Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Size: px
Start display at page:

Download "Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le"

Transcription

1 Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le

2 Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical Clusterig

3 Bayesia decisio theory A posteriori probability (posterior): the probability of the state of ature give that the feature value has bee observed e.g., P(ω x) Likelihood: the likelihood of the state of ature with respect to the feature value e.g., p(x ω) Bayes formula P(ω x)=p(x ω)p(ω)/p(x)

4 Bayesia decisio theory

5 Bayesia decisio theory

6 Normal distributio

7 Covariace matrix ad its algebraic/geometric iterpretatio What is the quadratic form? x1 x2 x3 μ φ y1 y2 y3

8 Classificatio Usig PCA e T D? y 1 x 2 y 2 y y i T R? Σ U u Y U E{ XX T u 2 T }, u m Σu u m X, e X U Y i i i x 1 Detectio of faces based o distace from face space Recogitio of faces based o distace withi face space J. M. Rehg 2002

9 Noparametric Methods So far we studied "parametric" methods. Probability distributio fuctios (or equivaletly decisio boudaries) ca be represeted by parametric forms. Normal desity case: mea ad variace (or covariace matrix) PCA case: low-dimesioal subspace ad its spa These methods assume that the uderlyig probability distributio of the actual observatios is kow ad yields parametric forms. However, i may cases this assumptio is suspect.

10 Noparametric Methods Simple approach is to compose histogram Kowig sample data, we ca compose histogram with certai bi size (divisio of each axis) Treat the histogram as probability distributio fuctio

11 Noparametric Methods The optimal umber of bis M (or bi size) is the issue. If bi width is small (i.e., big M), the the estimated desity is very spiky (i.e., oisy). If bi width is large (i.e., small M), the the true structure of the desity is smoothed out. I practice, we eed to fid a optimal value for M that compromises betwee these two issues. Also, how we exted to the multidimesioal case?

12 Noparametric Desity Estimatio The probability that a give vector x, draw from the ukow desity p(x), will fall iside some regio R i the iput space is give by: P p( x') dx' R If we have data poits {x 1, x 2,..., x } draw idepedetly from p(x), the probability that k of them will fall i R is give by the biomial law: P ( k ) Pk P (1 P ) k k k

13 Noparametric Desity Estimatio The expected value of k is: E[ k] P The expected percetage of poits fallig i R is: E[ k/ ] The variace is give by: P 2 P(1 P) Var[ k / ] E[( k / P) ]

14 Noparametric Desity Estimatio The distributio is sharply peaked as, thus: P k/ Approximatio 1

15 Noparametric Desity Estimatio If we assume that p(x) is cotiuous ad does ot vary sigificatly over the regio R, we ca approximate P by: P p( x') dx' p( x) V Approximatio 2 R where V is the volume eclosed by R.

16 Noparametric Desity Estimatio Combiig these two approximatios we have: p( x) k/ V The above approximatio is based o cotradictory assumptios: R is relatively large (i.e., it cotais may samples so that P k is sharply peaked) Approximatio 1 R is relatively small so that p(x) is approximately costat iside the itegratio regio Approximatio 2 We eed to choose a optimum R i practice...

17 Noparametric Desity Estimatio Suppose we form regios R 1, R 2,... cotaiig x. R 1 cotais k 1 sample, R 2 cotais k 2 samples, etc. R i has volume V i ad cotais k i samples. The -th estimate p (x) of p(x) is give by: p k / ( x) V

18 Noparametric Desity Estimatio The followig coditios must be satisfied i order for p (x) to coverge to p(x): limv 0 lim k lim k / 0 Approximatio 2 Approximatio 1 to allow p (x) to coverge

19 Noparametric Desity Estimatio How to choose the optimum values for V ad k? k / p ( x) Two leadig approaches: V (1) Fix the volume V ad determie k from the data (kerel-based desity estimatio methods), e.g., V 1/ (2) Fix the value of k ad determie the correspodig volume V from the data (k-earest eighbor method), e.g., k

20 Noparametric Desity Estimatio

21 Parze Widows Problem: Give a vector x, estimate p(x) Assume R to be a hypercube with sides of legth h, cetered o the poit x: d k / V h p ( ) x V To fid a expressio for k (i.e., # poits i the hypercube) let us defie a kerel fuctio: 1 1 u j j 1,..., d ( u) 2 0 otherwise

22 Parze Widows The total umber of poits x i fallig iside the hypercube is: i k x x i1 h cetered at x The, the estimate becomes p p k / ( x) V 1 1 x x i ( x) i1 V h equals 1 if x i falls withi hypercube Parze widows estimate

23 Parze Widows The desity estimate is a superpositio of kerel fuctios ad the samples x i. 1 1 x x i p( x) i1 V h ( u) iterpolates the desity betwee samples. Each sample x i cotributes to the estimate based o its distace from x.

24 Parze Widows The kerel fuctio ( u) ca have a more geeral form (i.e., ot just hypercube). I order for p (x) to be a legitimate estimate, must be a valid desity itself: ( u) 0 ( u) du1

25 Parze Widows The parameter h acts as a smoothig parameter that eeds to be optimized. Whe h is too large, the estimated desity is over-smoothed (i.e., superpositio of broad kerel fuctios). Whe h is too small, the estimate represets the properties of the data rather tha the true desity (i.e., superpositio of arrow kerel fuctios)

26 Parze Widows ( u) assumig differet h values:

27 Parze Widows Example: p (x) estimates assumig 5 samples:

28 Parze Widows Example: both p(x) ad ( u) are Gaussia h h 1 / p (x)

29 Parze Widows Example: p(x) cosists of a uiform ad triagular desity ad ( u) is Gaussia h h 1 / p (x)

30 k-nearest Neighbor Estimate Fix k ad allow V to vary: Cosider a hypersphere aroud x. Allow the radius of the hypersphere to grow util it cotais k data poits. V is determied by the volume of the hypersphere. p k / ( x) V size depeds o desity

31 k-nearest Neighbor Estimate The parameter k acts as a smoothig parameter ad eeds to be optimized.

32 k-nearest Neighbor Estimate Parze widows k -earest-eighbor k k 1

33 k-nearest Neighbor Estimate Parze widows k -earest-eighbor k k 1

34 k-nearest Neighbor Classifier Suppose that we have c classes ad that class ω i cotais i poits with c = P( / x) i Give a poit x, we fid the k earest eighbors Suppose that k i poits from k belog to class ω i, the: p p ( x / ) P( ) i i p ( x) ki ( x / i) V i

35 k-nearest Neighbor Classifier

36 k-nearest Neighbor Classifier The prior probabilities ca be computed as: i P( i ) Usig the Bayes rule, the posterior probabilities ca be computed as follows: where p ( x / ) P( ) k P( i / x) p ( x) k p k ( x) V i i i

37 k-nearest Neighbor Classifier k-earest-eighbor classificatio rule: Give a data poit x, fid a hypersphere aroud it that cotais k poits ad assig x to the class havig the largest umber of represetatives iside the hypersphere. p( x / i) P( i) ki P( i / x) p( x) k Whe k=1, we get the earest-eighbor rule.

38 k-nearest Neighbor Classifier

39 k-nearest Neighbor Classifier The decisio boudary is piece-wise liear. Each lie segmet correspods to the perpedicular bisector of two poits belogig to differet classes.

40 k-nearest Neighbor Classifier Let P* be the miimum possible error, which is give by the miimum error rate classifier. Let P be the error give by the earest eighbor rule. Give ulimited umber of traiig data, it ca be show that: c P P P (2 P ) 2P c 1 * * * *

41 k-nearest Neighbor Classifier

42 k-nearest Neighbor Classifier

43 Clusterig So far we assumed that the class labels are give for traiig samples. Sometimes it's very costly to provide class labels. What ca we do if we do't kow class labels? Usupervised methods, or smart preprocessig methods Clusterig discovers distict subclasses observed i the data distributio.

44 Clusterig

45 Algorithm k-meas 1. Determie the umber of clusters: k 2. (Radomly) guess k cluster ceter locatios 3. Each data poit fids out which ceter it's closest to 4. Each ceter fids the cetroid of the poits it ows 5. Termiate if assigmet of N data poits does ot chage 6. Repeat from 3 otherwise

46 K-meas Clusterig: Step 1 Algorithm: k-meas, Distace Metric: Euclidea Distace k 1 2 k k

47 K-meas Clusterig: Step 2 Algorithm: k-meas, Distace Metric: Euclidea Distace k 1 2 k k

48 K-meas Clusterig: Step 3 Algorithm: k-meas, Distace Metric: Euclidea Distace 5 4 k k 2 k

49 K-meas Clusterig: Step 4 Algorithm: k-meas, Distace Metric: Euclidea Distace 5 4 k k 2 k

50 K-meas Clusterig: Step 5 Algorithm: k-meas, Distace Metric: Euclidea Distace 5 expressio i coditio k 2 k expressio i coditio 1 k 1

51 Hierarchical Clusterig Algorithm (Agglomerative Hierarchical Clusterig) 1. iitialize c: desired umber of clusters, c 1 =, D i ={x i } for i=1,..., 2. c 1 =c fid earest clusters, say, D i ad D j 4. merge D i ad D j 5. repeat from 2 util c=c 1 6. retur c clusters

52 Hierarchical Clusterig Dedrogram

53 The Nearest-Neighbor Algorithm The Nearest-Neighbor Algorithm If miimum distace betwee elemets of two clusters is used, the method is called the earesteighbor cluster algorithm. If it is termiated whe the distace betwee earest clusters exceeds a arbitrary threshold, it is called the sigle-likage algorithm.

54 The Nearest-Neighbor Algorithm

55 The Nearest-Neighbor Algorithm The Farthest-Neighbor Algorithm If maximum distace betwee elemets of two clusters is used, the method is called the farthesteighbor cluster algorithm. If it is termiated whe the distace betwee earest clusters exceeds a arbitrary threshold, it is called the complete-likage algorithm.

56 The Nearest-Neighbor Algorithm

Our Learning Problem, Again

Our Learning Problem, Again Noparametric Desity Estimatio Matthew Stoe CS 520, Sprig 2000 Lecture 6 Our Learig Problem, Agai Use traiig data to estimate ukow probabilities ad probability desity fuctios So far, we have depeded o describig

More information

Image Segmentation EEE 508

Image Segmentation EEE 508 Image Segmetatio Objective: to determie (etract) object boudaries. It is a process of partitioig a image ito distict regios by groupig together eighborig piels based o some predefied similarity criterio.

More information

Cluster Analysis. Andrew Kusiak Intelligent Systems Laboratory

Cluster Analysis. Andrew Kusiak Intelligent Systems Laboratory Cluster Aalysis Adrew Kusiak Itelliget Systems Laboratory 2139 Seamas Ceter The Uiversity of Iowa Iowa City, Iowa 52242-1527 adrew-kusiak@uiowa.edu http://www.icae.uiowa.edu/~akusiak Two geeric modes of

More information

CSCI 5090/7090- Machine Learning. Spring Mehdi Allahyari Georgia Southern University

CSCI 5090/7090- Machine Learning. Spring Mehdi Allahyari Georgia Southern University CSCI 5090/7090- Machie Learig Sprig 018 Mehdi Allahyari Georgia Souther Uiversity Clusterig (slides borrowed from Tom Mitchell, Maria Floria Balca, Ali Borji, Ke Che) 1 Clusterig, Iformal Goals Goal: Automatically

More information

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein 068.670 Subliear Time Algorithms November, 0 Lecture 6 Lecturer: Roitt Rubifeld Scribes: Che Ziv, Eliav Buchik, Ophir Arie, Joatha Gradstei Lesso overview. Usig the oracle reductio framework for approximatig

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

DATA MINING II - 1DL460

DATA MINING II - 1DL460 DATA MINING II - 1DL460 Sprig 2017 A secod course i data miig http://www.it.uu.se/edu/course/homepage/ifoutv2/vt17/ Kjell Orsbor Uppsala Database Laboratory Departmet of Iformatio Techology, Uppsala Uiversity,

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1 Eigeimages Uitary trasforms Karhue-Loève trasform ad eigeimages Sirovich ad Kirby method Eigefaces for geder recogitio Fisher liear discrimat aalysis Fisherimages ad varyig illumiatio Fisherfaces vs. eigefaces

More information

Improving Template Based Spike Detection

Improving Template Based Spike Detection Improvig Template Based Spike Detectio Kirk Smith, Member - IEEE Portlad State Uiversity petra@ee.pdx.edu Abstract Template matchig algorithms like SSE, Covolutio ad Maximum Likelihood are well kow for

More information

Diego Nehab. n A Transformation For Extracting New Descriptors of Shape. n Locus of points equidistant from contour

Diego Nehab. n A Transformation For Extracting New Descriptors of Shape. n Locus of points equidistant from contour Diego Nehab A Trasformatio For Extractig New Descriptors of Shape Locus of poits equidistat from cotour Medial Axis Symmetric Axis Skeleto Shock Graph Shaked 96 1 Shape matchig Aimatio Dimesio reductio

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

Eigenimages. Digital Image Processing: Bernd Girod, Stanford University -- Eigenimages 1

Eigenimages. Digital Image Processing: Bernd Girod, Stanford University -- Eigenimages 1 Eigeimages Uitary trasforms Karhue-Loève trasform ad eigeimages Sirovich ad Kirby method Eigefaces for geder recogitio Fisher liear discrimat aalysis Fisherimages ad varyig illumiatio Fisherfaces vs. eigefaces

More information

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals UNIT 4 Sectio 8 Estimatig Populatio Parameters usig Cofidece Itervals To make ifereces about a populatio that caot be surveyed etirely, sample statistics ca be take from a SRS of the populatio ad used

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

Parabolic Path to a Best Best-Fit Line:

Parabolic Path to a Best Best-Fit Line: Studet Activity : Fidig the Least Squares Regressio Lie By Explorig the Relatioship betwee Slope ad Residuals Objective: How does oe determie a best best-fit lie for a set of data? Eyeballig it may be

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only Edited: Yeh-Liag Hsu (998--; recommeded: Yeh-Liag Hsu (--9; last updated: Yeh-Liag Hsu (9--7. Note: This is the course material for ME55 Geometric modelig ad computer graphics, Yua Ze Uiversity. art of

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

IMAGE-BASED MODELING AND RENDERING 1. HISTOGRAM AND GMM. I-Chen Lin, Dept. of CS, National Chiao Tung University

IMAGE-BASED MODELING AND RENDERING 1. HISTOGRAM AND GMM. I-Chen Lin, Dept. of CS, National Chiao Tung University IMAGE-BASED MODELING AND RENDERING. HISTOGRAM AND GMM I-Che Li, Dept. of CS, Natioal Chiao Tug Uiversity Outlie What s the itesity/color histogram? What s the Gaussia Mixture Model (GMM? Their applicatios

More information

Computers and Scientific Thinking

Computers and Scientific Thinking Computers ad Scietific Thikig David Reed, Creighto Uiversity Chapter 15 JavaScript Strigs 1 Strigs as Objects so far, your iteractive Web pages have maipulated strigs i simple ways use text box to iput

More information

Package popkorn. R topics documented: February 20, Type Package

Package popkorn. R topics documented: February 20, Type Package Type Pacage Pacage popkor February 20, 2015 Title For iterval estimatio of mea of selected populatios Versio 0.3-0 Date 2014-07-04 Author Vi Gopal, Claudio Fuetes Maitaier Vi Gopal Depeds

More information

Mathematical Stat I: solutions of homework 1

Mathematical Stat I: solutions of homework 1 Mathematical Stat I: solutios of homework Name: Studet Id N:. Suppose we tur over cards simultaeously from two well shuffled decks of ordiary playig cards. We say we obtai a exact match o a particular

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

. Perform a geometric (ray-optics) construction (i.e., draw in the rays on the diagram) to show where the final image is formed.

. Perform a geometric (ray-optics) construction (i.e., draw in the rays on the diagram) to show where the final image is formed. MASSACHUSETTS INSTITUTE of TECHNOLOGY Departmet of Electrical Egieerig ad Computer Sciece 6.161 Moder Optics Project Laboratory 6.637 Optical Sigals, Devices & Systems Problem Set No. 1 Geometric optics

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

Improved Random Graph Isomorphism

Improved Random Graph Isomorphism Improved Radom Graph Isomorphism Tomek Czajka Gopal Paduraga Abstract Caoical labelig of a graph cosists of assigig a uique label to each vertex such that the labels are ivariat uder isomorphism. Such

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

Computational Geometry

Computational Geometry Computatioal Geometry Chapter 4 Liear programmig Duality Smallest eclosig disk O the Ageda Liear Programmig Slides courtesy of Craig Gotsma 4. 4. Liear Programmig - Example Defie: (amout amout cosumed

More information

Announcements. Recognition III. A Rough Recognition Spectrum. Projection, and reconstruction. Face detection using distance to face space

Announcements. Recognition III. A Rough Recognition Spectrum. Projection, and reconstruction. Face detection using distance to face space Aoucemets Assigmet 5: Due Friday, 4:00 III Itroductio to Computer Visio CSE 52 Lecture 20 Fial Exam: ed, 6/9/04, :30-2:30, LH 2207 (here I ll discuss briefly today, ad will be at discussio sectio tomorrow

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

EVALUATION OF TRIGONOMETRIC FUNCTIONS

EVALUATION OF TRIGONOMETRIC FUNCTIONS EVALUATION OF TRIGONOMETRIC FUNCTIONS Whe first exposed to trigoometric fuctios i high school studets are expected to memorize the values of the trigoometric fuctios of sie cosie taget for the special

More information

Optimized Aperiodic Concentric Ring Arrays

Optimized Aperiodic Concentric Ring Arrays 24th Aual Review of Progress i Applied Computatioal Electromagetics March 30 - April 4, 2008 - iagara Falls, Caada 2008 ACES Optimized Aperiodic Cocetric Rig Arrays Rady L Haupt The Pesylvaia State Uiversity

More information

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms Midterm 1 Solutios Lecturers: Sajam Garg ad Prasad Raghavedra Feb 1, 017 Midterm 1 Solutios 1. (4 poits) For the directed graph below, fid all the strogly coected compoets

More information

The Platonic solids The five regular polyhedra

The Platonic solids The five regular polyhedra The Platoic solids The five regular polyhedra Ole Witt-Hase jauary 7 www.olewitthase.dk Cotets. Polygos.... Topologically cosideratios.... Euler s polyhedro theorem.... Regular ets o a sphere.... The dihedral

More information

SAMPLE VERSUS POPULATION. Population - consists of all possible measurements that can be made on a particular item or procedure.

SAMPLE VERSUS POPULATION. Population - consists of all possible measurements that can be made on a particular item or procedure. SAMPLE VERSUS POPULATION Populatio - cosists of all possible measuremets that ca be made o a particular item or procedure. Ofte a populatio has a ifiite umber of data elemets Geerally expese to determie

More information

CS200: Hash Tables. Prichard Ch CS200 - Hash Tables 1

CS200: Hash Tables. Prichard Ch CS200 - Hash Tables 1 CS200: Hash Tables Prichard Ch. 13.2 CS200 - Hash Tables 1 Table Implemetatios: average cases Search Add Remove Sorted array-based Usorted array-based Balaced Search Trees O(log ) O() O() O() O(1) O()

More information

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method A ew Morphological 3D Shape Decompositio: Grayscale Iterframe Iterpolatio Method D.. Vizireau Politehica Uiversity Bucharest, Romaia ae@comm.pub.ro R. M. Udrea Politehica Uiversity Bucharest, Romaia mihea@comm.pub.ro

More information

Bayesian approach to reliability modelling for a probability of failure on demand parameter

Bayesian approach to reliability modelling for a probability of failure on demand parameter Bayesia approach to reliability modellig for a probability of failure o demad parameter BÖRCSÖK J., SCHAEFER S. Departmet of Computer Architecture ad System Programmig Uiversity Kassel, Wilhelmshöher Allee

More information

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4 1 3.6 I. Combiig Fuctios A. From Equatios Example: Let f(x) = 9 x ad g(x) = 4 f x. Fid (x) g ad its domai. 4 Example: Let f(x) = ad g(x) = x x 4. Fid (f-g)(x) B. From Graphs: Graphical Additio. Example:

More information

Random Graphs and Complex Networks T

Random Graphs and Complex Networks T Radom Graphs ad Complex Networks T-79.7003 Charalampos E. Tsourakakis Aalto Uiversity Lecture 3 7 September 013 Aoucemet Homework 1 is out, due i two weeks from ow. Exercises: Probabilistic iequalities

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

Test 4 Review. dy du 9 5. sin5 zdz. dt. 5 Ê. x 2 È 1, 3. 2cos( x) dx is less than using Simpson's. ,1 t 5 t 2. ft () t2 4.

Test 4 Review. dy du 9 5. sin5 zdz. dt. 5 Ê. x 2 È 1, 3. 2cos( x) dx is less than using Simpson's. ,1 t 5 t 2. ft () t2 4. Name: Class: Date: ID: A Test Review Short Aswer. Fid the geeral solutio of the differetial equatio below ad check the result by differetiatio. dy du 9 u. Use the error formula to estimate the error i

More information

Performance Plus Software Parameter Definitions

Performance Plus Software Parameter Definitions Performace Plus+ Software Parameter Defiitios/ Performace Plus Software Parameter Defiitios Chapma Techical Note-TG-5 paramete.doc ev-0-03 Performace Plus+ Software Parameter Defiitios/2 Backgroud ad Defiitios

More information

Intro to Scientific Computing: Solutions

Intro to Scientific Computing: Solutions Itro to Scietific Computig: Solutios Dr. David M. Goulet. How may steps does it take to separate 3 objects ito groups of 4? We start with 5 objects ad apply 3 steps of the algorithm to reduce the pile

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

Recursive Estimation

Recursive Estimation Recursive Estimatio Raffaello D Adrea Sprig 2 Problem Set: Probability Review Last updated: February 28, 2 Notes: Notatio: Uless otherwise oted, x, y, ad z deote radom variables, f x (x) (or the short

More information

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved.

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved. Chapter 11 Frieds, Overloaded Operators, ad Arrays i Classes Copyright 2014 Pearso Addiso-Wesley. All rights reserved. Overview 11.1 Fried Fuctios 11.2 Overloadig Operators 11.3 Arrays ad Classes 11.4

More information

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting)

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting) MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fittig) I this chapter, we will eamie some methods of aalysis ad data processig; data obtaied as a result of a give

More information

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8)

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8) CIS 11 Data Structures ad Algorithms with Java Fall 017 Big-Oh Notatio Tuesday, September 5 (Make-up Friday, September 8) Learig Goals Review Big-Oh ad lear big/small omega/theta otatios Practice solvig

More information

Analysis of Documents Clustering Using Sampled Agglomerative Technique

Analysis of Documents Clustering Using Sampled Agglomerative Technique Aalysis of Documets Clusterig Usig Sampled Agglomerative Techique Omar H. Karam, Ahmed M. Hamad, ad Sheri M. Moussa Abstract I this paper a clusterig algorithm for documets is proposed that adapts a samplig-based

More information

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 5 Fuctios for All Subtasks Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 5.1 void Fuctios 5.2 Call-By-Referece Parameters 5.3 Usig Procedural Abstractio 5.4 Testig ad Debuggig

More information

Neuro Fuzzy Model for Human Face Expression Recognition

Neuro Fuzzy Model for Human Face Expression Recognition IOSR Joural of Computer Egieerig (IOSRJCE) ISSN : 2278-0661 Volume 1, Issue 2 (May-Jue 2012), PP 01-06 Neuro Fuzzy Model for Huma Face Expressio Recogitio Mr. Mayur S. Burage 1, Prof. S. V. Dhopte 2 1

More information

Kernel Smoothing Function and Choosing Bandwidth for Non-Parametric Regression Methods 1

Kernel Smoothing Function and Choosing Bandwidth for Non-Parametric Regression Methods 1 Ozea Joural of Applied Scieces (), 009 Ozea Joural of Applied Scieces (), 009 ISSN 943-49 009 Ozea Publicatio Kerel Smoothig Fuctio ad Choosig Badwidth for No-Parametric Regressio Methods Murat Kayri ad

More information

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs CHAPTER IV: GRAPH THEORY Sectio : Itroductio to Graphs Sice this class is called Number-Theoretic ad Discrete Structures, it would be a crime to oly focus o umber theory regardless how woderful those topics

More information

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000.

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000. 5-23 The course that gives CM its Zip Memory Maagemet II: Dyamic Storage Allocatio Mar 6, 2000 Topics Segregated lists Buddy system Garbage collectio Mark ad Sweep Copyig eferece coutig Basic allocator

More information

Lecture 13: Validation

Lecture 13: Validation Lecture 3: Validatio Resampli methods Holdout Cross Validatio Radom Subsampli -Fold Cross-Validatio Leave-oe-out The Bootstrap Bias ad variace estimatio Three-way data partitioi Itroductio to Patter Recoitio

More information

VALIDATING DIRECTIONAL EDGE-BASED IMAGE FEATURE REPRESENTATIONS IN FACE RECOGNITION BY SPATIAL CORRELATION-BASED CLUSTERING

VALIDATING DIRECTIONAL EDGE-BASED IMAGE FEATURE REPRESENTATIONS IN FACE RECOGNITION BY SPATIAL CORRELATION-BASED CLUSTERING VALIDATING DIRECTIONAL EDGE-BASED IMAGE FEATURE REPRESENTATIONS IN FACE RECOGNITION BY SPATIAL CORRELATION-BASED CLUSTERING Yasufumi Suzuki ad Tadashi Shibata Departmet of Frotier Iformatics, School of

More information

1 Graph Sparsfication

1 Graph Sparsfication CME 305: Discrete Mathematics ad Algorithms 1 Graph Sparsficatio I this sectio we discuss the approximatio of a graph G(V, E) by a sparse graph H(V, F ) o the same vertex set. I particular, we cosider

More information

Algorithms for Disk Covering Problems with the Most Points

Algorithms for Disk Covering Problems with the Most Points Algorithms for Disk Coverig Problems with the Most Poits Bi Xiao Departmet of Computig Hog Kog Polytechic Uiversity Hug Hom, Kowloo, Hog Kog csbxiao@comp.polyu.edu.hk Qigfeg Zhuge, Yi He, Zili Shao, Edwi

More information

Data diverse software fault tolerance techniques

Data diverse software fault tolerance techniques Data diverse software fault tolerace techiques Complemets desig diversity by compesatig for desig diversity s s limitatios Ivolves obtaiig a related set of poits i the program data space, executig the

More information

CMPT 125 Assignment 2 Solutions

CMPT 125 Assignment 2 Solutions CMPT 25 Assigmet 2 Solutios Questio (20 marks total) a) Let s cosider a iteger array of size 0. (0 marks, each part is 2 marks) it a[0]; I. How would you assig a poiter, called pa, to store the address

More information

15 UNSUPERVISED LEARNING

15 UNSUPERVISED LEARNING 15 UNSUPERVISED LEARNING [My father] advised me to sit every few moths i my readig chair for a etire eveig, close my eyes ad try to thik of ew problems to solve. I took his advice very seriously ad have

More information

Evaluating Top-k Selection Queries

Evaluating Top-k Selection Queries Evaluatig Top-k Selectio Queries Surajit Chaudhuri Microsoft Research surajitc@microsoft.com Luis Gravao Columbia Uiversity gravao@cs.columbia.edu Abstract I may applicatios, users specify target values

More information

Dimensionality Reduction PCA

Dimensionality Reduction PCA Dimesioality Reductio PCA Machie Learig CSE446 David Wadde (slides provided by Carlos Guestri) Uiversity of Washigto Feb 22, 2017 Carlos Guestri 2005-2017 1 Dimesioality reductio Iput data may have thousads

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

Section 7.2: Direction Fields and Euler s Methods

Section 7.2: Direction Fields and Euler s Methods Sectio 7.: Directio ields ad Euler s Methods Practice HW from Stewart Tetbook ot to had i p. 5 # -3 9-3 odd or a give differetial equatio we wat to look at was to fid its solutio. I this chapter we will

More information

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs What are we goig to lear? CSC316-003 Data Structures Aalysis of Algorithms Computer Sciece North Carolia State Uiversity Need to say that some algorithms are better tha others Criteria for evaluatio Structure

More information

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb Chapter 3 Descriptive Measures Measures of Ceter (Cetral Tedecy) These measures will tell us where is the ceter of our data or where most typical value of a data set lies Mode the value that occurs most

More information

Algorithm. Counting Sort Analysis of Algorithms

Algorithm. Counting Sort Analysis of Algorithms Algorithm Coutig Sort Aalysis of Algorithms Assumptios: records Coutig sort Each record cotais keys ad data All keys are i the rage of 1 to k Space The usorted list is stored i A, the sorted list will

More information

Learning to Shoot a Goal Lecture 8: Learning Models and Skills

Learning to Shoot a Goal Lecture 8: Learning Models and Skills Learig to Shoot a Goal Lecture 8: Learig Models ad Skills How do we acquire skill at shootig goals? CS 344R/393R: Robotics Bejami Kuipers Learig to Shoot a Goal The robot eeds to shoot the ball i the goal.

More information

Performance Comparisons of PSO based Clustering

Performance Comparisons of PSO based Clustering Performace Comparisos of PSO based Clusterig Suresh Chadra Satapathy, 2 Guaidhi Pradha, 3 Sabyasachi Pattai, 4 JVR Murthy, 5 PVGD Prasad Reddy Ail Neeruoda Istitute of Techology ad Scieces, Sagivalas,Vishaapatam

More information

Vaseem Durrani Technical Analyst, Aedifico Tech Pvt Ltd., New Delhi, India

Vaseem Durrani Technical Analyst, Aedifico Tech Pvt Ltd., New Delhi, India Performace Aalysis of Color Image Segmetatio Techiques (K-meas Clusterig ad Probabilistic Fuzzy C-Meas Clusterig ad Desity based Clusterig) Farah Jamal Asari Sectio of Computer Egieerig, Uiversity Polytechic,

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

Area As A Limit & Sigma Notation

Area As A Limit & Sigma Notation Area As A Limit & Sigma Notatio SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should referece Chapter 5.4 of the recommeded textbook (or the equivalet chapter i your

More information

Unsupervised Discretization Using Kernel Density Estimation

Unsupervised Discretization Using Kernel Density Estimation Usupervised Discretizatio Usig Kerel Desity Estimatio Maregle Biba, Floriaa Esposito, Stefao Ferilli, Nicola Di Mauro, Teresa M.A Basile Departmet of Computer Sciece, Uiversity of Bari Via Oraboa 4, 7025

More information

How do we evaluate algorithms?

How do we evaluate algorithms? F2 Readig referece: chapter 2 + slides Algorithm complexity Big O ad big Ω To calculate ruig time Aalysis of recursive Algorithms Next time: Litterature: slides mostly The first Algorithm desig methods:

More information

Convex hull ( 凸殻 ) property

Convex hull ( 凸殻 ) property Covex hull ( 凸殻 ) property The covex hull of a set of poits S i dimesios is the itersectio of all covex sets cotaiig S. For N poits P,..., P N, the covex hull C is the give by the expressio The covex hull

More information

Classification of binary vectors by using DSC distance to minimize stochastic complexity

Classification of binary vectors by using DSC distance to minimize stochastic complexity Patter Recogitio Letters 24 (2003) 65 73 www.elsevier.com/locate/patrec Classificatio of biary vectors by usig DSC distace to miimize stochastic complexity Pasi Fr ati *, Matao Xu, Ismo K arkk aie Departmet

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

Introduction. Nature-Inspired Computing. Terminology. Problem Types. Constraint Satisfaction Problems - CSP. Free Optimization Problem - FOP

Introduction. Nature-Inspired Computing. Terminology. Problem Types. Constraint Satisfaction Problems - CSP. Free Optimization Problem - FOP Nature-Ispired Computig Hadlig Costraits Dr. Şima Uyar September 2006 Itroductio may practical problems are costraied ot all combiatios of variable values represet valid solutios feasible solutios ifeasible

More information

BASED ON ITERATIVE ERROR-CORRECTION

BASED ON ITERATIVE ERROR-CORRECTION A COHPARISO OF CRYPTAALYTIC PRICIPLES BASED O ITERATIVE ERROR-CORRECTIO Miodrag J. MihaljeviC ad Jova Dj. GoliC Istitute of Applied Mathematics ad Electroics. Belgrade School of Electrical Egieerig. Uiversity

More information

x x 2 x Iput layer = quatity of classificatio mode X T = traspositio matrix The core of such coditioal probability estimatig method is calculatig the

x x 2 x Iput layer = quatity of classificatio mode X T = traspositio matrix The core of such coditioal probability estimatig method is calculatig the COMPARATIVE RESEARCHES ON PROBABILISTIC NEURAL NETWORKS AND MULTI-LAYER PERCEPTRON NETWORKS FOR REMOTE SENSING IMAGE SEGMENTATION Liu Gag a, b, * a School of Electroic Iformatio, Wuha Uiversity, 430079,

More information

Minimum Spanning Trees

Minimum Spanning Trees Presetatio for use with the textbook, lgorithm esig ad pplicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 0 Miimum Spaig Trees 0 Goodrich ad Tamassia Miimum Spaig Trees pplicatio: oectig a Network Suppose

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

Elementary Educational Computer

Elementary Educational Computer Chapter 5 Elemetary Educatioal Computer. Geeral structure of the Elemetary Educatioal Computer (EEC) The EEC coforms to the 5 uits structure defied by vo Neuma's model (.) All uits are preseted i a simplified

More information

Minimum Spanning Trees. Application: Connecting a Network

Minimum Spanning Trees. Application: Connecting a Network Miimum Spaig Tree // : Presetatio for use with the textbook, lgorithm esig ad pplicatios, by M. T. oodrich ad R. Tamassia, Wiley, Miimum Spaig Trees oodrich ad Tamassia Miimum Spaig Trees pplicatio: oectig

More information

A Novel Feature Extraction Algorithm for Haar Local Binary Pattern Texture Based on Human Vision System

A Novel Feature Extraction Algorithm for Haar Local Binary Pattern Texture Based on Human Vision System A Novel Feature Extractio Algorithm for Haar Local Biary Patter Texture Based o Huma Visio System Liu Tao 1,* 1 Departmet of Electroic Egieerig Shaaxi Eergy Istitute Xiayag, Shaaxi, Chia Abstract The locality

More information

Name Date Hr. ALGEBRA 1-2 SPRING FINAL MULTIPLE CHOICE REVIEW #1

Name Date Hr. ALGEBRA 1-2 SPRING FINAL MULTIPLE CHOICE REVIEW #1 Name Date Hr. ALGEBRA - SPRING FINAL MULTIPLE CHOICE REVIEW #. The high temperatures for Phoeix i October of 009 are listed below. Which measure of ceter will provide the most accurate estimatio of the

More information

COMP9318: Data Warehousing and Data Mining

COMP9318: Data Warehousing and Data Mining COMP9318: Data Warehousig ad Data Miig L8: Clusterig COMP9318: Data Warehousig ad Data Miig 1 What is Cluster Aalysis? COMP9318: Data Warehousig ad Data Miig 2 What is Cluster Aalysis? Cluster: a collectio

More information

Force Network Analysis using Complementary Energy

Force Network Analysis using Complementary Energy orce Network Aalysis usig Complemetary Eergy Adrew BORGART Assistat Professor Delft Uiversity of Techology Delft, The Netherlads A.Borgart@tudelft.l Yaick LIEM Studet Delft Uiversity of Techology Delft,

More information

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov Sortig i Liear Time Data Structures ad Algorithms Adrei Bulatov Algorithms Sortig i Liear Time 7-2 Compariso Sorts The oly test that all the algorithms we have cosidered so far is compariso The oly iformatio

More information

EE 459/500 HDL Based Digital Design with Programmable Logic. Lecture 13 Control and Sequencing: Hardwired and Microprogrammed Control

EE 459/500 HDL Based Digital Design with Programmable Logic. Lecture 13 Control and Sequencing: Hardwired and Microprogrammed Control EE 459/500 HDL Based Digital Desig with Programmable Logic Lecture 13 Cotrol ad Sequecig: Hardwired ad Microprogrammed Cotrol Refereces: Chapter s 4,5 from textbook Chapter 7 of M.M. Mao ad C.R. Kime,

More information

Civil Engineering Computation

Civil Engineering Computation Civil Egieerig Computatio Fidig Roots of No-Liear Equatios March 14, 1945 World War II The R.A.F. first operatioal use of the Grad Slam bomb, Bielefeld, Germay. Cotets 2 Root basics Excel solver Newto-Raphso

More information

Journal of Chemical and Pharmaceutical Research, 2013, 5(12): Research Article

Journal of Chemical and Pharmaceutical Research, 2013, 5(12): Research Article Available olie www.jocpr.com Joural of Chemical ad Pharmaceutical Research, 2013, 5(12):745-749 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 K-meas algorithm i the optimal iitial cetroids based

More information

Dynamic Programming and Curve Fitting Based Road Boundary Detection

Dynamic Programming and Curve Fitting Based Road Boundary Detection Dyamic Programmig ad Curve Fittig Based Road Boudary Detectio SHYAM PRASAD ADHIKARI, HYONGSUK KIM, Divisio of Electroics ad Iformatio Egieerig Chobuk Natioal Uiversity 664-4 Ga Deokji-Dog Jeoju-City Jeobuk

More information