph Isomorphism Improved Radom Graph Isomorphism Tomek Czajka Gopal Paduraga Abstract Caoical labelig of a graph cosists of assigig a uique label to each vertex such that the labels are ivariat uder isomorphism. Such

More information

Module 8-7: Pascal s Triangle and the Binomial Theorem

Module 8-7: Pascal s Triangle and the Binomial Theorem Module 8-7: Pascal s Triagle ad the Biomial Theorem Gregory V. Bard April 5, 017 A Note about Notatio Just to recall, all of the followig mea the same thig: ( 7 7C 4 C4 7 7C4 5 4 ad they are (all proouced

More information

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA Creatig Exact Bezier Represetatios of CST Shapes David D. Marshall Califoria Polytechic State Uiversity, Sa Luis Obispo, CA 93407-035, USA The paper presets a method of expressig CST shapes pioeered by

More information

Evaluation scheme for Tracking in AMI

Evaluation scheme for Tracking in AMI A M I C o m m u i c a t i o A U G M E N T E D M U L T I - P A R T Y I N T E R A C T I O N http://www.amiproject.org/ Evaluatio scheme for Trackig i AMI S. Schreiber a D. Gatica-Perez b AMI WP4 Trackig:

More information

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1 Eigeimages Uitary trasforms Karhue-Loève trasform ad eigeimages Sirovich ad Kirby method Eigefaces for geder recogitio Fisher liear discrimat aalysis Fisherimages ad varyig illumiatio Fisherfaces vs. eigefaces

More information

Course Site: Copyright 2012, Elsevier Inc. All rights reserved.

Course Site:   Copyright 2012, Elsevier Inc. All rights reserved. Course Site: http://cc.sjtu.edu.c/g2s/site/aca.html 1 Computer Architecture A Quatitative Approach, Fifth Editio Chapter 2 Memory Hierarchy Desig 2 Outlie Memory Hierarchy Cache Desig Basic Cache Optimizatios

More information

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence _9.qxd // : AM Page Chapter 9 Sequeces, Series, ad Probability 9. Sequeces ad Series What you should lear Use sequece otatio to write the terms of sequeces. Use factorial otatio. Use summatio otatio to

More information

Lecture 7 7 Refraction and Snell s Law Reading Assignment: Read Kipnis Chapter 4 Refraction of Light, Section III, IV

Lecture 7 7 Refraction and Snell s Law Reading Assignment: Read Kipnis Chapter 4 Refraction of Light, Section III, IV Lecture 7 7 Refractio ad Sell s Law Readig Assigmet: Read Kipis Chapter 4 Refractio of Light, Sectio III, IV 7. History I Eglish-speakig coutries, the law of refractio is kow as Sell s Law, after the Dutch

More information