Reviving Bit-slice Technology in a Programmable Fashion

Size: px
Start display at page:

Download "Reviving Bit-slice Technology in a Programmable Fashion"

Transcription

1 By Andrew Siska, Applications Engineer Sr Staff, and Meng He, Product Marketing Engineer Sr, Cypress Semiconductor Corp. The term Bit Slicing was once dominant in history books as a technique for constructing a processor from processor modules of smaller bit width where each of these components processes one field or "slice" of an operand. Bit slice processors usually consist of an arithmetic logic unit (ALU) of 2, 4 or 8 bits and control lines. Using multiple, simpler ALUs was seen as a way to increase computing power in a cost-effective manner. The latest system-on-chip (SOC) technology revives bit-slice in a programmable fashion to serve the purpose of offloading the main CPU by intelligently assigning processing tasks to other processing. How did bit-slice evolve over years? In the early 70s, a number of very complex microprocessor designs passed the 8-bit barrier using very simple arithmetic logic units (ALUs). These sophisticated programmable digital systems weren t designed using 8, 16 or 32-bit microprocessors but rather cascaded 4-bit processors, known as bit-slice processors. These processors had very simple instruction sets (much simpler than today s RISC processors) but performed some very sophisticated processing. Devices such as AMD's Am2900 family and National Semiconductor s IMP-16 and IMP-8 were typically found in aviation systems, guidance and tracking systems, and early signal processing applications. Many of these bit-slice processors have gone the way of thru-hole components and have been replaced by the more popular 8- through 32-bit processors that are found in the market today. However, bit-slice processors are still found in some military, aerospace, industrial, and academic designs, and they are far from being dead. The marriage of programmable logic, such as PLDs and FPGAs with multiple reduced instructions set ALUs has opened up a new palette for the digital designers. The programmable face-off of bit-slice technology Given the numerous microprocessors and microcontrollers on the market today, why would one build a design using bit-slicing techniques? Given the many embedded designs the reader has probably completed during their design career the answer is simple there are numerous tasks better performed by hardware than software. In order to keep production costs down, it s more cost-effective to select a high-performance processor and implement the hardware functions in software. What if instead of opting for a high-performance processor, a designer was able to use a low-cost microprocessor that included programmable logic and a number of simple instruction set ALUs. The microprocessor would then be able to perform simple tasks while the programmable logic and ALUs would handle the more complex, higher bit width processes. Let us explore a device with 24 such ALUs, which we will call data-paths with a mixture of PLDs. The data-path shown in Figure-1 below contains An 8-bit single-cycle ALU that can perform general-purpose functions including add, subtract, AND, OR, XOR, and PASS Associated compare and condition generation circuits Built in Cyclic Redundancy Check (CRC) and Pseudo Random Sequence (PRS) generation Variable Most Significant Byte (MSB) to be programmable specified for arbitrary width digital functions Two 4-byte deep FIFOs, two 8-bit wide data registers and two 8-bit accumulators Data inputs that can be support different types of data inputs: Configuration, control, and serial and parallel data Data output that can be various signals such as conditional, status data, etc. Page 1 of 6

2 Figure 1: Datapath Architecture Each one of these 8 bit data-paths can be coupled to its 8-bit data-path neighbor, which in turn can be coupled to its neighbor, and so on. An architecture of this nature effectively yields an 8 to n-bit processor in multiples of 8 bit. Note that the FIFOs, data registers, accumulators, and ALUs in the data-path can all be configured as n-bit in this manner. In addition, multi-byte data-path modules automatically chain the 8-bit data-paths together and the control signals and status outputs for each of the data-paths in the module. For instance, if 8 bits is not enough for a particular application, the data-path can be coupled to a neighboring data-path to form a 16 or higher bit processor. An additional benefit of this architecture is each instruction requires only 1 clock cycle. As a consequence, designs will run at hardware speed instead of processor state speed. In applications that are oversampled, or do not need the highest clock rates, the single ALU block in the data-path can be efficiently shared with two sets of registers and condition generators. ALU and shift outputs are registered and can be used as inputs in subsequent cycles. Usage examples include support for 16-bit functions in one (8-bit) data-path or interleaving a CRC generation operation with a data shift operation. An enhancement made to the standard bit slice architecture is the inclusion of Programmable Logic. This allows developers to include a standard state machine using Verilog. In addition, arithmetic functions that normally consume a large number of logic gates are no longer a concern because these functions can be implemented in the standard ALU and controlled by the state machine. Also note that the main processor and ALUs can run on separate clocks. For instance, the core processor can be clocked at 24 MHz while the ALUs can be clocked at 48 MHz or higher. Figure 2 below shows three 8-bit ALUs or data-paths chained together to form a 24-bit processor. Page 2 of 6

3 Figure 2: Datapath Chaining Architecture A 16-bit example In this example, we are going to create a 16-bit pattern generator with the 16-bit pattern shifted out continuously using the PSoC 3 Programmable System-on-chip and PSoC Creator development environment from Cypress Semiconductor. In this project, we are only using the digital portion inside the chip without involving the main CPU. One data path is set for the least significant 8-bits and another data-path for the most significant 8-bits. Figure 3 shows the data path configuration for the least significant 8-bits of the 16-bit pattern generator, and Figure 4 shows the data path configuration for the most significant 8-bits of the 16-bit pattern generator. Page 3 of 6

4 Figure 3: Datapath Configuration LSB Page 4 of 6

5 Figure 4: Datapath Configuration MSB In both Figure 3 and Figure 4, the ALU instructions are identical. A reset or clear of A0 (accumulator 0) is performed when Dynamic Configuration register 0 is pointed to by the state machine. The value in A0 is shifted right one bit when the state machine points to Configuration Register 1, and the value in A1 (accumulator 1) is incremented when Dynamic Configuration register 3 is pointed to. The bit shifted out of the high order ALU is shifted in to the low order ALU shifting into and out of an ALU is accomplished by setting CHAIN in the SIA field of Static Configuration Register 6 in the low order ALU (Figure 3) and setting CHAIN in the CIA field of Static Configuration Register 6 in the high order ALU (Figure 4). Since both the high and low order 8-bit data paths are clocked by a common clock, they act as a single 16-bit processor and are completely independent of the central processor no firmware, processor intervention, or stolen processor cycles is needed to run the pattern generator. This simple project demonstrates how to connect multiple data-path ALUs. Rather than requiring a high performance microcontroller to run tasks in what appears to be real-time, developers can use a simple microcontroller to manage the application and leave the real-time background tasks to multiple ALUs combined with programmable logic. System-on-chip (SOC) technology revives bit-slicing in a programmable fashion to serve the purpose of offloading the main CPU by intelligently assigning processing tasks to other on-chip programmable hardware. With a bit-slicing architecture,, developers can not only develop a standard state machine but the arithmetic functions as well that normally consume a large amount of logic gates. Neither is a cause for concern because these will be implemented in the standard ALU contained in the data path logic and/or controlled by the PLD based state machine, allowing the modern embedded system engineer to focus on the overall system power consumption and efficiency. Page 5 of 6

6 Cypress Semiconductor 198 Champion Court San Jose, CA Phone: Fax: Cypress Semiconductor Corporation, The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. PSoC Designer, Programmable System-on-Chip, and PSoC Express are trademarks and PSoC is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations. This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmw are in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypre ss does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress product in a life -support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. Page 6 of 6

Use the Status Register when the firmware needs to query the state of internal digital signals.

Use the Status Register when the firmware needs to query the state of internal digital signals. 1.60 Features Up to 8-bit General Description The allows the firmware to read digital signals. When to Use a Use the when the firmware needs to query the state of internal digital signals. Input/Output

More information

This optional pin is present if the Mode parameter is set to SyncMode or PulseMode. Otherwise, the clock input does not show.

This optional pin is present if the Mode parameter is set to SyncMode or PulseMode. Otherwise, the clock input does not show. 1.60 Features Up to 8-bit General Description The allows the firmware to output digital signals. When to Use a Use a when the firmware needs to interact with a digital system. You can also use the as a

More information

Filter_ADC_VDAC_poll Example Project Features. General Description. Development Kit Configuration

Filter_ADC_VDAC_poll Example Project Features. General Description. Development Kit Configuration 1.10 Features FIR low-pass filter at 6 khz with Blackman window, 85 taps Demonstrates the polling mode of the Filter component AC-coupled input provided bias with internal Opamp for maximum swing DMA used

More information

Use the Status Register when the firmware needs to query the state of internal digital signals.

Use the Status Register when the firmware needs to query the state of internal digital signals. 1.70 Features Up to 8-bit General Description The allows the firmware to read digital signals. When to Use a Use the when the firmware needs to query the state of internal digital signals. Input/Output

More information

Cypress HX2VL Configuration Utility Blaster User Guide

Cypress HX2VL Configuration Utility Blaster User Guide Cypress HX2VL Configuration Utility Blaster User Guide Spec. # 001- Rev. ** Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

This optional pin is present if the Mode parameter is set to SyncMode or PulseMode. Otherwise, the clock input does not show.

This optional pin is present if the Mode parameter is set to SyncMode or PulseMode. Otherwise, the clock input does not show. 1.70 Features Up to 8-bit General Description The allows the firmware to output digital signals. When to Use a Use a when the firmware needs to interact with a digital system. You can also use the as a

More information

Next-Generation Hot-Swap Controllers

Next-Generation Hot-Swap Controllers Next-Generation Hot-Swap Controllers By Jim Davis, Product Mktg Engineer Staff, Cypress Semiconductor Corp. Current hot-swap controllers are great at what they do: simple yet reliable monitoring of critical

More information

Voltage Reference (Vref) Features. General Description. Input/Output Connections. When to Use a Vref Voltage references and supplies

Voltage Reference (Vref) Features. General Description. Input/Output Connections. When to Use a Vref Voltage references and supplies PSoC Creator Component Datasheet Voltage Reference (Vref) 1.60 Features Voltage references and supplies Multiple options Bandgap principle to achieve temperature, and voltage stability General Description

More information

CE PSoC 4: Time-Stamped ADC Data Transfer Using DMA

CE PSoC 4: Time-Stamped ADC Data Transfer Using DMA CE97091- PSoC 4: Time-Stamped ADC Data Transfer Using DMA Objective This code example uses a DMA channel with two descriptors to implement a time-stamped ADC data transfer. It uses the Watch Dog Timer

More information

THIS SPEC IS OBSOLETE

THIS SPEC IS OBSOLETE THIS SPEC IS OBSOLETE Spec No: 002-04992 Spec Title: Installation of the LAN Adapter Replaced by: NONE Installation of the LAN Adapter Doc. No. 002-04992 Rev. *A Cypress Semiconductor 198 Champion Court

More information

HX2VL Development Kit Guide. Doc. # Rev. **

HX2VL Development Kit Guide. Doc. # Rev. ** HX2VL Development Kit Guide Doc. # 001-73960 Rev. ** Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com Copyrights

More information

Writing to Internal Flash in PSoC 3 and PSoC 5

Writing to Internal Flash in PSoC 3 and PSoC 5 Writing to Internal Flash in PSoC 3 and PSoC 5 Code Example Objective CE62384 demonstrates how to write to the internal flash to change its contents during run time. CE62384 Associated Part Families: CY8C3xxx

More information

HX2VL Development Kit Guide. Doc. # Rev. *A

HX2VL Development Kit Guide. Doc. # Rev. *A HX2VL Development Kit Guide Doc. # 001-73960 Rev. *A Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com Copyrights

More information

CE56273 Associated Part Families: CY8C38xx/CY8C55xx Software: PSoC Creator Related Hardware: CY8CKIT-001 Author: Anu M D

CE56273 Associated Part Families: CY8C38xx/CY8C55xx Software: PSoC Creator Related Hardware: CY8CKIT-001 Author: Anu M D Objective CE56273 SPI With DMA in PSoC 3 / PSoC 5 CE56273 Associated Part Families: CY8C38xx/CY8C55xx Software: PSoC Creator Related Hardware: CY8CKIT-001 Author: Anu M D This code example demonstrates

More information

CYClockMaker Programming Kit Guide CY3675. Doc. # Rev. **

CYClockMaker Programming Kit Guide CY3675. Doc. # Rev. ** CY3675 CYClockMaker Programming Kit Guide Doc. # 001-52414 Rev. ** Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

8 to 1 Analog Multiplexer Datasheet AMux8 V 1.1. Features and Overview

8 to 1 Analog Multiplexer Datasheet AMux8 V 1.1. Features and Overview Datasheet AMux8 V 1.1 001-13257 Rev. *J 8 to 1 Analog Multiplexer Copyright 2001-2015 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) Digital Analog CT

More information

GPIF II Designer - Quick Start Guide

GPIF II Designer - Quick Start Guide GPIF II Designer - Quick Start Guide 1. Introduction Welcome to GPIF II Designer - a software tool to configure the processor port of EZ-USB FX3 to connect to any external device. This application generates

More information

24-Bit Pseudo Random Sequence Generator Data Sheet

24-Bit Pseudo Random Sequence Generator Data Sheet 48. 24-Bit Pseudo Random Sequence Generator 24-Bit Pseudo Random Sequence Generator Data Sheet Copyright 2000-2009 Cypress Semiconductor Corporation. All Rights Reserved. PRS24 PSoC Blocks API Memory (Bytes)

More information

16-Bit Hardware Density Modulated PWM Data Sheet

16-Bit Hardware Density Modulated PWM Data Sheet 1. 16-Bit Hardware Density Modulated PWM User Module Data Sheet 16-Bit Hardware Density Modulated PWM Data Sheet DMM16HW DMM16HW Copyright 2009 Cypress Semiconductor Corporation. All Rights Reserved. PSoC

More information

Cypress HX2VL Configuration Utility Blaster User Guide

Cypress HX2VL Configuration Utility Blaster User Guide Cypress HX2VL Configuration Utility Blaster User Guide Doc. # 001-70672 Rev. *B Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

THIS SPEC IS OBSOLETE

THIS SPEC IS OBSOLETE THIS SPEC IS OBSOLETE Spec Number: 001-65252 Spec Title: AN1071 Single Versus Multiple Transaction Translator Sunset Owner: RSKV Replaced By: None Single Versus Multiple Transaction Translator Application

More information

CYClockMaker Programming Kit Guide CY3675. Doc. # Rev. *C

CYClockMaker Programming Kit Guide CY3675. Doc. # Rev. *C CY3675 CYClockMaker Programming Kit Guide Doc. # 001-52414 Rev. *C Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

4 to 1 Analog Multiplexer Data Sheet

4 to 1 Analog Multiplexer Data Sheet 26. 4 to 1 Analog Multiplexer Copyright 2001-2009 Cypress Semiconductor Corporation. All Rights Reserved. 4 to 1 Analog Multiplexer Data Sheet 4 to 1 MUX Resources CY8C29/27/24/22/21xxx, CY8C23x33, CY8CLED02/04/08/16,

More information

For one or more fully configured, functional example projects that use this user module go to

For one or more fully configured, functional example projects that use this user module go to Datasheet RefMux V 1.3 001-13584 Rev. *H Reference Multiplexer Copyright 2003-2012 Cypress Semiconductor Corporation. All Rights Reserved. PSoC Blocks API Memory (Bytes) Resources Digital Analog CT Analog

More information

LPF (Optional) CY8C24x93. Without LPF and ISR to 3* With LPF only** to 3* With ISR only to 3*

LPF (Optional) CY8C24x93. Without LPF and ISR to 3* With LPF only** to 3* With ISR only to 3* Datasheet CMP V 1.00 001-85893 Rev. ** Comparator Copyright 2013 Cypress Semiconductor Corporation. All Rights Reserved. PSoC Resources API Memory (Bytes) UM Configurations CMP LPF (Optional) Analog Interrupt

More information

DMX512 Receiver Datasheet DMX512Rx V 1.0. Features and Overview

DMX512 Receiver Datasheet DMX512Rx V 1.0. Features and Overview Datasheet DMX512Rx V 1.0 001-14404 Rev. *G DMX512 Receiver Copyright 2007-2014 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) Digital Analog CT Analog

More information

FTG Programming Kit CY3670. Spec. # Rev. *C

FTG Programming Kit CY3670. Spec. # Rev. *C CY3670 Spec. # 38-07410 Rev. *C Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com Copyrights Copyrights Cypress

More information

CY7C603xx CYWUSB

CY7C603xx CYWUSB Datasheet CMP V 1.2 001-13261 Rev. *J Comparator Copyright 2001-2012 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) Digital Analog CT Analog SC Flash RAM

More information

PSoC 1 I 2 C Bootloader

PSoC 1 I 2 C Bootloader Objective Project Name: PSoC1_I2C_Bootloader Programming Language: C Associated Part: All PSoC 1 Families Software Version: PD 5.2 SP1 Related Hardware: CY3210 PSoC Eval1 Board Author: Jie Yuan This project

More information

Libraries Guide. Arithmetic Libraries User Guide. Document #: Rev. *A

Libraries Guide. Arithmetic Libraries User Guide. Document #: Rev. *A Libraries Guide Arithmetic Libraries User Guide Document #: 001-44477 Rev. *A Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

Use the IDAC8 when a fixed or programmable current source is required in an application.

Use the IDAC8 when a fixed or programmable current source is required in an application. PSoC Creator Component Data Sheet 8-Bit Current Digital to Analog Converter (IDAC8) 1.50 Features Three ranges 2040 ua, 255 ua, and 32.875 ua Software or clock driven output strobe Data source may be CPU,

More information

THIS SPEC IS OBSOLETE

THIS SPEC IS OBSOLETE THIS SPEC IS OBSOLETE Spec No: 001-17581 Spec Title: WIRELESSUSB(TM) LP RDK JAPANESE RADIO LAW TESTING AND VERIFICATION - AN17581 Replaced by: NONE AN17581 WirelessUSB LP RDK Japanese Radio Law Testing

More information

The color of the Clock component waveform symbol will change based on the clock's domain (as shown in the DWR Clock Editor), as follows:

The color of the Clock component waveform symbol will change based on the clock's domain (as shown in the DWR Clock Editor), as follows: 1.60 Features Quickly defines new clocks Refers to system or design-wide clocks Configures the clock frequency tolerance General Description The component provides two key features: it provides allows

More information

Comparator (Comp) Features. General Description. When to use a Comparator 1.60

Comparator (Comp) Features. General Description. When to use a Comparator 1.60 1.60 Features Low input offset User controlled offset calibration Multiple speed modes Low power mode Output routable to digital logic blocks or pins Selectable output polarity Configurable operation mode

More information

Shadow Registers Datasheet ShadowRegs V 1.1. Features and Overview

Shadow Registers Datasheet ShadowRegs V 1.1. Features and Overview Datasheet ShadowRegs V 1.1 001-16962 Rev. *H Shadow Registers Copyright 2007-2013 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) Digital Analog CT Analog

More information

PSoC Designer Release Notes

PSoC Designer Release Notes Version 5.4 Content Pack 1 Release Date: 14 July 2014 Thank you for your interest in PSoC Designer. PSoC Designer is a complete Integrated Development Environment (IDE) for designing with PSoC 1 devices.

More information

Preliminary. Gas Sensor Analog Front End Datasheet GasSensorAFE V Features and Overview. This datasheet contains Preliminary information.

Preliminary. Gas Sensor Analog Front End Datasheet GasSensorAFE V Features and Overview. This datasheet contains Preliminary information. Preliminary Gas Sensor Analog Front End Datasheet GasSensorAFE V 1.10 001-81375 Rev. *A GasSensorAFE Copyright 2012-2013 Cypress Semiconductor Corporation. All Rights Reserved. This datasheet contains

More information

AN EZ-USB FX3 I 2 C Boot Option. Application Note Abstract. Introduction. FX3 Boot Options

AN EZ-USB FX3 I 2 C Boot Option. Application Note Abstract. Introduction. FX3 Boot Options EZ-USB FX3 I 2 C Boot Option Application Note Abstract AN68914 Author: Shruti Maheshwari Associated Project: No Associated Part Family: EZ-USB FX3 Software Version: None Associated Application Notes: None

More information

Supported Devices: CY8C28x13, CY8C28x33, CY8C28x43, CY8C28x45, CY8C28x52, CY8C21x45, CY8C22x45, CY8C24x93. CY8C24x

Supported Devices: CY8C28x13, CY8C28x33, CY8C28x43, CY8C28x45, CY8C28x52, CY8C21x45, CY8C22x45, CY8C24x93. CY8C24x Current DAC Datasheet IDAC V 1.00 001-85892 Rev. ** 6-Bit Voltage Output DAC Copyright 2013 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) Digital Analog

More information

PSoC 4 Low Power Comparator (LPComp) Features. General Description. When to Use a LPComp 2.0. Low input offset. User controlled offset calibration

PSoC 4 Low Power Comparator (LPComp) Features. General Description. When to Use a LPComp 2.0. Low input offset. User controlled offset calibration 2.0 Features Low input offset User controlled offset calibration Multiple speed modes Low-power mode Wake from low power modes Multiple interrupt and output modes General Description The Low Power Comparator

More information

Programmable Threshold Comparator Data Sheet

Programmable Threshold Comparator Data Sheet 10. Programmable Threshold Comparator Programmable Threshold Comparator Data Sheet Copyright 2001-2009 Cypress Semiconductor Corporation. All Rights Reserved. CMPPRG Resources CY8C29/27/24/22xxx, CY8C23x33,

More information

Clock Programming Kit

Clock Programming Kit Clock Programming Kit Clock Programming Kit Features Supports these field-programmable clock generators: CY2077FS, CY2077FZ, CY22050KF, CY22150KF, CY22381F, CY22392F, CY22393F, CY22394F, CY22395F, CY23FP12,

More information

Incremental ADC Data Sheet

Incremental ADC Data Sheet 4. Incremental ADC Incremental ADC Data Sheet Copyright 2008-2009 Cypress Semiconductor Corporation. All Rights Reserved. ADCINC PSoC Resources Blocks API Memory Pins (per CapSense I2C/SPI Timer Comparator

More information

PSoC Creator Component Datasheet

PSoC Creator Component Datasheet 1.30 Features Supports 4-wire resistive touchscreen interface Supports the Delta Sigma Converter for both the PSoC 3 and PSoC 5 devices Supports the ADC Successive Approximation Register for PSoC 5 devices

More information

This Application Note demonstrates an SPI-LIN slave bridge using a PSoC device. Demonstration projects are included.

This Application Note demonstrates an SPI-LIN slave bridge using a PSoC device. Demonstration projects are included. Communication - SPI-LIN Slave Bridge Application Note Abstract AN0 Author: Valeriy Kyrynyuk Associated Project: Yes Associated Part Family: CY8C7 GET FREE SAMPLES HERE Software Version: PSoC Designer.

More information

Programmable Gain Amplifier Datasheet PGA V 3.2. Features and Overview

Programmable Gain Amplifier Datasheet PGA V 3.2. Features and Overview Datasheet PGA V 3.2 001-13575 Rev. *I Programmable Gain Amplifier Copyright 2002-2014 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) Digital Analog CT

More information

Programmer User Guide

Programmer User Guide Programmer User Guide Programmer Guide 3.06 Spec. # 001-51796 Rev. *A Cypress Semiconductor 3901 North First Street San Jose, CA 95134 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

The following table lists user modules used in this code example and the hardware resources occupied by each user module.

The following table lists user modules used in this code example and the hardware resources occupied by each user module. CSA Software Filters with EzI2Cs Slave on CY8C20xx6 CE63794 Code Example Name: Example_CSA_EzI 2 Cs_Filters_20xx6 Programming Language: C Associated Part Families: CY8C20xx6 Software Version: PD5.1 (SP2)

More information

CY3660-enCoRe V and encore V LV DVK Kit Guide

CY3660-enCoRe V and encore V LV DVK Kit Guide CY3660-enCoRe V and encore V LV DVK Kit Guide Doc. # 001-41500 Rev. ** Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

PSoC Programmer 3.12 Release Notes

PSoC Programmer 3.12 Release Notes PSoC Programmer 3.12 Release Notes Release Date: July 28, 2010 Thank you for your interest in PSoC Programmer 3.12. These release notes list all new features, installation requirements, supported devices

More information

AN SIO Tips and Tricks in PSoC 3 / PSoC 5. Application Note Abstract. Introduction

AN SIO Tips and Tricks in PSoC 3 / PSoC 5. Application Note Abstract. Introduction SIO Tips and Tricks in PSoC 3 / PSoC 5 Application Note Abstract AN60580 Author: Pavankumar Vibhute Associated Project: Yes Associated Part Family: CY8C38xxxx Software Version: PSoC Creator Associated

More information

CapSense I 2 C/SPI Timer Flash RAM

CapSense I 2 C/SPI Timer Flash RAM Datasheet SPIS V 2.5 001-13679 Rev. *K SPI Slave Copyright 2002-2015 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) CapSense I 2 C/SPI Timer Flash RAM

More information

144-Mbit QDR -II SRAM 2-Word Burst Architecture

144-Mbit QDR -II SRAM 2-Word Burst Architecture ADVAE Y71610V, Y71625V Y71612V, Y71614V 144-Mbit QDR -II SRAM 2-Word Burst Architecture Features Separate independent read and write data ports Supports concurrent transactions 333 MHz clock for high bandwidth

More information

EZ-USB FX3 Development Kit Guide

EZ-USB FX3 Development Kit Guide CYUSB3KIT-001 EZ-USB FX3 Development Kit Guide Doc. #: 001-70237 Rev. *A Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

Digital Logic Gates. Features. General Description. Input/Output Connections. When to Use a Logic Gate. Input 1. Input 2. Inputs 3-8 * 1.

Digital Logic Gates. Features. General Description. Input/Output Connections. When to Use a Logic Gate. Input 1. Input 2. Inputs 3-8 * 1. 1.0 Features Industry-standard logic gates Configurable number of inputs up to 8 Optional array of gates General Description Logic gates provide basic boolean operations. The output of a logic gate is

More information

This input determines the next value of the output. The output does not change until the next rising edge of the clock.

This input determines the next value of the output. The output does not change until the next rising edge of the clock. 1.30 Features Asynchronous reset or preset Synchronous reset, preset, or both Configurable width for array of s General Description The stores a digital value. When to Use a Use the to implement sequential

More information

Bootloader project - project with Bootloader and Communication components

Bootloader project - project with Bootloader and Communication components PSoC Creator Component Datasheet Bootloader and Bootloadable 1.10 Features Separate Bootloader and Bootloadable components Configurable set of supported commands Flexible component configuration General

More information

AN1090. NoBL : The Fast SRAM Architecture. Introduction. NoBL SRAM Description. Abstract. NoBL SRAM Operation

AN1090. NoBL : The Fast SRAM Architecture. Introduction. NoBL SRAM Description. Abstract. NoBL SRAM Operation AN1090 NoBL : The Fast SRAM Architecture Associated Project: No Associated Part Family: All NoBL SRAMs Software Version: None Related Application Notes: None Abstract AN1090 describes the operation of

More information

FM3 MB9B100A/300A/400A/500A Series Inverter Solution GUI User Guide

FM3 MB9B100A/300A/400A/500A Series Inverter Solution GUI User Guide FM3 MB9B100A/300A/400A/500A Series Inverter Solution GUI User Guide Doc. No. 002-04375 Rev. *A Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 http://www.cypress.com Copyrights Copyrights

More information

CE58957 demonstrates how to implement the fade and toggle feature to the backlight LEDs of CapSense buttons.

CE58957 demonstrates how to implement the fade and toggle feature to the backlight LEDs of CapSense buttons. Objective CapSense Sigma Delta (CSD) with LED Backlight Fading on CY8C24x94 CE58957 Code Example Name: Example_CSD_BacklightFading_24x94 Programming Language: C Associated Part Families: CY8C24x94 Software

More information

12-Mbit (512 K 24) Static RAM

12-Mbit (512 K 24) Static RAM 12-Mbit (512 K 24) Static RAM Features High speed t AA = 10 ns Low active power I CC = 175 ma at 10 ns Low CMOS standby power I SB2 = 25 ma Operating voltages of 3.3 ± 0.3V 2.0V data retention Automatic

More information

Digital Multiplexer and Demultiplexer. Features. General Description. Input/Output Connections. When to Use a Multiplexer. Multiplexer 1.

Digital Multiplexer and Demultiplexer. Features. General Description. Input/Output Connections. When to Use a Multiplexer. Multiplexer 1. PSoC Creator Component Datasheet Digital Multiplexer and Demultiplexer 1.10 Features Digital Multiplexer Digital Demultiplexer Up to 16 channels General Description The Multiplexer component is used to

More information

This section describes the various input and output connections for the Voltage Fault Detector.

This section describes the various input and output connections for the Voltage Fault Detector. PSoC Creator Component Datasheet Voltage Fault Detector (VFD) 2.10 Features monitor up to 32 voltage inputs user-defined over and under voltage limits simply outputs a good/bad status result General Description

More information

Use the Status Register when the firmware needs to query the state of internal digital signals.

Use the Status Register when the firmware needs to query the state of internal digital signals. 1.50 Features Up to 8-bit General Description The allows the firmware to read digital signals. When to Use a Use the when the firmware needs to query the state of internal digital signals. Input/Output

More information

CY8C29/27/24/23/21xxx, CY8CLED02/04/08/16, CY8CLED0xD, CY8CLED0xG, CY8C28x45, CY8CPLC20, CY8CLED16P01, CY8C28xxx. Main UM

CY8C29/27/24/23/21xxx, CY8CLED02/04/08/16, CY8CLED0xD, CY8CLED0xG, CY8C28x45, CY8CPLC20, CY8CLED16P01, CY8C28xxx. Main UM Datasheet OneWire V 1.1 001-43362 Rev. *I OneWire Copyright 2008-2014 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) Digital Analog CT Analog SC Flash

More information

This optional pin is present if the Mode parameter is set to SyncMode or PulseMode. Otherwise, the clock input does not show.

This optional pin is present if the Mode parameter is set to SyncMode or PulseMode. Otherwise, the clock input does not show. 1.50 Features Up to 8-bit General Description The allows the firmware to output digital signals. When to Use a Use a when the firmware needs to interact with a digital system. You can also use the as a

More information

H O S T. FX2 SX2 Back - to - Back Setup. Project Objective. Overview

H O S T. FX2 SX2 Back - to - Back Setup. Project Objective. Overview FX2 SX2 Back - to - Back Setup Project Objective Project Name: FX2_SX2 Programming Language: C Associated Part Families: CY7C68013A,CY7C68001 Software Version: Keil µvision2 Related Hardware: CY3682/CY3684

More information

Automatic reload of the period to the count register on terminal count

Automatic reload of the period to the count register on terminal count 1.0 Features 7-bit read/write period register 7-bit count register that is read/write Automatic reload of the period to the count register on terminal count Routed load and enable signals General Description

More information

This section describes the various input and output connections for the SysInt Component.

This section describes the various input and output connections for the SysInt Component. 1.0 Features Generating interrupts from hardware signals Assigning interrupts to a CPU core Configuring interrupt priority Interrupt vectoring and control General Description The Component is a graphical

More information

PSoC Blocks. CY8C20xx6/6A/6AS/6H/6L, CY8C20xx7/7S, CY7C643xx, CY7C604xx, CYONS2xxx, CYONSxNxxxx, CYRF89x35, CY8C20065, CY8C24x93, CY7C69xxx

PSoC Blocks. CY8C20xx6/6A/6AS/6H/6L, CY8C20xx7/7S, CY7C643xx, CY7C604xx, CYONS2xxx, CYONSxNxxxx, CYRF89x35, CY8C20065, CY8C24x93, CY7C69xxx Datasheet ADCINC V 3.00 001-45836 Rev. *H Incremental ADC Copyright 2008-2013 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) CapSense I2C/SPI Timer Comparator

More information

One 32-bit counter that can be free running or generate periodic interrupts

One 32-bit counter that can be free running or generate periodic interrupts PSoC Creator Component Datasheet Multi-Counter Watchdog (MCWDT_PDL) 1.0 Features Configures up to three counters in a multi-counter watchdog (MCWDT) block Two 16-bit counters that can be free running,

More information

This section describes the various input and output connections for the Voltage Fault Detector.

This section describes the various input and output connections for the Voltage Fault Detector. PSoC Creator Component Datasheet Voltage Fault Detector (VFD) 2.20 Features Monitor up to 32 voltage inputs User-defined over and under voltage limits Simply outputs a good/bad status result General Description

More information

PSoC Programmer Release Notes

PSoC Programmer Release Notes PSoC Programmer Release Notes Version 3.16 Release Date: September 12, 2012 Thank you for your interest in the PSoC Programmer. The release notes lists all the new features, installation requirements,

More information

EZ I 2 C Slave. Features. General Description. When to use a EZ I 2 C Slave 1.50

EZ I 2 C Slave. Features. General Description. When to use a EZ I 2 C Slave 1.50 PSoC Creator Component Data Sheet EZ I 2 C Slave 1.50 Features Industry standard Philips I 2 C bus compatible interface Emulates common I 2 C EEPROM interface Only two pins (SDA and SCL) required to interface

More information

Release Notes SRN065 PSoC Programmer Version Release Date: November 9, 2009

Release Notes SRN065 PSoC Programmer Version Release Date: November 9, 2009 Release Notes SRN065 PSoC Programmer Version 3.10.1 Release Date: November 9, 2009 Thank you for your interest in PSoC Programmer version 3.10. These release notes list the installation requirements and

More information

Application Note. LCD Driver Based on the HT1621 Controller

Application Note. LCD Driver Based on the HT1621 Controller Application Note AN LCD Driver Based on the HT Controller Author: Andrew Smetana Associated Project: Yes Associated Part Family: All PSoC Designer Version:. SP Associated Application Notes: AN8 Abstract

More information

THIS SPEC IS OBSOLETE

THIS SPEC IS OBSOLETE THIS SPEC IS OBSOLETE Spec No: 002-09373 Spec Title: AN209373 - F2MC-FM3 Family OpenOCD GUI Frontend Replaced by: 002-0586 AN209373 This application note describes how to use on-board Open On-Chip Debug

More information

Use the Status Register when the firmware needs to query the state of internal digital signals.

Use the Status Register when the firmware needs to query the state of internal digital signals. PSoC Creator Component Datasheet Status Register 1.80 Features Up to 8-bit Status Register Interrupt support General Description The Status Register allows the firmware to read digital signals. When to

More information

4K x 8 Dual-Port Static RAM and 4K x 8 Dual-Port SRAM with Semaphores

4K x 8 Dual-Port Static RAM and 4K x 8 Dual-Port SRAM with Semaphores 4K x 8 Dual-Port Static RAM and 4K x 8 Dual-Port SRAM with Semaphores Features True dual-ported memory cells, which allow simultaneous reads of the same memory location 4K x 8 organization 0.65 micron

More information

Multifunction Serial Interface (PDL_MFS) Features. General Description. When to Use a PDL_MFS Component. Quick Start 1.0

Multifunction Serial Interface (PDL_MFS) Features. General Description. When to Use a PDL_MFS Component. Quick Start 1.0 1.0 Features Configures the Multi-Function Serial (MFS) Interface to one of the following modes: UART (Asynchronous normal serial interface) Clock synchronous serial interface (SPI and I 2 S can be supported)

More information

Use a DieTemp component when you want to measure the die temperature of a device.

Use a DieTemp component when you want to measure the die temperature of a device. PSoC Creator Component Datasheet Die Temperature (DieTemp) 2.0 Features Accuracy of ±5 C Range 40 C to +140 C (0xFFD8 to 0x008C) Blocking and non-blocking API General Description The Die Temperature (DieTemp)

More information

Base Timer Channel (BT) Features. General Description. When to Use a PDL_BT Component 1.0

Base Timer Channel (BT) Features. General Description. When to Use a PDL_BT Component 1.0 1.0 Features Four operating modes 16-bit PWM Timer 16-bit PPG Timer 16/32-bit Reload Timer 16/32-bit PWC Timer Trigger generation for ADC conversion General The Peripheral Driver Library (PDL) Base Timer

More information

Voltage Fault Detector (VFD) Features. General Description. Input/Output Connections. When to Use a VFD. Clock Input 2.30

Voltage Fault Detector (VFD) Features. General Description. Input/Output Connections. When to Use a VFD. Clock Input 2.30 PSoC Creator Component Datasheet Voltage Fault Detector (VFD) 2.30 Features Monitor up to 32 voltage inputs User-defined over and under voltage limits Simply outputs a good/bad status result Programmable

More information

W H I T E P A P E R. Introduction. Devices. Energy Comparison of Cypress F-RAM and EEPROM

W H I T E P A P E R. Introduction. Devices. Energy Comparison of Cypress F-RAM and EEPROM W H I T E P A P E R Harsha Medu, Applications Engineer Cypress Semiconductor Corp. Energy Comparison of Cypress and Abstract (Ferroelectric Random Access Memory) is a nonvolatile memory that uses a ferroelectric

More information

Setting Oscillation Stabilization Wait Time of the main clock (CLKMO) and sub clock (CLKSO)

Setting Oscillation Stabilization Wait Time of the main clock (CLKMO) and sub clock (CLKSO) 1.0 Features Selecting Clock mode Internal Bus Clock Frequency Division Control PLL Clock Control Setting Oscillation Stabilization Wait Time of the main clock (CLKMO) and sub clock (CLKSO) Interrupts

More information

Version 3.3. If you have technical questions, visit or call and select 8.

Version 3.3. If you have technical questions, visit  or call and select 8. PSoC Creator Release Notes PSoC Creator 3.3 is an upgrade from the PSoC Creator 3.2 release. It adds the following features: Guided Pin Selection Resource Meter Enhanced Example Project Browser New Project

More information

PSoC Programmer Release Notes

PSoC Programmer Release Notes SRN97283 Version 3.23.1 PSoC Programmer Release Notes Release Date: June 12, 2015 Thank you for your interest in PSoC Programmer. These release notes list all the new features, installation requirements,

More information

For More Information Please contact your local sales office for additional information about Cypress products and solutions.

For More Information Please contact your local sales office for additional information about Cypress products and solutions. The following document contains information on Cypress products. The document has the series name, product name, and ordering part numbering with the prefix MB. However, Cypress will offer these products

More information

Shift Register. Features. General Description 1.20

Shift Register. Features. General Description 1.20 1.20 Features Adjustable shift register size: 1 to 32 bits Simultaneous shift in and shift out Right shift or left shift Reset input forces shift register to all 0s Shift register value readable by CPU

More information

Capable of adjusting detection timings for start bit and data bit

Capable of adjusting detection timings for start bit and data bit PSoC Creator Component Datasheet Remote Control (PDL_RC) 1.0 Features Up to 2 Channels HDMI-CEC/ High Definition Multimedia Interface Consumer Electronics Control transmitter/receiver SIRCS/Sony Infrared

More information

The AMuxSeq is capable of having between 2 and 32 analog inputs. The paired inputs are present when the MuxType parameter is set to "Differential.

The AMuxSeq is capable of having between 2 and 32 analog inputs. The paired inputs are present when the MuxType parameter is set to Differential. 1.20 Features Single or differential inputs Adjustable between 2 and 32 inputs Software controlled Inputs may be pins or internal sources No simultaneous connections Bidirectional (passive) General Description

More information

1-Mbit (64K x 16) Static RAM

1-Mbit (64K x 16) Static RAM 1-Mbit (64K x 16) Static RAM Features Temperature ranges Commercial: 0 C to 70 C Industrial: 40 C to 85 C Automotive-A: 40 C to 85 C Automotive-E: 40 C to 125 C Pin and function compatible with CY7C1021BV33

More information

PSoC Creator Quick Start Guide

PSoC Creator Quick Start Guide PSoC Creator Quick Start Guide Install Download PSoC Creator from www.cypress.com/psoccreator, or install from a kit CD. For assistance, go to http://www.cypress.com/go/support For features, system requirements,

More information

PSoC 4 Voltage Comparator (Comp) Features. General Description. When to Use Comparator Low input offset. User controlled offset calibration

PSoC 4 Voltage Comparator (Comp) Features. General Description. When to Use Comparator Low input offset. User controlled offset calibration PSoC Creator Component Datasheet PSoC 4 Voltage Comparator (Comp) 1.10 Features Low input offset User controlled offset calibration Multiple speed modes Operates in Deep Sleep power mode Output routable

More information

W H I T E P A P E R. Timing Uncertainty in High Performance Clock Distribution. Introduction

W H I T E P A P E R. Timing Uncertainty in High Performance Clock Distribution. Introduction W H I T E P A P E R Brijesh A Shah, Cypress Semiconductor Corp. Timing Uncertainty in High Performance Clock Distribution Abstract Several factors contribute to the timing uncertainty when using fanout

More information

Counter resolution of 1x, 2x, or 4x the frequency of the A and B inputs, for more accurate determination of position or speed

Counter resolution of 1x, 2x, or 4x the frequency of the A and B inputs, for more accurate determination of position or speed 2.30 Features Adjustable counter size: 8, 16, or 32 bits Counter resolution of 1x, 2x, or 4x the frequency of the A and B inputs, for more accurate determination of position or speed Optional index input

More information

AN PSoC 3 and PSoC 5 SFF-8485 Serial GPIO (SGPIO) Initiator Interface. Application Note Abstract. Introduction

AN PSoC 3 and PSoC 5 SFF-8485 Serial GPIO (SGPIO) Initiator Interface. Application Note Abstract. Introduction PSoC 3 and PSoC 5 SFF-8485 Serial GPIO (SGPIO) Initiator Interface Application Note Abstract AN66019 Author: Jason Konstas Associated Project: Yes Associated Part Family: All PSoC 3 and PSoC 5 parts Software

More information

PSoC Creator Component Data Sheet

PSoC Creator Component Data Sheet PSoC Creator Component Data Sheet Clock 1.50 Features Quickly define new clocks Refer to system or design-wide clocks Configure the clock frequency tolerance General Description The Clock component provides

More information

GPIF II Designer 1.0. Doc. No Rev. **

GPIF II Designer 1.0. Doc. No Rev. ** GPIF II Designer 1.0 Doc. No. 001-75664 Rev. ** Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com Copyrights

More information

Optional Pause Pulse for constant frame length of 282 clock ticks

Optional Pause Pulse for constant frame length of 282 clock ticks PSoC Creator Component Datasheet Single Edge Nibble Transmission (SENT_TX) 1.0 Features Compliant with SAE J2716 APR2016 (Issued 2007-04, Revised 2016-04) without any serial message formats Selectable

More information