Automated Diagnosis of Lymphoma with Digital Pathology Images Using Deep Learning

Size: px
Start display at page:

Download "Automated Diagnosis of Lymphoma with Digital Pathology Images Using Deep Learning"

Transcription

1 Automated Diagnosis of Lymphoma with Digital Pathology Images Using Deep Learning Andy Nguyen, M.D., M.S. Medical Director, Hematopathology, Hematology and Coagulation Laboratory, Memorial Hermann Laboratory Professor of Pathology and Laboratory Medicine, University of Texas-Houston, Medical School Grand Round-Dec 19, 2017

2 Outline of talk Introduction to lymphoma diagnosis Machine Learning method for analyzing digital images Our implementation of a Convolutional Neural Network as the machine learning method to build a lymphoma diagnostic model for four diagnostic categories Financial Disclosures: No relevant financial relationships with commercial interests to disclose

3 Diagnosis of Lymphoma Lymphoma is a clonal malignancy of lymphocytes (either T- or B cells) The WHO Classification of Lymphoid Malignancies includes at least 38 entities. Lymphoid malignancies were diagnosed in 280,000 people annually worldwide Lymphoma is typically first suspected by their pattern of growth and the cytologic features of the abnormal cells via light microscopy of hematoxylin-eosin stained tissue sections Immunophenotypes are required for diagnosis (by flow cytometry and/or immunohistochemical stains) In addition, genetic, molecular results, and clinical features are often needed in finalizing the diagnosis in certain lymphoma types.

4 Automated Diagnosis for Morphology Due to subtle difference in histologic findings between various types of lymphoma, histopathologic screen often presents a challenge to the pathologists. An automated diagnosis for digital images would be helpful to assist the pathologists in daily work. Previous attempts to classify histologic images were based on specific criteria (such as nuclear shape, nuclear size, texture, etc. obtained by edge detection, cell segmentation). They were not very successful. Attention has turned to machine learning

5 Machine Learning Machine learning: -A specialized area of computer science that is based on algorithms that help the computer to learn from training data and make predictions on new data -Useful in computing tasks where programming explicit algorithms is unfeasible; such as in optical character recognition and computer vision (including microscopic images). Many machine learning algorithms have been made available: Logistic Regression, Support Vector Machines, Random Forest, Naïve Bayes, Neural Network, etc. In recent years, deep learning techniques, especially convolutional neural network (CNN or ConvNet), have quickly become the state of the art in computer vision.

6 Early Generation Neural Network Neural network (inspired by biological neural networks): artificial nodes ("neurons ) are connected together to form a network for classification tasks Training a network with multiple hidden layers using supervised learning: (1) Parameters often do not converge; i.e. being stuck in local minimum, (2) Model not scaling well for large input such as images (diffusion of gradients causing poor learning in earlier hidden layers)

7 Deep Learning (3 rd Gen Neural Network) Deep Learning algorithms: (1) Unsupervised learning ->allows a network to be fed with raw data (no known outcomes) and to automatically discover the representations needed for detection or classification (2) Extract high-level & complex data representations through multiple layers; avoid problems of last-gen network Supporting hardware: multiple graphics processing units (GPU) for parallel computation (esp. matrix computation), critical to handle large amount of data (esp. images) (-3)x(3) +(-1)x(2) +(-1)x(-4)+ (-5)x(-3) +(1)x(0) =8

8 Recent Applications of Deep Learning Siri: voice recognition in iphone (Apple) Google Translate (Google) Self-driving cars (Uber, Google, Tesla, others) Echo: control home appliances (Google)

9 Types of Deep Learning Architectures 1 Convolutional neural networks <<<<<<<<<<<<<< 2 Recursive neural networks 3 Long short term memory (LSTM) 4 Deep belief networks 5 Convolutional deep belief networks 6 Deep Boltzmann machines 7 Stacked auto-encoders 8 Tensor deep stacking networks 9 Spike-and-slab RBMs 10 Compound hierarchical-deep models 11 Deep coding networks 12 Deep q-networks 13 Encoder decoder networks 14 Multilayer kernel machine etc. Convolutional neural network (CNN, or ConvNet): inspired by visual cortex

10 CNN: Inspiration from the primate visual cortex The ventral visual pathway is organized as a hierarchical series of interconnected visual areas. Neurons in early areas, such as area V1, respond to comparatively simple, spatially local features of the retinal image, while later areas, such as area V4, respond to increasingly complex visual features over larger regions of visual space The specialization of receptor cells are incorporated into the design of CNN A rough correspondence between the areas associated with the primary visual cortex and the layers in a convolutional network. (A) Four Brodmann areas associated with the ventral visual stream forward and backward projections between these areas. (B) A convolutional network with pairs of convolution operator followed by a pooling layer are roughly analogous to the hierarchy of the biological visual system.

11 Definition of Convolution Convolution: an operation in image processing using filters, to modify or detect certain characteristics of an image (Smooth, Sharpen, Intensify, Enhance). In CNN, it is used to extract features of images Mathematically, a convolution is done by multiplying the pixels value in image patch by a filter (kernel) matrix [dot product] This effectively calculates the value of an image patch by adding the weighted values of all the neighboring pixels together Moving the filter across input image-> the final output is a modified filtered image

12 Convolutional neural network: Convolutional Layer Image patch Filter (kernel, receptor field) Convolutional layer: consists of a set of learnable filters (or kernels), that scan throughout the input image Each filter is convolved across the input patch, computing the dot product between the entries of the filter and the input and producing a feature map of that filter. A filter can be applied to every pixel in a whole slide image in a sliding window - fashion (moving each time by stride length ) -> feature maps Different neurons in each feature map share the same weights, become activated in the presence of the same image feature, such as oriented edge ( translation invariance -> feature can be detected across the entire image)

13 Convolutional neural network: Pooling Layer Pooling layer: performs non-linear down-sampling (sub sampling). Max pooling is the most common. It partitions the input image into a set of nonoverlapping rectangles and, for each such sub-region, outputs the maximum. The pooling layer serves to progressively reduce the spatial size of the representation, to reduce the amount of computation in the network. The intuition is that the exact location of a feature is less important than its rough location relative to other features.

14 Convolutional neural network: All layers stacked together Processing pipeline of a convolutional neural network for the detection of visual categories in images: -The convolutional layers (indicated with C) perform feature extraction consecutively from the image patch to higher level features. -The max pooling layers (indicated with S) reduce image size -The last fully connected layers (indicated with F) : provide prediction based on the given features. Neurons in these layers have connections to all activations in the previous layer, as seen in traditional neural networks

15 Convolutional neural network: Input image-> Classified category Consecutive layers extracting key features such as edges, contours, etc.

16 Deep Learning and Breast Cancer Detection, the Camelyon Grand Challenge 2016 The International Symposium on Biomedical Imaging (ISBI) held a Grand Challenge to evaluate computational systems for the automated detection of metastatic breast cancer in whole slide images of sentinel lymph node biopsies. The Harvard & MIT team won the grand challenge: obtaining an area under the receiver operating curve (AUC) of for the task of whole slide image classification (pos vs. neg) Receiver operating characteristic (ROC) curve AUC=0.925

17 Stanford U. Study: DL to diagnose two critical binary classification types (biopsy-proven clinical images): (1) keratinocyte carcinomas versus benign seborrheic keratoses -> AUC=0.96 (2) malignant melanomas versus benign nevi -> AUC=0.94

18

19 The Goal of our Study Recent studies have shown promising results in using machine learning to detect malignancy in whole slide imaging. However, they were limited to just positive and negative finding for a particular neoplasm. We explore how Deep Learning can be used to accurately classify a test case as one of the 4 entities (Representative of various morphologic patterns in lymphoma): Benign lymph nodes Diffuse large B-cell lymphoma Burkitt lymphoma Small lymphocytic lymphoma

20 Digital Images of Lymphomas Data source: at Virtual Pathology at the University of Leeds (355,966 slides TB) Web browser-> SnagIt (TechSmith Corp, Okemos, Michigan, USA) ->save image Web browser (at 40x) SnagIt to capture and automatically save 40x40 image patch in a file xxx.jpg SLL (40x40)

21 Digital Images of Lymphomas Data source: also at Virtual Slide Box-Whole Slide Imaging Collection (1,000 slides from U of Iowa) on Biolucida Cloud Portal, hosted by MicroBrightField Bioscience (Williston, VT USA) Biolucida viewer-> SnagIt (TechSmith Corp, Okemos, Michigan, USA) ->save image Biolucida Cloud Viewer (at 40x) at 40x SnagIt to capture and automatically save 40x40 image patch in a file xxx.jpg DLBCL LN (40x40)

22 Whole Slide Imaging (WSI) of Lymphomas WSI s were typically obtained with Aperio (Aperio Technologies, San Diego, CA, USA) whole slide imaging systems (T3 or CS Series). Our study includes: 32 cases for each of the following: 1. Benign lymph nodes, 2. Diffuse large B-cell lymphoma, 3. Burkitt lymphoma, 4. Small lymphocytic lymphoma, 5 representative 40x40 images for each of the 32 cases -> a total of 5x32x4=640 images

23 Our Programming Platform We design a CNN model in R language. R is a programming language for statistical computing and graphics supported by the R Foundation for Statistical Computing, commonly used in deep learning (together with Python) We use many functions obtained from an R package called MXNET which allows for parallel computing using GPU Hardware: Intel i5-4590, 8GB RAM Windows 8-64 bit GPU: GTX745 (4 GB), 384 cores NVIDIA card supported by CUDA (Compute Unified Device Architecture) A small excerpt of R Coding for CNN Algorithm

24 Digital Image Format 40x40 pixel image: 40 rows x 40 columns -> 1600 pixels Each image: 1601 entries for each row in data set Col 1:DX Col 2-Col 1601: pixel property (location, RGB) DX code: Benign 0 DLBCL 1 BL 3 SLL 4

25 Validation Method Display of Analysis Results (60 images in test set) 580 images were used for training the model, the model was then used to test on 60 images (not used in training) For each test case, the predicted diagnosis is combined from the prediction for 5 images (at least 3 or more have to agree), a process known as majority voting Majority vote: ->0 ->1 ->3

26 RESULTS: ACCURACY (image-by-image) Observed DX Benign DLBCL BL SLL Predicted DX Benign Accuracy: 49/60=82% DLBCL BL SLL PC system run time: 2.45 min 49 images (out of 60) with correct prediction, 11 images with error When testing was performed for one image at a time, accuracy is only at 82%, indicating the need to pool results from 5 representative images for each case (next slide)

27 RESULTS: ACCURACY (case-by-case) Predicted DX Observed DX Benign DLBCL BL SLL Benign 3 DLBCL 3 Significantly better Accuracy: 12/12=100% BL 3 SLL 3

28 SUMMARY We explore how Deep Learning can be utilized for histologic diagnosis of lymphoma using whole slide imaging The study design includes significant number of histology types (1 benign, 3 lymphoma types) compared to other studies, getting closer to actual practice Deep learning with CNN algorithm yields an impressive result (an accuracy of 100%) Generic machine learning algorithm with CNN method-> no need for manual settings of morphology parameters (nuclear architecture, shape, and texture, etc.) -> presumably can be applied to other histologic pathologies (GI, GYN, etc) Current limitations include: (a) only 4 histologic categories were included, not yet practical for clinical use, (b) representative images require manual selection of suspected areas, (c) color variations in the tissue due to differences in slide preparation, staining, microscope and whole slide scanners [batch effect, could be alleviated with complex stain color-normalization techniques] Our preliminary study provided a proof of concept for incorporating automated lymphoma diagnosis using digital microscopic images into the pathology work flow to augment the pathologists productivity Future studies will need to include more histologic entities and many more cases for training, and validation

AUTOMATED DETECTION AND CLASSIFICATION OF CANCER METASTASES IN WHOLE-SLIDE HISTOPATHOLOGY IMAGES USING DEEP LEARNING

AUTOMATED DETECTION AND CLASSIFICATION OF CANCER METASTASES IN WHOLE-SLIDE HISTOPATHOLOGY IMAGES USING DEEP LEARNING AUTOMATED DETECTION AND CLASSIFICATION OF CANCER METASTASES IN WHOLE-SLIDE HISTOPATHOLOGY IMAGES USING DEEP LEARNING F. Ghazvinian Zanjani, S. Zinger, P. H. N. de With Electrical Engineering Department,

More information

Towards Grading Gleason Score using Generically Trained Deep convolutional Neural Networks

Towards Grading Gleason Score using Generically Trained Deep convolutional Neural Networks Towards Grading Gleason Score using Generically Trained Deep convolutional Neural Networks Källén, Hanna; Molin, Jesper; Heyden, Anders; Lundström, Claes; Åström, Karl Published in: 2016 IEEE 13th International

More information

CS 523: Multimedia Systems

CS 523: Multimedia Systems CS 523: Multimedia Systems Angus Forbes creativecoding.evl.uic.edu/courses/cs523 Today - Convolutional Neural Networks - Work on Project 1 http://playground.tensorflow.org/ Convolutional Neural Networks

More information

Predicting Cancer with a Recurrent Visual Attention Model for Histopathology Images

Predicting Cancer with a Recurrent Visual Attention Model for Histopathology Images Predicting Cancer with a Recurrent Visual Attention Model for Histopathology Images Aïcha BenTaieb and Ghassan Hamarneh School of Computing Science, Simon Fraser University, Canada {abentaie, hamarneh}@sfu.ca

More information

Deep Learning Basic Lecture - Complex Systems & Artificial Intelligence 2017/18 (VO) Asan Agibetov, PhD.

Deep Learning Basic Lecture - Complex Systems & Artificial Intelligence 2017/18 (VO) Asan Agibetov, PhD. Deep Learning 861.061 Basic Lecture - Complex Systems & Artificial Intelligence 2017/18 (VO) Asan Agibetov, PhD asan.agibetov@meduniwien.ac.at Medical University of Vienna Center for Medical Statistics,

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

INTRODUCTION TO DEEP LEARNING

INTRODUCTION TO DEEP LEARNING INTRODUCTION TO DEEP LEARNING CONTENTS Introduction to deep learning Contents 1. Examples 2. Machine learning 3. Neural networks 4. Deep learning 5. Convolutional neural networks 6. Conclusion 7. Additional

More information

Deep Convolutional Neural Networks. Nov. 20th, 2015 Bruce Draper

Deep Convolutional Neural Networks. Nov. 20th, 2015 Bruce Draper Deep Convolutional Neural Networks Nov. 20th, 2015 Bruce Draper Background: Fully-connected single layer neural networks Feed-forward classification Trained through back-propagation Example Computer Vision

More information

Pathological Lymph Node Classification

Pathological Lymph Node Classification Pathological Lymph Node Classification Jonathan Booher, Michael Mariscal and Ashwini Ramamoorthy SUNet ID: { jaustinb, mgm248, ashwinir } @stanford.edu Abstract Machine learning algorithms have the potential

More information

SIIM 2017 Scientific Session Analytics & Deep Learning Part 2 Friday, June 2 8:00 am 9:30 am

SIIM 2017 Scientific Session Analytics & Deep Learning Part 2 Friday, June 2 8:00 am 9:30 am SIIM 2017 Scientific Session Analytics & Deep Learning Part 2 Friday, June 2 8:00 am 9:30 am Performance of Deep Convolutional Neural Networks for Classification of Acute Territorial Infarct on Brain MRI:

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky Ilya Sutskever Geoffrey Hinton University of Toronto Canada Paper with same name to appear in NIPS 2012 Main idea Architecture

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla DEEP LEARNING REVIEW Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature 2015 -Presented by Divya Chitimalla What is deep learning Deep learning allows computational models that are composed of multiple

More information

Deep Learning. Deep Learning. Practical Application Automatically Adding Sounds To Silent Movies

Deep Learning. Deep Learning. Practical Application Automatically Adding Sounds To Silent Movies http://blog.csdn.net/zouxy09/article/details/8775360 Automatic Colorization of Black and White Images Automatically Adding Sounds To Silent Movies Traditionally this was done by hand with human effort

More information

ConvolutionalNN's... ConvNet's... deep learnig

ConvolutionalNN's... ConvNet's... deep learnig Deep Learning ConvolutionalNN's... ConvNet's... deep learnig Markus Thaler, TG208 tham@zhaw.ch www.zhaw.ch/~tham Martin Weisenhorn, TB427 weie@zhaw.ch 20.08.2018 1 Neural Networks Classification: up to

More information

Using Machine Learning for Classification of Cancer Cells

Using Machine Learning for Classification of Cancer Cells Using Machine Learning for Classification of Cancer Cells Camille Biscarrat University of California, Berkeley I Introduction Cell screening is a commonly used technique in the development of new drugs.

More information

Nuclei Segmentation of Whole Slide Images in Digital Pathology

Nuclei Segmentation of Whole Slide Images in Digital Pathology Nuclei Segmentation of Whole Slide Images in Digital Pathology Dennis Ai Department of Electrical Engineering Stanford University Stanford, CA dennisai@stanford.edu Abstract Pathology is the study of the

More information

Dynamic Routing Between Capsules

Dynamic Routing Between Capsules Report Explainable Machine Learning Dynamic Routing Between Capsules Author: Michael Dorkenwald Supervisor: Dr. Ullrich Köthe 28. Juni 2018 Inhaltsverzeichnis 1 Introduction 2 2 Motivation 2 3 CapusleNet

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

Human Vision Based Object Recognition Sye-Min Christina Chan

Human Vision Based Object Recognition Sye-Min Christina Chan Human Vision Based Object Recognition Sye-Min Christina Chan Abstract Serre, Wolf, and Poggio introduced an object recognition algorithm that simulates image processing in visual cortex and claimed to

More information

Machine Learning. MGS Lecture 3: Deep Learning

Machine Learning. MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ Machine Learning MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ WHAT IS DEEP LEARNING? Shallow network: Only one hidden layer

More information

Mass Classification Method in Mammogram Using Fuzzy K-Nearest Neighbour Equality

Mass Classification Method in Mammogram Using Fuzzy K-Nearest Neighbour Equality Mass Classification Method in Mammogram Using Fuzzy K-Nearest Neighbour Equality Abstract: Mass classification of objects is an important area of research and application in a variety of fields. In this

More information

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager Characterization and Benchmarking of Deep Learning Natalia Vassilieva, PhD Sr. Research Manager Deep learning applications Vision Speech Text Other Search & information extraction Security/Video surveillance

More information

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM Contour Assessment for Quality Assurance and Data Mining Tom Purdie, PhD, MCCPM Objective Understand the state-of-the-art in contour assessment for quality assurance including data mining-based techniques

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon Deep Learning For Video Classification Presented by Natalie Carlebach & Gil Sharon Overview Of Presentation Motivation Challenges of video classification Common datasets 4 different methods presented in

More information

Rotation Invariance Neural Network

Rotation Invariance Neural Network Rotation Invariance Neural Network Shiyuan Li Abstract Rotation invariance and translate invariance have great values in image recognition. In this paper, we bring a new architecture in convolutional neural

More information

RGBD Occlusion Detection via Deep Convolutional Neural Networks

RGBD Occlusion Detection via Deep Convolutional Neural Networks 1 RGBD Occlusion Detection via Deep Convolutional Neural Networks Soumik Sarkar 1,2, Vivek Venugopalan 1, Kishore Reddy 1, Michael Giering 1, Julian Ryde 3, Navdeep Jaitly 4,5 1 United Technologies Research

More information

Multi-Class Segmentation with Relative Location Prior

Multi-Class Segmentation with Relative Location Prior Multi-Class Segmentation with Relative Location Prior Stephen Gould, Jim Rodgers, David Cohen, Gal Elidan, Daphne Koller Department of Computer Science, Stanford University International Journal of Computer

More information

Deep Learning. Visualizing and Understanding Convolutional Networks. Christopher Funk. Pennsylvania State University.

Deep Learning. Visualizing and Understanding Convolutional Networks. Christopher Funk. Pennsylvania State University. Visualizing and Understanding Convolutional Networks Christopher Pennsylvania State University February 23, 2015 Some Slide Information taken from Pierre Sermanet (Google) presentation on and Computer

More information

Introduction to Deep Learning

Introduction to Deep Learning ENEE698A : Machine Learning Seminar Introduction to Deep Learning Raviteja Vemulapalli Image credit: [LeCun 1998] Resources Unsupervised feature learning and deep learning (UFLDL) tutorial (http://ufldl.stanford.edu/wiki/index.php/ufldl_tutorial)

More information

Facial Expression Classification with Random Filters Feature Extraction

Facial Expression Classification with Random Filters Feature Extraction Facial Expression Classification with Random Filters Feature Extraction Mengye Ren Facial Monkey mren@cs.toronto.edu Zhi Hao Luo It s Me lzh@cs.toronto.edu I. ABSTRACT In our work, we attempted to tackle

More information

IN recent years, deep learning has shown great promise

IN recent years, deep learning has shown great promise 1 Unsupervised Feature Extraction via Deep Learning for Histopathological Classification of Colon Tissue Images Can Taylan Sari and Cigdem Gunduz-Demir*, Member, IEEE Abstract Histopathological examination

More information

Deep Learning Benchmarks Mumtaz Vauhkonen, Quaizar Vohra, Saurabh Madaan Collaboration with Adam Coates, Stanford Unviersity

Deep Learning Benchmarks Mumtaz Vauhkonen, Quaizar Vohra, Saurabh Madaan Collaboration with Adam Coates, Stanford Unviersity Deep Learning Benchmarks Mumtaz Vauhkonen, Quaizar Vohra, Saurabh Madaan Collaboration with Adam Coates, Stanford Unviersity Abstract: This project aims at creating a benchmark for Deep Learning (DL) algorithms

More information

Image analysis in IHC - overview, considerations and applications

Image analysis in IHC - overview, considerations and applications Image analysis in IHC - overview, considerations and applications Workshop in Diagnostic Immunohistochemistry Oud St. Jan/ Old St. John Brugge (Bruges), Belgium June 13th 15nd 2018 Rasmus Røge, MD, NordiQC

More information

Out-of-sample extension of diffusion maps in a computer-aided diagnosis system. Application to breast cancer virtual slide images.

Out-of-sample extension of diffusion maps in a computer-aided diagnosis system. Application to breast cancer virtual slide images. Out-of-sample extension of diffusion maps in a computer-aided diagnosis system. Application to breast cancer virtual slide images. Philippe BELHOMME Myriam OGER Jean-Jacques MICHELS Benoit PLANCOULAINE

More information

Computational Foundations of Cognitive Science

Computational Foundations of Cognitive Science Computational Foundations of Cognitive Science Lecture 16: Models of Object Recognition Frank Keller School of Informatics University of Edinburgh keller@inf.ed.ac.uk February 23, 2010 Frank Keller Computational

More information

Semantic Segmentation

Semantic Segmentation Semantic Segmentation UCLA:https://goo.gl/images/I0VTi2 OUTLINE Semantic Segmentation Why? Paper to talk about: Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell,

More information

Accelerating Convolutional Neural Nets. Yunming Zhang

Accelerating Convolutional Neural Nets. Yunming Zhang Accelerating Convolutional Neural Nets Yunming Zhang Focus Convolutional Neural Nets is the state of the art in classifying the images The models take days to train Difficult for the programmers to tune

More information

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic SEMANTIC COMPUTING Lecture 8: Introduction to Deep Learning Dagmar Gromann International Center For Computational Logic TU Dresden, 7 December 2018 Overview Introduction Deep Learning General Neural Networks

More information

Convolutional Neural Networks for Biomedical Image Analysis. Alex Kalinin, PhD Candidate DCM&B, University of Michigan June 1,

Convolutional Neural Networks for Biomedical Image Analysis. Alex Kalinin, PhD Candidate DCM&B, University of Michigan June 1, Convolutional Neural Networks for Biomedical Image Analysis Alex Kalinin, PhD Candidate DCM&B, University of Michigan June 1, 2017 About me BSc, MSc in Applied Math and Informatics from Russia 2 years

More information

Detection and Identification of Lung Tissue Pattern in Interstitial Lung Diseases using Convolutional Neural Network

Detection and Identification of Lung Tissue Pattern in Interstitial Lung Diseases using Convolutional Neural Network Detection and Identification of Lung Tissue Pattern in Interstitial Lung Diseases using Convolutional Neural Network Namrata Bondfale 1, Asst. Prof. Dhiraj Bhagwat 2 1,2 E&TC, Indira College of Engineering

More information

A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images

A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images Marc Aurelio Ranzato Yann LeCun Courant Institute of Mathematical Sciences New York University - New York, NY 10003 Abstract

More information

Bayes Risk. Classifiers for Recognition Reading: Chapter 22 (skip 22.3) Discriminative vs Generative Models. Loss functions in classifiers

Bayes Risk. Classifiers for Recognition Reading: Chapter 22 (skip 22.3) Discriminative vs Generative Models. Loss functions in classifiers Classifiers for Recognition Reading: Chapter 22 (skip 22.3) Examine each window of an image Classify object class within each window based on a training set images Example: A Classification Problem Categorize

More information

CHAPTER 8 COMPOUND CHARACTER RECOGNITION USING VARIOUS MODELS

CHAPTER 8 COMPOUND CHARACTER RECOGNITION USING VARIOUS MODELS CHAPTER 8 COMPOUND CHARACTER RECOGNITION USING VARIOUS MODELS 8.1 Introduction The recognition systems developed so far were for simple characters comprising of consonants and vowels. But there is one

More information

A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images

A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images Marc Aurelio Ranzato Yann LeCun Courant Institute of Mathematical Sciences New York University - New York, NY 10003 Abstract

More information

Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. By Joa õ Carreira and Andrew Zisserman Presenter: Zhisheng Huang 03/02/2018

Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. By Joa õ Carreira and Andrew Zisserman Presenter: Zhisheng Huang 03/02/2018 Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset By Joa õ Carreira and Andrew Zisserman Presenter: Zhisheng Huang 03/02/2018 Outline: Introduction Action classification architectures

More information

Empowering Multiple Instance Histopathology Cancer Diagnosis by Cell Graphs

Empowering Multiple Instance Histopathology Cancer Diagnosis by Cell Graphs Empowering Multiple Instance Histopathology Cancer Diagnosis by Cell Graphs Anonymous Authors No Institute Given Abstract. We introduce a probabilistic classifier that combines multiple instance learning

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

Advanced Introduction to Machine Learning, CMU-10715

Advanced Introduction to Machine Learning, CMU-10715 Advanced Introduction to Machine Learning, CMU-10715 Deep Learning Barnabás Póczos, Sept 17 Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio

More information

Convolutional Neural Network based Medical Imaging Segmentation: Recent Progress and Challenges. Jiaxing Tan

Convolutional Neural Network based Medical Imaging Segmentation: Recent Progress and Challenges. Jiaxing Tan Convolutional Neural Network based Medical Imaging Segmentation: Recent Progress and Challenges Jiaxing Tan Road Map Introduction CNN based Models Encoder-Decoder based Models GAN Based Models Some Challenges

More information

Neural Network Neurons

Neural Network Neurons Neural Networks Neural Network Neurons 1 Receives n inputs (plus a bias term) Multiplies each input by its weight Applies activation function to the sum of results Outputs result Activation Functions Given

More information

Classifiers for Recognition Reading: Chapter 22 (skip 22.3)

Classifiers for Recognition Reading: Chapter 22 (skip 22.3) Classifiers for Recognition Reading: Chapter 22 (skip 22.3) Examine each window of an image Classify object class within each window based on a training set images Slide credits for this chapter: Frank

More information

Deep Learning Applications

Deep Learning Applications October 20, 2017 Overview Supervised Learning Feedforward neural network Convolution neural network Recurrent neural network Recursive neural network (Recursive neural tensor network) Unsupervised Learning

More information

Lecture 37: ConvNets (Cont d) and Training

Lecture 37: ConvNets (Cont d) and Training Lecture 37: ConvNets (Cont d) and Training CS 4670/5670 Sean Bell [http://bbabenko.tumblr.com/post/83319141207/convolutional-learnings-things-i-learned-by] (Unrelated) Dog vs Food [Karen Zack, @teenybiscuit]

More information

Know your data - many types of networks

Know your data - many types of networks Architectures Know your data - many types of networks Fixed length representation Variable length representation Online video sequences, or samples of different sizes Images Specific architectures for

More information

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group Deep Learning Vladimir Golkov Technical University of Munich Computer Vision Group 1D Input, 1D Output target input 2 2D Input, 1D Output: Data Distribution Complexity Imagine many dimensions (data occupies

More information

Hybrid Approach for MRI Human Head Scans Classification using HTT based SFTA Texture Feature Extraction Technique

Hybrid Approach for MRI Human Head Scans Classification using HTT based SFTA Texture Feature Extraction Technique Volume 118 No. 17 2018, 691-701 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Hybrid Approach for MRI Human Head Scans Classification using HTT

More information

Dynamic Routing Between Capsules. Yiting Ethan Li, Haakon Hukkelaas, and Kaushik Ram Ramasamy

Dynamic Routing Between Capsules. Yiting Ethan Li, Haakon Hukkelaas, and Kaushik Ram Ramasamy Dynamic Routing Between Capsules Yiting Ethan Li, Haakon Hukkelaas, and Kaushik Ram Ramasamy Problems & Results Object classification in images without losing information about important parts of the picture.

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017 3/0/207 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/0/207 Perceptron as a neural

More information

Classifying Depositional Environments in Satellite Images

Classifying Depositional Environments in Satellite Images Classifying Depositional Environments in Satellite Images Alex Miltenberger and Rayan Kanfar Department of Geophysics School of Earth, Energy, and Environmental Sciences Stanford University 1 Introduction

More information

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA Predictive Analytics: Demystifying Current and Emerging Methodologies Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA May 18, 2017 About the Presenters Tom Kolde, FCAS, MAAA Consulting Actuary Chicago,

More information

COMPARATIVE DEEP LEARNING FOR CONTENT- BASED MEDICAL IMAGE RETRIEVAL

COMPARATIVE DEEP LEARNING FOR CONTENT- BASED MEDICAL IMAGE RETRIEVAL 1 COMPARATIVE DEEP LEARNING FOR CONTENT- BASED MEDICAL IMAGE RETRIEVAL ADITYA SRIRAM DECEMBER 1 st, 2016 Aditya Sriram CS846 Software Engineering for Big Data December 1, 2016 TOPICS 2 Paper Synopsis Content-Based

More information

CS 4510/9010 Applied Machine Learning. Deep Learning. Paula Matuszek Fall copyright Paula Matuszek 2016

CS 4510/9010 Applied Machine Learning. Deep Learning. Paula Matuszek Fall copyright Paula Matuszek 2016 CS 4510/9010 Applied Machine Learning 1 Deep Learning Paula Matuszek Fall 2016 Beyond Simple Neural Nets 2 In the last few ideas we have seen some surprisingly rapid progress in some areas of AI Image

More information

Medical images, segmentation and analysis

Medical images, segmentation and analysis Medical images, segmentation and analysis ImageLab group http://imagelab.ing.unimo.it Università degli Studi di Modena e Reggio Emilia Medical Images Macroscopic Dermoscopic ELM enhance the features of

More information

Automatic Segmentation of Cell Nuclei in Breast Histopathology Images and Classification Using Feed Forward Neural Network

Automatic Segmentation of Cell Nuclei in Breast Histopathology Images and Classification Using Feed Forward Neural Network RESEARCH ARTICLE OPEN ACCESS Automatic Segmentation of Cell Nuclei in Breast Histopathology Images and Classification Using Feed Forward Neural Network Shraddha R. Raut #, Dr. S. S. Salankar *, Prof. V.

More information

arxiv: v1 [cs.cv] 11 Apr 2018

arxiv: v1 [cs.cv] 11 Apr 2018 Unsupervised Segmentation of 3D Medical Images Based on Clustering and Deep Representation Learning Takayasu Moriya a, Holger R. Roth a, Shota Nakamura b, Hirohisa Oda c, Kai Nagara c, Masahiro Oda a,

More information

1 School of Biological Science and Medical Engineering, Beihang University, Beijing, China

1 School of Biological Science and Medical Engineering, Beihang University, Beijing, China A Radio-genomics Approach for Identifying High Risk Estrogen Receptor-positive Breast Cancers on DCE-MRI: Preliminary Results in Predicting OncotypeDX Risk Scores Tao Wan 1,2, PhD, B. Nicolas Bloch 3,

More information

6. NEURAL NETWORK BASED PATH PLANNING ALGORITHM 6.1 INTRODUCTION

6. NEURAL NETWORK BASED PATH PLANNING ALGORITHM 6.1 INTRODUCTION 6 NEURAL NETWORK BASED PATH PLANNING ALGORITHM 61 INTRODUCTION In previous chapters path planning algorithms such as trigonometry based path planning algorithm and direction based path planning algorithm

More information

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 CS 2750: Machine Learning Neural Networks Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 Plan for today Neural network definition and examples Training neural networks (backprop) Convolutional

More information

Deep Learning. Deep Learning provided breakthrough results in speech recognition and image classification. Why?

Deep Learning. Deep Learning provided breakthrough results in speech recognition and image classification. Why? Data Mining Deep Learning Deep Learning provided breakthrough results in speech recognition and image classification. Why? Because Speech recognition and image classification are two basic examples of

More information

ECE 5470 Classification, Machine Learning, and Neural Network Review

ECE 5470 Classification, Machine Learning, and Neural Network Review ECE 5470 Classification, Machine Learning, and Neural Network Review Due December 1. Solution set Instructions: These questions are to be answered on this document which should be submitted to blackboard

More information

Deep Learning Accelerators

Deep Learning Accelerators Deep Learning Accelerators Abhishek Srivastava (as29) Samarth Kulshreshtha (samarth5) University of Illinois, Urbana-Champaign Submitted as a requirement for CS 433 graduate student project Outline Introduction

More information

Convolutional Neural Networks

Convolutional Neural Networks Lecturer: Barnabas Poczos Introduction to Machine Learning (Lecture Notes) Convolutional Neural Networks Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

More information

Available Online through

Available Online through Available Online through www.ijptonline.com ISSN: 0975-766X CODEN: IJPTFI Research Article ANALYSIS OF CT LIVER IMAGES FOR TUMOUR DIAGNOSIS BASED ON CLUSTERING TECHNIQUE AND TEXTURE FEATURES M.Krithika

More information

Skin Lesion Classification and Segmentation for Imbalanced Classes using Deep Learning

Skin Lesion Classification and Segmentation for Imbalanced Classes using Deep Learning Skin Lesion Classification and Segmentation for Imbalanced Classes using Deep Learning Mohammed K. Amro, Baljit Singh, and Avez Rizvi mamro@sidra.org, bsingh@sidra.org, arizvi@sidra.org Abstract - This

More information

Apparel Classifier and Recommender using Deep Learning

Apparel Classifier and Recommender using Deep Learning Apparel Classifier and Recommender using Deep Learning Live Demo at: http://saurabhg.me/projects/tag-that-apparel Saurabh Gupta sag043@ucsd.edu Siddhartha Agarwal siagarwa@ucsd.edu Apoorve Dave a1dave@ucsd.edu

More information

Deep Learning With Noise

Deep Learning With Noise Deep Learning With Noise Yixin Luo Computer Science Department Carnegie Mellon University yixinluo@cs.cmu.edu Fan Yang Department of Mathematical Sciences Carnegie Mellon University fanyang1@andrew.cmu.edu

More information

Geo-location and recognition of electricity distribution assets by analysis of ground-based imagery

Geo-location and recognition of electricity distribution assets by analysis of ground-based imagery Geo-location and recognition of electricity distribution assets by analysis of ground-based imagery Andrea A. Mammoli Professor, Mechanical Engineering, University of New Mexico Thomas P. Caudell Professor

More information

Microscopy Cell Counting with Fully Convolutional Regression Networks

Microscopy Cell Counting with Fully Convolutional Regression Networks Microscopy Cell Counting with Fully Convolutional Regression Networks Weidi Xie, J. Alison Noble, Andrew Zisserman Department of Engineering Science, University of Oxford,UK Abstract. This paper concerns

More information

Outline. The Present 3/22/2017. Disclosure of Relevant Financial Relationships. Disclosure of Relevant Financial Relationships

Outline. The Present 3/22/2017. Disclosure of Relevant Financial Relationships. Disclosure of Relevant Financial Relationships COMPELLING USE-CASES FOR IMMEDIATE DEPLOYMENT OF IMAGE-BASED ANALYTICS IN DIGITAL WHOLE SLIDE IMAGING PATHOLOGY WORKFLOW Ulysses G. J. Balis, M.D., FCAP, FASCP, FAIMBE Professor of Pathology & Director,

More information

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu Natural Language Processing CS 6320 Lecture 6 Neural Language Models Instructor: Sanda Harabagiu In this lecture We shall cover: Deep Neural Models for Natural Language Processing Introduce Feed Forward

More information

Neural Network Exchange Format

Neural Network Exchange Format Copyright Khronos Group 2017 - Page 1 Neural Network Exchange Format Deploying Trained Networks to Inference Engines Viktor Gyenes, specification editor Copyright Khronos Group 2017 - Page 2 Outlook The

More information

I understand that failure to attribute material which is obtained from another source may be considered as plagiarism. (Signature of student)

I understand that failure to attribute material which is obtained from another source may be considered as plagiarism. (Signature of student) A Computer Vision System for the Detection of Cancer in Barretts Oesophagus James Swainston BSc Computer Science with Artificial Intelligence 2007/2008 The candidate confirms that the work submitted is

More information

DIMENSIONALITY REDUCTION OF FLOW CYTOMETRIC DATA THROUGH INFORMATION PRESERVATION

DIMENSIONALITY REDUCTION OF FLOW CYTOMETRIC DATA THROUGH INFORMATION PRESERVATION DIMENSIONALITY REDUCTION OF FLOW CYTOMETRIC DATA THROUGH INFORMATION PRESERVATION Kevin M. Carter 1, Raviv Raich 2, William G. Finn 3, and Alfred O. Hero III 1 1 Department of EECS, University of Michigan,

More information

Adversarial Stain Transfer for Histopathology Image Analysis

Adversarial Stain Transfer for Histopathology Image Analysis 1 Adversarial Stain Transfer for Histopathology Image Analysis Aı cha BenTaieb and Ghassan Hamarneh Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, Canada Index

More information

Real-time Object Detection CS 229 Course Project

Real-time Object Detection CS 229 Course Project Real-time Object Detection CS 229 Course Project Zibo Gong 1, Tianchang He 1, and Ziyi Yang 1 1 Department of Electrical Engineering, Stanford University December 17, 2016 Abstract Objection detection

More information

Artificial Intelligence Introduction Handwriting Recognition Kadir Eren Unal ( ), Jakob Heyder ( )

Artificial Intelligence Introduction Handwriting Recognition Kadir Eren Unal ( ), Jakob Heyder ( ) Structure: 1. Introduction 2. Problem 3. Neural network approach a. Architecture b. Phases of CNN c. Results 4. HTM approach a. Architecture b. Setup c. Results 5. Conclusion 1.) Introduction Artificial

More information

Kaggle Data Science Bowl 2017 Technical Report

Kaggle Data Science Bowl 2017 Technical Report Kaggle Data Science Bowl 2017 Technical Report qfpxfd Team May 11, 2017 1 Team Members Table 1: Team members Name E-Mail University Jia Ding dingjia@pku.edu.cn Peking University, Beijing, China Aoxue Li

More information

Deep Learning Based Real-time Object Recognition System with Image Web Crawler

Deep Learning Based Real-time Object Recognition System with Image Web Crawler , pp.103-110 http://dx.doi.org/10.14257/astl.2016.142.19 Deep Learning Based Real-time Object Recognition System with Image Web Crawler Myung-jae Lee 1, Hyeok-june Jeong 1, Young-guk Ha 2 1 Department

More information

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta Encoder-Decoder Networks for Semantic Segmentation Sachin Mehta Outline > Overview of Semantic Segmentation > Encoder-Decoder Networks > Results What is Semantic Segmentation? Input: RGB Image Output:

More information

Deep Learning. Volker Tresp Summer 2014

Deep Learning. Volker Tresp Summer 2014 Deep Learning Volker Tresp Summer 2014 1 Neural Network Winter and Revival While Machine Learning was flourishing, there was a Neural Network winter (late 1990 s until late 2000 s) Around 2010 there

More information

NVIDIA FOR DEEP LEARNING. Bill Veenhuis

NVIDIA FOR DEEP LEARNING. Bill Veenhuis NVIDIA FOR DEEP LEARNING Bill Veenhuis bveenhuis@nvidia.com Nvidia is the world s leading ai platform ONE ARCHITECTURE CUDA 2 GPU: Perfect Companion for Accelerating Apps & A.I. CPU GPU 3 Intro to AI AGENDA

More information

CS 179 Lecture 16. Logistic Regression & Parallel SGD

CS 179 Lecture 16. Logistic Regression & Parallel SGD CS 179 Lecture 16 Logistic Regression & Parallel SGD 1 Outline logistic regression (stochastic) gradient descent parallelizing SGD for neural nets (with emphasis on Google s distributed neural net implementation)

More information

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal Object Detection Lecture 10.3 - Introduction to deep learning (CNN) Idar Dyrdal Deep Learning Labels Computational models composed of multiple processing layers (non-linear transformations) Used to learn

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Example Learning Problem Example Learning Problem Celebrity Faces in the Wild Machine Learning Pipeline Raw data Feature extract. Feature computation Inference: prediction,

More information

Detection of a Single Hand Shape in the Foreground of Still Images

Detection of a Single Hand Shape in the Foreground of Still Images CS229 Project Final Report Detection of a Single Hand Shape in the Foreground of Still Images Toan Tran (dtoan@stanford.edu) 1. Introduction This paper is about an image detection system that can detect

More information