Enter your answers to the questions in this lab using Canvas Quiz Ch.5 Global Unicast Address + Lab. Additional questions are included in the quiz.

Size: px
Start display at page:

Download "Enter your answers to the questions in this lab using Canvas Quiz Ch.5 Global Unicast Address + Lab. Additional questions are included in the quiz."

Transcription

1 Lab: Introducing Global Unicast Addresses CIS 116 IPv6 Fundamentals Enter your answers to the questions in this lab using Canvas Quiz Ch.5 Global Unicast Address + Lab. Additional questions are included in the quiz. Step 1. Setup a. Log into NetLab: ccnp.bayict.cabrillo.edu b. Schedule IPv6 Pod 1: no configs loaded (clean) c. Configure each router with the following commands: Router> enable Router# conf t Router(config)# hostname <R1, R2 or R2> R1(config)# no ip domain-lookup R1(config)# line con 0 R1(config-line)# logging synchronous R1(config-line)# exec-timeout 0 0 R1(config-line)# exit Topology

2 IPv6 address schema Your ISP has given you the IPv6 global routing prefix 2001:db8:cab::/48 R1 LAN has the subnet 2001:db8:cab:828::/64 R3 LAN has the subnet 2001:db8:cab:829::/64 The link between R1 and R2 has the subnet 2001:db8:cab:1000::/64 The link between R2 and R3 has the subnet 2001:db8:cab:2000::/64 Step 2. Manual GUA Configuration on R1 and R3 a. Configure a GUA address on R1 s G0/0 interface using 2001:db8:cab:828::1/64 R1# config t R1(config)# interface g 0/0 R1(config-if)# ipv6 address 2001:db8:cab:828::1/64 R1(config-if)# no shutdown R1(config-if)# end b. Verify the GUA address assignment using the following commands: show ipv6 interface brief show ipv6 interface <g0/0 and g01> show running-config c. Configure a GUA address on R1 s G0/1 interface using 2001:db8:cab:1000::1/64 R1(config)# interface g 0/1 R1(config-if)# ipv6 address 2001:db8:cab:1000::1/64 R1(config-if)# no shutdown R1(config-if)# end Question 1: What type of unicast address was automatically created on R1 s G0/0 interface when the GUA address was configured? Question 2: What method did IOS use to create the address referred to in question 1? Question 3: Does R1 have the same link-local address on both of its interfaces?

3 Question 4: Could we configure R1 to have the same link-local address both of its interfaces? d. Configure R3 G0/0 interface to have the GUA address: ipv6 address 2001:db8:cab:829::1/64 e. Configure R3 G0/1 interface to have the GUA address: ipv6 address 2001:db8:cab:2000::1/64 f. Verify the GUA address assignment using the following commands: show ipv6 interface brief show ipv6 interface <g0/0 and g01> show running-config Step 3. Manual GUA Configuration on R2 using EUI-64 Option In this section you will configure R2 s GUA addresses using the EUI-64 option. a. Configure R2 s G0/1 and G0/0 interface using the EUI-64 option: R2(config)# inter g 0/1 R2(config-if)# ipv6 address 2001:db8:cab:1000::/64? anycast Configure as an anycast eui-64 Use eui-64 interface identifier <cr> R2(config-if)# ipv6 address 2001:db8:cab:1000::/64 eui-64 R2(config-if)# no shutdown R2(config-if)# exit R2(config)# inter g 0/0 R2(config-if)# ipv6 address 2001:db8:cab:2000::/64 eui-64 R2(config-if)# no shutdown R2(config-if)# end Question 5: Why is <cr> (carriage return or the enter key) an option? b. Verify the GUA addresses on R2 using the show ipv6 interface brief and show interface commands: R2# show ipv6 interface brief GigabitEthernet0/0 [up/up] FE80::662:73FF:FE5E:F :DB8:CAB:2000:662:73FF:FE5E:F960 GigabitEthernet0/1 [up/up]

4 R2# FE80::662:73FF:FE5E:F :DB8:CAB:1000:662:73FF:FE5E:F961 Notice that R2 used the Ethernet MAC address and EUI-64 to create its GUA addresses: R2# show interface g0/0 GigabitEthernet0/0 is up, line protocol is up Hardware is CN Gigabit Ethernet, address is e.f960 (bia e.f960) <output omitted for brevity> We can use a filter to output only those lines that include Hardware R2# show interface g0/1 include Hardware Hardware is CN Gigabit Ethernet, address is e.f961 (bia e.f961) R2# Question 6: What part of the IPv6 GUA address suggests that this address was derived using EUI-64? Step 4. Configuring a GUA and Default Gateway Address on a Windows PC Note: The current NetLab configuration may show the incorrect VM. This is in the process of being corrected. a. Select Windows PC 1 b. Select: Start > Network > Network Sharing Center > Change Adapter Settings > Local Area Connection > Properties > Internet Protocol Version 6 > Properties c. Select Use the following IPv6 address: and enter: IPv6 address: 2001:db8:cab:828::100 Subnet prefix length: 64 Default gateway: 2001:db8:cab:828::1 Select OK and Close Note: The address of the default gateway is typically the link-local address of the local router. However, for now we will use the router s GUA address. d. Verify your address configuration using the ipconfig command. Notice that the Windows PC has also created itself a link-local unicast address.

5 Start > type cmd in the search area > type ipconfig at the Windows command prompt e. Verify Windows IPv6 connectivity with the local router (R1) using the ping command: C> ping 2001:db8:cab:828::1 f. Verify IOS IPv6 connectivity with Windows PC using the ping command: R1# ping 2001:db8:cab:828::100 Sending 5, 100-byte ICMP Echos to 2001:DB8:CAB:828::100, 1/1/1 ms R1#

6 Step 5. Configuring a GUA and Default Gateway Address on a Linux PC a. Select Linux PC. Login as administrator using the password Cabri11o. b. Select the terminal icon (second from the top on the left) Configure the GUA address using the following command: IPv6-Linux:~$ sudo ifconfig eth0 inet6 add 2001:db8:cab:829::222/64 Note: If prompted for a password use Cabri11o Configure the default gateway address using the following command: IPv6-Linux:~$ sudo route A inet6 add default gw 2001:db8:cab:829::1 c. Verify the configuration using the ifconfig command and the default gateway using the ip -6 route show command: IPv6-Linux:~$ ifconfig IPv6-Linux:~$ ip -6 route show d. Verify reachability to the default gateway using ping6. Linux and Unix (including Mac OS) using the ping6 command instead of ping for sending ICMPv6 Echo Requests. IPv6-Linux:~$ ping6 c :db8:cab:829::1 Step 6: Providing End-to-End Reachability with IPv6 Static Routes Note: IPv6 static routes will be covered in more detail in a later lab. Currently, our devices, including routers and hosts, can reach other devices on their own network but not on another network. This is because we have not yet configured the routers to forward IPv6 packets to other networks.

7 a. Reconfigure R2 s GUA address with IPv6 address that are easier to remember and more recognizable. First we remove any GUA addresses using the no ipv6 address command. R2(config)# interface g0/1 R2(config-if)# no ipv6 address R2(config-if)# ipv6 address 2001:db8:cab:1000::2/64 R2(config-if)# exit R2(config)# interface g 0/0 R2(config-if)# no ipv6 address R2(config-if)# ipv6 address 2001:db8:cab:2000::2/64 R2(config-if)# end R2# show ipv6 inter brief GigabitEthernet0/0 [up/up] FE80::662:73FF:FE5E:F :DB8:CAB:2000::2 GigabitEthernet0/1 R2# [up/up] FE80::662:73FF:FE5E:F :DB8:CAB:1000::2 b. Verify connectivity on the same network: R2# ping 2001:db8:cab:1000::1 Sending 5, 100-byte ICMP Echos to 2001:DB8:CAB:1000::1, 1/2/8 ms R2# ping 2001:db8:cab:2000::1 Sending 5, 100-byte ICMP Echos to 2001:DB8:CAB:2000::1, 1/1/4 ms R2# R1# ping 2001:db8:cab:828::100 Sending 5, 100-byte ICMP Echos to 2001:DB8:CAB:828::100, 1/1/1 ms R1#

8 c. Verify no connectivity on another network: R1# ping 2001:db8:cab:829::1 Sending 5, 100-byte ICMP Echos to 2001:DB8:CAB:829::1, % No valid route for destination Success rate is 0 percent (0/1) R1# Question 7: Why are the pings to remote networks failing? d. Configure a default IPv6 static routes on R1 and R3 to forward all packets not on a directly connected network to R2. The ipv6 unicast-routing command is required to forward IPv6 packets transiting the router. R1# conf t R1(config)# ipv6 unicast-routing R1(config)# ipv6 route ::/0 2001:db8:cab:1000::2 R1(config)# exit R3# conf t R3(config)# ipv6 unicast-routing R3(config)# ipv6 route ::/0 2001:db8:cab:2000::2 R3(config)# exit e. Configure two IPv6 static routes on R2. R2 will send packets to R1 s LAN via R1 and R3 s LAN via R3. Again, the ipv6 unicast-routing command is required to forward IPv6 packets transiting the router. R2# conf t R2(config)# ipv6 unicast-routing R2(config)# ipv6 route 2001:db8:cab:828::/ :db8:cab:1000::1 R2(config)# ipv6 route 2001:db8:cab:829::/ :db8:cab:2000::1 R2(config)# exit

9 f. Verify connectivity from R1 s G0/1 interface: R1# ping 2001:db8:cab:829::1 Sending 5, 100-byte ICMP Echos to 2001:DB8:CAB:829::1, 1/2/4 ms R1# g. Verify end-to-end reachability from R1 s G0/0 interface to R3 s G0/0 interface: R1# ping 2001:db8:cab:829::1 source g0/0 Sending 5, 100-byte ICMP Echos to 2001:DB8:CAB:829::1, Packet sent with a source address of 2001:DB8:CAB:828::1 1/1/4 ms R1# h. Verify end-to-end reachability using ping on Windows PC 1 and ping6 on Linux PC. C> ping 2001:db8:cab:829::222 IPv6-Linux:~$ ping6 c :db8:cab:828::100 Step 7. Another Look at ipconfig on Windows a. Select Windows PC 1 again and look at the output of the ipconfig command.

10 Question 8: What looks different from the output in the ipconfig used in Step 4? Notice there are additional GUA addresses in the output. (I just gave you the answer to the previous question.) When we configured the local router (R1) with the ipv6 unicast-routing command, the enabled R1 as an IPv6 router. Besides having the capability to forward IPv6 packets, R1 is now sending ICMPv6 Router Advertisement (RA) messages. The Windows PC 1 host is used the RA message to create another GUA address and a temporary GUA address. This will be discussed in great detail in a later chapter when we discuss SLAAC.

Step 2. Manual configuration of global unicast and link-local addresses

Step 2. Manual configuration of global unicast and link-local addresses Lab: DHCPv6 CIS 116 IPv6 Fundamentals Enter your answers to the questions in this lab using Canvas Quiz DHCPv6 Lab. Step 1. Setup a. Log into NetLab: ccnp.bayict.cabrillo.edu b. Schedule IPv6 Pod 1: no

More information

Step 2. Manual configuration of global unicast and link-local addresses

Step 2. Manual configuration of global unicast and link-local addresses Lab: ICMPv6 and ICMPv6 Neighbor Discovery CIS 116 IPv6 Fundamentals Enter your answers to the questions in this lab using Canvas Quiz DHCPv6 Lab. Part 1: Setup Step 1. Basics a. Log into NetLab: ccnp.bayict.cabrillo.edu

More information

Lab - Configuring IPv6 Addresses on Network Devices

Lab - Configuring IPv6 Addresses on Network Devices Topology Addressing Table Device Interface IPv6 Address Prefix Length Default Gateway Objectives R1 G0/0 2001:DB8:ACAD:A::1 64 N/A G0/1 2001:DB8:ACAD:1::1 64 N/A S1 VLAN 1 2001:DB8:ACAD:1::B 64 N/A PC-A

More information

Lab 7 Configuring Basic Router Settings with IOS CLI

Lab 7 Configuring Basic Router Settings with IOS CLI Lab 7 Configuring Basic Router Settings with IOS CLI Objectives Part 1: Set Up the Topology and Initialize Devices Cable equipment to match the network topology. Initialize and restart the router and switch.

More information

Lab Configuring IPv6 Static and Default Routes (Solution)

Lab Configuring IPv6 Static and Default Routes (Solution) (Solution) Topology Addressing Table Device Interface IPv6 Address / Prefix Length Default Gateway R1 G0/1 2001:DB8:ACAD:A::/64 eui-64 N/A S0/0/1 FC00::1/64 N/A R3 G0/1 2001:DB8:ACAD:B::/64 eui-64 N/A

More information

CCNA Semester 2 labs. Labs for chapters 2 10

CCNA Semester 2 labs. Labs for chapters 2 10 CCNA Semester 2 labs Labs for chapters 2 10 2.2.2.5 Lab - Configuring IPv4 Static and Default Routes 2.3.2.4 Lab - Troubleshooting Static Routes 3.2.1.9 Lab - Configuring Basic RIPv2 5.2.2.9 Lab - Configuring

More information

Packet Tracer - Connect a Router to a LAN (Instructor Version)

Packet Tracer - Connect a Router to a LAN (Instructor Version) (Instructor Version) Instructor Note: Red font color or gray highlights indicate text that appears in the instructor copy only. Topology Addressing Table Device Interface IP Address Subnet Mask Default

More information

Lab - Troubleshooting Connectivity Issues

Lab - Troubleshooting Connectivity Issues Lab - Troubleshooting Connectivity Issues Topology Addressing Table R1 ISP Objectives Device Interface IP Address Subnet Mask Default Gateway G0/1 192.168.1.1 255.255.255.0 N/A S0/0/0 10.1.1.1 255.255.255.252

More information

Lab Configuring and Verifying Standard IPv4 ACLs Topology

Lab Configuring and Verifying Standard IPv4 ACLs Topology Topology 2016 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 10 Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway R1 G0/1 192.168.10.1

More information

Chapter 5 Lab 5-2 DHCP INSTRUCTOR VERSION

Chapter 5 Lab 5-2 DHCP INSTRUCTOR VERSION CCNPv7.1 SWITCH Chapter 5 Lab 5-2 DHCP INSTRUCTOR VERSION Topology Objectives Configure DHCP for IPv4 Configure Stateless DHCP for IPv6 Configure Stateful DHCP for IPv6 Background To practice the various

More information

Lab Configuring IPv6 Static and Default Routes

Lab Configuring IPv6 Static and Default Routes Topology Addressing Table Device Interface IPv6 Address / Prefix Length Default Gateway R1 G0/1 2001:DB8:ACAD:A::/64 eui-64 N/A S0/0/1 FC00::1/64 N/A R3 G0/1 2001:DB8:ACAD:B::/64 eui-64 N/A S0/0/0 FC00::2/64

More information

Chapter 10 - Configure ASA Basic Settings and Firewall using ASDM

Chapter 10 - Configure ASA Basic Settings and Firewall using ASDM Chapter 10 - Configure ASA Basic Settings and Firewall using ASDM This lab has been updated for use on NETLAB+ Topology Note: ISR G1 devices use FastEthernet interfaces instead of GigabitEthernet interfaces.

More information

Lab - Configuring a Switch Management Address

Lab - Configuring a Switch Management Address Topology Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway S1 VLAN 1 192.168.1.2 255.255.255.0 N/A PC-A NIC 192.168.1.10 255.255.255.0 N/A Part 1: Configure a Basic Network

More information

Lab Using the CLI to Gather Network Device Information Topology

Lab Using the CLI to Gather Network Device Information Topology Topology Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway R1 G0/1 192.168.1.1 255.255.255.0 N/A Lo0 209.165.200.225 255.255.255.224 N/A S1 VLAN 1 192.168.1.11 255.255.255.0

More information

This document is exclusive property of Cisco Systems, Inc. Permission is granted to print and copy this document for non-commercial distribution and

This document is exclusive property of Cisco Systems, Inc. Permission is granted to print and copy this document for non-commercial distribution and This document is exclusive property of Cisco Systems, Inc. Permission is granted to print and copy this document for non-commercial distribution and exclusive use by instructors in the CCNA Exploration:

More information

Lab : Challenge OSPF Configuration Lab. Topology Diagram. Addressing Table. Default Gateway. Device Interface IP Address Subnet Mask

Lab : Challenge OSPF Configuration Lab. Topology Diagram. Addressing Table. Default Gateway. Device Interface IP Address Subnet Mask Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway Fa0/0 HQ S0/0/0 S0/0/1 Lo1 10.10.10.1 255.255.255.252 Fa0/0 Branch1 S0/0/0 S0/0/1 Fa0/0 Branch2 S0/0/0 S0/0/1 PC1

More information

Lab Troubleshooting IPv4 and IPv6 Static Routes (Instructor Version Optional Lab)

Lab Troubleshooting IPv4 and IPv6 Static Routes (Instructor Version Optional Lab) (Instructor Version Optional Lab) Instructor Note: Red font color or gray highlights indicate text that appears in the instructor copy only. Optional activities are designed to enhance understanding and/or

More information

Chapter 3 Lab 3-2, Multi-Area OSPFv2 and OSPFv3 with Stub Area

Chapter 3 Lab 3-2, Multi-Area OSPFv2 and OSPFv3 with Stub Area Chapter 3 Topology Objectives Configure multi-area OSPFv2 for IPv4. Configure multi-area OSPFv3 for IPv6 Verify multi-area behavior. Configure stub and totally stubby areas for OSPFv2. Configure stub and

More information

Lab Configuring and Verifying Standard IPv4 ACLs (Instructor Version Optional Lab)

Lab Configuring and Verifying Standard IPv4 ACLs (Instructor Version Optional Lab) (Instructor Version Optional Lab) Instructor Note: Red font color or gray highlights indicate text that appears in the instructor copy only. Optional activities are designed to enhance understanding and/or

More information

Lab Configuring Switch Security Features Topology

Lab Configuring Switch Security Features Topology Topology Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway R1 G0/1 172.16.99.1 255.255.255.0 N/A S1 VLAN 99 172.16.99.11 255.255.255.0 172.16.99.1 PC-A NIC 172.16.99.3

More information

Chapter 8 Lab 8-3, Configuring 6to4 Tunnels

Chapter 8 Lab 8-3, Configuring 6to4 Tunnels Chapter 8 Lab 8-3, Configuring 6to4 Tunnels Topology Objectives Configure EIGRP for IPv4. Create a 6to4 tunnel. Configure static IPv6 routes. Background In this lab, you configure EIGRP for full connectivity

More information

Lab - Designing and Implementing a Subnetted IPv4 Addressing Scheme

Lab - Designing and Implementing a Subnetted IPv4 Addressing Scheme Lab - Designing and Implementing a Subnetted IPv4 Addressing Scheme Topology Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway R1 G00 NA G01 NA Lo0 Lo1 NA NA S1 VLAN 1

More information

Lab 19(b)2. L3 Switch Routed Ports

Lab 19(b)2. L3 Switch Routed Ports Lab 9(b). L Switch Routed Ports Rev. 000.0 c cnac o okbook.com G O A L onfigure a routed port on to communicate with R. Topology For simplicity, you can reuse the physical topology of the previous labs,

More information

Lab Configuring Basic Switch Settings (Solution)

Lab Configuring Basic Switch Settings (Solution) (Solution) Topology Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway S1 VLAN 99 192.168.1.2 255.255.255.0 192.168.1.1 PC-A NIC 192.168.1.10 255.255.255.0 192.168.1.1

More information

Lab Configuring and Verifying Standard ACLs Topology

Lab Configuring and Verifying Standard ACLs Topology Topology 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 9 Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway R1 G0/1 192.168.10.1

More information

LAB THREE STATIC ROUTING

LAB THREE STATIC ROUTING LAB THREE STATIC ROUTING In this lab you will work with four different network topologies. The topology for Parts 1-4 is shown in Figure 3.1. These parts address router configuration on Linux PCs and a

More information

Lab: RIP v2 with VLSM

Lab: RIP v2 with VLSM Lab: RIP v2 with VLSM Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway BRANCH HQ ISP PC1 PC2 PC3 PC4 PC5 Lo1 S0/0/0 Lo1 S0/0/0 S0/0/1 S/0/0/1 Learning Objectives

More information

Lab- Troubleshooting Basic EIGRP for 1Pv4

Lab- Troubleshooting Basic EIGRP for 1Pv4 Lab- Troubleshooting Basic EIGRP for 1Pv4 Topology G0/0 G0/0 PC-A PC-C 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 27 Addressing Table efault Gateway

More information

Lab 5.6.2: Challenge RIP Configuration

Lab 5.6.2: Challenge RIP Configuration Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway BRANCH HQ ISP PC1 PC2 PC3 Fa0/0 S0/0/0 Fa0/0 S0/0/0 S0/0/1 Fa0/0 S0/0/1 NIC NIC NIC Learning Objectives Upon completion

More information

Chapter 1 Lab 1-1, Basic RIPng and Default Gateway Configuration

Chapter 1 Lab 1-1, Basic RIPng and Default Gateway Configuration Chapter 1 Lab 1-1, Basic RIPng and Default Gateway Configuration Topology Objectives Configure IPv6 addressing. Configure and verify RIPng on R1 and R2. Configure IPv6 static routes between R2 and R3.

More information

Building the Routing Table. Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles

Building the Routing Table. Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles Building the Routing Table Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles Introducing the Routing Table R1# show ip route Codes: C - connected,

More information

Lab 2.8.1: Basic Static Route Configuration

Lab 2.8.1: Basic Static Route Configuration Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway R1 Fa0/0 172.16.3.1 255.255.255.0 N/A S0/0/0 172.16.2.1 255.255.255.0 N/A Fa0/0 172.16.1.1 255.255.255.0 N/A R2

More information

Lab Configuring Basic RIPv2 (Solution)

Lab Configuring Basic RIPv2 (Solution) (Solution) Topology 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 15 Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway

More information

Chapter 8 Lab 8-2, Using Manual IPv6 Tunnels with EIGRP for IPv6

Chapter 8 Lab 8-2, Using Manual IPv6 Tunnels with EIGRP for IPv6 Chapter 8 Lab 8-2, Using Manual IPv6 Tunnels with EIGRP for IPv6 Topology Objectives Configure EIGRP for IPv4. Create a manual IPv6 tunnel. Configure EIGRP for IPv6 across the tunnel. Background In this

More information

Smart Serial. Show interfaces. Shut down. logging synchronous

Smart Serial. Show interfaces. Shut down. logging synchronous SEMESTER 2 Chapter 2 Static Networking V 4.0 2.1.1 What are the primary responsibilities of the router? 2.1.3 What is the first serial connector described called at the router end? What is the first serial

More information

Chapter 10 Lab 10-2, Securing VLANs INSTRUCTOR VERSION

Chapter 10 Lab 10-2, Securing VLANs INSTRUCTOR VERSION CCNPv7.1 SWITCH Chapter 10 Lab 10-2, Securing VLANs INSTRUCTOR VERSION Topology Objectives Background Secure the server farm using private VLANs. Secure the staff VLAN from the student VLAN. Secure the

More information

Lab Configuring IPv4 Static and Default Routes (Solution)

Lab Configuring IPv4 Static and Default Routes (Solution) (Solution) Topology Addressing Table Device Interface IP Address Subnet Mask Default Gateway R1 G0/1 192.168.0.1 255.255.255.0 N/A S0/0/1 10.1.1.1 255.255.255.252 N/A R3 G0/1 192.168.1.1 255.255.255.0

More information

Device Interface IP Address Subnet Mask Default Gateway

Device Interface IP Address Subnet Mask Default Gateway Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway BRANCH HQ ISP Fa0/0 172.20.1.129 255.255.255.128 N/A S0/0/0 172.20.1.1 255.255.255.128 N/A Fa0/0 172.20.0.129 255.255.255.128

More information

Lab Using Wireshark to Examine Ethernet Frames

Lab Using Wireshark to Examine Ethernet Frames Topology Objectives Part 1: Examine the Header Fields in an Ethernet II Frame Part 2: Use Wireshark to Capture and Analyze Ethernet Frames Background / Scenario When upper layer protocols communicate with

More information

Chapter 6: Network Layer

Chapter 6: Network Layer Chapter 6: Network Layer Introduction to Networks Intro to Networks v5 Network Layer Intro to Networks v5 2 The Network Layer End to End Transport processes Addressing end devices Encapsulation of Packets

More information

Lab - Configuring & Troubleshooting Basic DHCPv4 on a Router

Lab - Configuring & Troubleshooting Basic DHCPv4 on a Router Lab - Configuring & Troubleshooting Basic DHCPv4 on a Router Topology Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway R1 G0/0 192.168.0.1 255.255.255.0 N/A G0/1 192.168.1.1

More information

Lab Troubleshooting Using traceroute Instructor Version 2500

Lab Troubleshooting Using traceroute Instructor Version 2500 Lab 9.3.4 Troubleshooting Using traceroute Instructor Version 2500 294-833 CCNA 2: Routers and Routing Basics v 3.1 - Lab 9.3.4 Copyright 2003, Cisco Systems, Inc. Objective Use the traceroute Cisco IOS

More information

Lab - Troubleshooting Standard IPv4 ACL Configuration and Placement Topology

Lab - Troubleshooting Standard IPv4 ACL Configuration and Placement Topology Lab - Troubleshooting Standard IPv4 ACL Configuration and Placement Topology 2016 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 8 Addressing Table Objectives

More information

All participants will work within their groups in pairs. Each group has three routers and three switches to work with.

All participants will work within their groups in pairs. Each group has three routers and three switches to work with. Layer 3 - Exercises All participants will work within their groups in pairs. Each group has three routers and three switches to work with. The lab is divided into four components: 1. Static Routing 2.

More information

Lab Troubleshooting Basic PPP with Authentication Topology

Lab Troubleshooting Basic PPP with Authentication Topology Topology 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 8 Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway R1 G0/1 192.168.1.1

More information

Router Configuration. Router Fundamentals Connecting to the Console Port Router Modes -- User EXEC Router Modes -- Privileged EXEC Lab #9 Goals

Router Configuration. Router Fundamentals Connecting to the Console Port Router Modes -- User EXEC Router Modes -- Privileged EXEC Lab #9 Goals Router Configuration Router Fundamentals Connecting to the Console Port Router Modes -- User EXEC Router Modes -- Privileged EXEC Lab #9 Goals Router Fundamentals Here, we will examine two types of networks:

More information

Lab Using Wireshark to Examine Ethernet Frames

Lab Using Wireshark to Examine Ethernet Frames Topology Objectives Part 1: Examine the Header Fields in an Ethernet II Frame Part 2: Use Wireshark to Capture and Analyze Ethernet Frames Background / Scenario When upper layer protocols communicate with

More information

Lab 6.4.2: Challenge Inter-VLAN Routing

Lab 6.4.2: Challenge Inter-VLAN Routing Lab 6.4.2: Challenge Inter-VLAN Routing Topology Diagram Addressing Table Device (Hostname) Interface IP Address Subnet Mask Default Gateway S1 VLAN 99 192.168.99.11 255.255.255.0 192.168.99.1 S2 VLAN

More information

Lab 9.6.2: Challenge EIGRP Configuration Lab

Lab 9.6.2: Challenge EIGRP Configuration Lab Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway HQ BRANCH1 BRANCH2 PC1 PC2 PC3 Fa0/0 S0/0/0 S0/0/1 Lo1 Fa0/0 S0/0/0 S0/0/1 Fa0/0 S0/0/0 S0/0/1 NIC NIC NIC All

More information

Lab 2.8.2: Challenge Static Route Configuration

Lab 2.8.2: Challenge Static Route Configuration Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway BRANCH HQ ISP PC1 PC2 Web Server Fa0/0 S0/0/0 Fa0/0 S0/0/0 S0/0/1 209.165.201.2 255.255.255.252 Fa0/0 209.165.200.225

More information

Lab - Troubleshooting DHCPv4 Topology

Lab - Troubleshooting DHCPv4 Topology Topology 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 9 Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway R1 G0/0 192.168.0.1

More information

Chapter 7 Lab 7-1, Configuring BGP with Default Routing

Chapter 7 Lab 7-1, Configuring BGP with Default Routing Chapter 7 Topology Objectives Configure BGP to exchange routing information with two ISPs. Background The International Travel Agency (ITA) relies extensively on the Internet for sales. For this reason,

More information

Lab 5: Basic VLAN Configuration

Lab 5: Basic VLAN Configuration Topology Diagram Addressing Table Device (Hostname) Interface IP Address Subnet Mask Default Gateway S1 VLAN 99 172.17.99.11 255.255.255.0 N/A S2 VLAN 99 172.17.99.12 255.255.255.0 N/A S3 VLAN 99 172.17.99.13

More information

Lab Exploring Cisco IOS and Configuring Basic Switch Settings

Lab Exploring Cisco IOS and Configuring Basic Switch Settings Topology Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway S1 VLAN 99 192.168.1.2 255.255.255.0 192.168.1.1 PC-A NIC 192.168.1.10 255.255.255.0 192.168.1.1 Part 1: Cable

More information

Advanced IPv6 Training Course. Lab Manual. v1.3 Page 1

Advanced IPv6 Training Course. Lab Manual. v1.3 Page 1 Advanced IPv6 Training Course Lab Manual v1.3 Page 1 Network Diagram AS66 AS99 10.X.0.1/30 2001:ffXX:0:01::a/127 E0/0 R 1 E1/0 172.X.255.1 2001:ffXX::1/128 172.16.0.X/24 2001:ff69::X/64 E0/1 10.X.0.5/30

More information

IPv6 NEMO. Finding Feature Information. Restrictions for IPv6 NEMO

IPv6 NEMO. Finding Feature Information. Restrictions for IPv6 NEMO The network mobility (NEMO) basic support protocol enables mobile IPv6 networks to attach to different points in the Internet. This protocol is an extension of Mobile IPv6 and allows session continuity

More information

Chapter 6 Lab 6-3, Gateway Load Balancing Protocol (GLBP) INSTRUCTOR VERSION

Chapter 6 Lab 6-3, Gateway Load Balancing Protocol (GLBP) INSTRUCTOR VERSION CCNPv7.1 SWITCH Chapter 6 Lab 6-3, Gateway Load Balancing Protocol (GLBP) INSTRUCTOR VERSION Topology Objectives Configure trunking, VTP, and inter-vlan routing using router-on-a stick Configure GLBP Configure

More information

Lab - Configuring Basic DHCPv4 on a Router (Solution)

Lab - Configuring Basic DHCPv4 on a Router (Solution) (Solution) Topology Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway R1 G0/0 192.168.0.1 255.255.255.0 N/A G0/1 192.168.1.1 255.255.255.0 N/A S0/0/0 (DCE) 192.168.2.253

More information

Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0

Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0 Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0 CCNET v6 13 Chapter 7 - Sections & Objectives 7.1 IPv4 Network Addresses Convert between binary and decimal numbering

More information

Lab Configuring and Verifying Extended ACLs Topology

Lab Configuring and Verifying Extended ACLs Topology Topology 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 8 Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway R1 G0/1 192.168.10.1

More information

Lab 5-3 Redistribution Between EIGRP and IS-IS

Lab 5-3 Redistribution Between EIGRP and IS-IS Lab 5-3 Redistribution Between EIGRP and IS-IS Learning Objectives Review basic configuration of EIGRP and IS-IS Redistribute into EIGRP Redistribute into IS-IS Use a standard access list to select routes

More information

Lab Configuring HSRP and GLBP Topology

Lab Configuring HSRP and GLBP Topology Topology 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 9 Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway R1 G0/1 192.168.1.1

More information

Lab Troubleshooting VTP Configuration

Lab Troubleshooting VTP Configuration Lab 4.4.3 Troubleshooting VTP Configuration Topology Diagram Addressing Table Device (Hostname) Interface IP Address Subnet Mask S1 VLAN 99 172.17.99.11 255.255.255.0 S2 VLAN 99 172.17.99.12 255.255.255.0

More information

This document is exclusive property of Cisco Systems, Inc. Permission is granted to print and copy this document for non-commercial distribution and

This document is exclusive property of Cisco Systems, Inc. Permission is granted to print and copy this document for non-commercial distribution and This document is exclusive property of Cisco Systems, Inc. Permission is granted to print and copy this document for non-commercial distribution and exclusive use by instructors in the CCNA Exploration:

More information

Routing IPV6. Copyright Cisco Academy. Yannis Xydas

Routing IPV6. Copyright Cisco Academy. Yannis Xydas Routing IPV6 Copyright Cisco Academy Yannis Xydas Quick review of IPv6 Static Routing Single Area OSPF Multi-Area OSPF Access Control Lists Quick Review of IPv6 Addresses Focus on: Global Unicast (GUA)

More information

Chapter 5 Lab 5-1 Inter-VLAN Routing INSTRUCTOR VERSION

Chapter 5 Lab 5-1 Inter-VLAN Routing INSTRUCTOR VERSION CCNPv7.1 SWITCH Chapter 5 Lab 5-1 Inter-VLAN Routing INSTRUCTOR VERSION Topology Objectives Implement a Layer 3 EtherChannel Implement Static Routing Implement Inter-VLAN Routing Background Cisco's switching

More information

Packet Tracer - Using Traceroute to Discover the Network (Instructor Version)

Packet Tracer - Using Traceroute to Discover the Network (Instructor Version) (Instructor Version) Instructor Note: Red font color or Gray highlights indicate text that appears in the instructor copy only. Topology Scenario The company you work for has acquired a new branch location.

More information

Lab - Troubleshooting ACL Configuration and Placement Topology

Lab - Troubleshooting ACL Configuration and Placement Topology Topology 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 8 Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway HQ G0/1 192.168.1.1

More information

Cisco Interconnecting Cisco Networking Devices Part 2

Cisco Interconnecting Cisco Networking Devices Part 2 Cisco 200-105 Interconnecting Cisco Networking Devices Part 2 R1# show running-config description ***Loopback*** ip address 192.168.1.1 255.255.255.255 Question: 374 description **Connected to R1-LAN**

More information

IPv6 Neighbor Discovery

IPv6 Neighbor Discovery IPv6 Neighbor Discovery Last Updated: September 19, 2012 The IPv6 neighbor discovery process uses Internet Control Message Protocol (ICMP) messages and solicited-node multicast addresses to determine the

More information

Policy Based Routing with the Multiple Tracking Options Feature Configuration Example

Policy Based Routing with the Multiple Tracking Options Feature Configuration Example Policy Based Routing with the Multiple Tracking Options Feature Configuration Example Document ID: 48003 Contents Introduction Prerequisites Requirements Components Used Conventions Configure Network Diagram

More information

8.9.2 Lab: Configure an Ethernet NIC to use DHCP in Windows Vista

8.9.2 Lab: Configure an Ethernet NIC to use DHCP in Windows Vista 8.9.2 Lab: Configure an Ethernet NIC to use DHCP in Windows Vista Introduction If Vista is not available in your classroom, you may complete this lab by viewing the figures in this document. Print and

More information

Lab 4.2.5a Connectivity Tests Ping

Lab 4.2.5a Connectivity Tests Ping Lab 4.2.5a Connectivity Tests Ping Objective Use the ping command to send ICMP datagrams to target host. Verify that the network layer between source and destination is working properly. Retrieve information

More information

FiberstoreOS IPv6 Service Configuration Guide

FiberstoreOS IPv6 Service Configuration Guide FiberstoreOS IPv6 Service Configuration Guide Contents 1 Configuring IPv6 over IPv4 Tunnel...5 1.1 Overview...5 1.1.2 Manual Tunnel...6 1.1.3 6to4 Tunnel...6 1.1.4 ISATAP Tunnel...7 1.2 Configure Manual

More information

Chapter 7 Lab 7-2, Using the AS_PATH Attribute

Chapter 7 Lab 7-2, Using the AS_PATH Attribute Chapter 7 Topology Objectives Use BGP commands to prevent private AS numbers from being advertised to the outside world. Use the AS_PATH attribute to filter BGP routes based on their source AS numbers.

More information

An IPv6 unicast address is an identifier for a single interface, on a single node. A packet that is sent to a unicast

An IPv6 unicast address is an identifier for a single interface, on a single node. A packet that is sent to a unicast An IPv6 unicast address is an identifier for a single interface, on a single node. A packet that is sent to a unicast address is delivered to the interface identified by that address. Finding Feature Information,

More information

2016/01/17 04:04 1/9 Basic Routing Lab

2016/01/17 04:04 1/9 Basic Routing Lab 2016/01/17 04:04 1/9 Basic Routing Lab Basic Routing Lab Introduction The purpose of this exercise is to introduce participants to the basic configuration requirements of a Cisco router. The network topology

More information

Chapter 4: Routing Concepts. Routing & Switching

Chapter 4: Routing Concepts. Routing & Switching Chapter 4: Routing Concepts Routing & Switching Routers are Computers Routers are specialized computers containing the following required components to operate: Central processing unit (CPU) Operating

More information

Lab Catalyst 2950T and 3550 Series Basic Setup

Lab Catalyst 2950T and 3550 Series Basic Setup Lab 1.2.9.1 Catalyst 2950T and 3550 Series Basic Setup Objective Configure a Cisco Catalyst 2950T or 3550 series Ethernet switch for the first time using the command-line interface (CLI) mode. Basic first

More information

IPv6 ND Configuration Example

IPv6 ND Configuration Example IPv6 ND Configuration Example Keywords: IPv6 ND Abstract: This document describes the application environment and typical configuration of IPv6 ND. Acronyms: Acronym Full spelling ARP FIB Address Resolution

More information

Lab: Basic Static Route Configuration

Lab: Basic Static Route Configuration Lab: Basic Static Route onfiguration Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway R1 Fa0/0 172.16.3.1 255.255.255.0 N/A S0/0/0 172.16.2.1 255.255.255.0 N/A

More information

Chapter 4 Lab 4-1, Redistribution Between RIP and OSPF

Chapter 4 Lab 4-1, Redistribution Between RIP and OSPF hapter 4 Lab 4-1, Redistribution Between RIP and OSPF Topology Objectives Review configuration and verification of RIP and OSPF. onfigure passive interfaces in both RIP and OSPF. Filter routing updates

More information

Lab Managing Router Configuration Files with Terminal Emulation Software

Lab Managing Router Configuration Files with Terminal Emulation Software Lab Managing Router Configuration Files with Terminal Emulation Software Topology Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway R1 G0/1 192.168.1.1 255.255.255.0 N/A

More information

Introduction to lab assignments with GNS3

Introduction to lab assignments with GNS3 Politecnico di Torino TSR/CNTS, PRL, PAR Introduction to lab assignments with GNS3 User guide and helpful tips Roberto Bonafiglia, Fulvio Risso October 27, 2017 Contents 1 Requirements 4 2 Access to GNS3

More information

CCNA Semester 1 labs. Part 1 of 2 Labs for chapters 1 7

CCNA Semester 1 labs. Part 1 of 2 Labs for chapters 1 7 CCNA Semester 1 labs Part 1 of 2 Labs for chapters 1 7 2.3.3.3 Lab - Building a Simple Network 2.3.3.4 Lab - Configuring a Switch Management Address 3.4.1.2 Lab - Using Wireshark to View Network Traffic

More information

IPv6 Neighbor Discovery

IPv6 Neighbor Discovery The IPv6 neighbor discovery process uses Internet Control Message Protocol (ICMP) messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local

More information

Static Routing. Routing Protocols and Concepts Chapter 2. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved.

Static Routing. Routing Protocols and Concepts Chapter 2. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved. Static Routing Routing Protocols and Concepts Chapter 2 1 Objectives Define the general role a router plays in networks. Describe the directly connected networks, different router interfaces Examine directly

More information

Basic Router Configuration

Basic Router Configuration This section includes information about some basic router configuration, and contains the following sections: Default Configuration, on page 1 Configuring Global Parameters, on page 2 Configuring Gigabit

More information

Lab 9: VPNs IPSec Remote Access VPN

Lab 9: VPNs IPSec Remote Access VPN Lab 9: VPNs IPSec Remote Access VPN Rich Macfarlane 2015 Aim: Details The aim of this lab is to introduce Virtual Private Network (VPN) concepts, using an IPSec remote access VPN between a remote users

More information

Juniper Netscreen Security Device. How to Enable IPv6 Page-51

Juniper Netscreen Security Device. How to Enable IPv6 Page-51 Juniper Netscreen Security Device Page-51 Netscreen Firewall - Interfaces Below is a screen shot for a Netscreen Firewall interface. All interfaces have an IPv6 address except ethernet0/0. We will step

More information

Lab 1. CLI Navigation. Scenario. Initial Configuration for R1

Lab 1. CLI Navigation. Scenario. Initial Configuration for R1 Lab 1 CLI Navigation This lab covers the most basic skills for accessing and using the command-line interface (CLI) on a Cisco router or switch. Many of the small, picky details of how the CLI works cannot

More information

Lab Configuring Basic Router Settings with IOS CLI (Instructor Version Optional Lab)

Lab Configuring Basic Router Settings with IOS CLI (Instructor Version Optional Lab) (Instructor Version Optional Lab) Instructor Note: Red font color or gray highlights indicate text that appears in the instructor copy only. Optional activities are designed to enhance understanding and/or

More information

TELECOMMUNICATION MANAGEMENT AND NETWORKS

TELECOMMUNICATION MANAGEMENT AND NETWORKS QUAID-E-AWAM UNIVERSITY OF ENGINEERING SCIENCE AND TECHNOLOGY, NAWABSHAH TELECOMMUNICATION MANAGEMENT AND NETWORKS LAB # 3 CONFIGURING INTERFACES OF ROUTER AND SWITCH Topology Diagram Addressing Table

More information

Configure Initial Router Settings on Cisco 4000 Series ISRs

Configure Initial Router Settings on Cisco 4000 Series ISRs Configure Initial Router Settings on Cisco 4000 Series ISRs This chapter describes how to perform the initial configuration on Cisco 4000 Series Integrated Services Routers (ISRs). It contains the following

More information

Lab Configuring Port Address Translation (PAT) (Instructor Version)

Lab Configuring Port Address Translation (PAT) (Instructor Version) (Instructor Version) Instructor Note: Red font color or gray highlights indicate text that appears in the instructor copy only. Topology Addressing Table Objectives Device Interface IP Address Subnet Mask

More information

CCNA 1 Chapter 2 v5.0 Exam Answers %

CCNA 1 Chapter 2 v5.0 Exam Answers % CCNA 1 Chapter 2 v5.0 Exam Answers 2015 100% 1. Which two features are characteristics of flash memory? (Choose two.) Flash provides nonvolatile storage. Flash receives a copy of the IOS from RAM when

More information

Lab 1.3.2: Review of Concepts from Exploration 1 - Challenge

Lab 1.3.2: Review of Concepts from Exploration 1 - Challenge Lab 1.3.2: Review of Concepts from Exploration 1 - Challenge Topology Diagram Learning Objectives Upon completion of this lab, you will be able to: Create a logical topology given network requirements

More information

Lab Configuring Port Address Translation (PAT) Topology

Lab Configuring Port Address Translation (PAT) Topology Topology Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway Gateway G0/1 192.168.1.1 255.255.255.0 N/A S0/0/1 209.165.201.18 255.255.255.252 N/A ISP S0/0/0 (DCE) 209.165.201.17

More information

Configuring IPv6 for Gigabit Ethernet Interfaces

Configuring IPv6 for Gigabit Ethernet Interfaces CHAPTER 46 IP version 6 (IPv6) provides extended addressing capability beyond those provided in IP version 4 (IPv4) in Cisco MDS SAN-OS. The architecture of IPv6 has been designed to allow existing IPv4

More information

Lab - Examining Telnet and SSH in Wireshark

Lab - Examining Telnet and SSH in Wireshark Topology Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway R1 G0/1 192.168.1.1 255.255.255.0 N/A PC-A NIC 192.168.1.3 255.255.255.0 192.168.1.1 Part 1: Configure the Devices

More information