GPUBenchmark results for tesla2

Size: px
Start display at page:

Download "GPUBenchmark results for tesla2"

Transcription

1 Benchmark results for tesla2 May 4, 202 Abstract This report shows the Benchmark results obtained on tesla2 on May 4, 202. Contents Introduction 2 Hardware description 3 Transfer speed between hard disk and main memory 3 4 Transfer speed between and main memory 3 5 Transfer speed between two s 5 6 Matrix-matrix multiplication performance 7 7 Matrix-vector multiplication performance 9 Introduction Benchmark has been used to evaluate different aspects of the tesla2 computer. Depending on its hardware architecture and the libraries available when Benchmark was run, some or all of the following aspects will be reported in this document: Transfer speed between hard disk and main memory. Transfer speed between and main memory. Transfer speed between two s. Matrix-matrix multiplication performance. Matrix-vector multiplication performance. The next section describes the hardware characteristics of tesla2. Each one of the remainder sections will focus in one of the previously enumerated performance aspects.

2 Executed on May 4, 202 Benchmark results for tesla2 2 Hardware description This section shows the characteristics of the s and of tesla2. The s available at tesla2 have the next characteristics: cache size : 644 KB bogomips : cache size : 644 KB bogomips : cache size : 644 KB bogomips : cache size : 644 KB bogomips : cache size : 644 KB bogomips : cache size : 644 KB bogomips : cache size : 644 KB bogomips : cache size : 644 KB 2

3 Benchmark results for tesla2 Executed on May 4, 202 bogomips : The Device installed on tesla2 that has been used to perform some of the tests has the next characteristics: Tesla T20 Processor CUDA driver version : 4000 CUDA Runtime version : 4000 Multiprocessors : 4 Global memory (total) : bytes Constant memory (total) : bytes Shared memory per block (total) : 4952 bytes Available registers per block : Threads per block : 24 Max. dimension of a block : 24 x 24 x 64 Max. dimension of a grid : x x Clock rate :.5 GHz 3 Transfer speed between hard disk and main memory To obtain the transfer speed from hard disk to main memory, and from main memory to hard disk, several matrices of floats with different number of rows and columns have been created, and the time required to transfer these matrices from hard disk to main memory, and viceversa, has been measured. In order to obtain a more accurate measure, for each number of rows and columns, ten transfers were carried out in both directions. The median of the results for each case is reported. Table shows the transfer speed obtained for several numbers of rows and columns, from hard disk to main memory, and from main memory to hard disk. Note that the transfer speed is given in Mebibytes per second (MiB/s). These results are reported graphically in Figure. Rows Columns Size Hard disk Main memory (MiB) Main memory (MiB/s) Hard disk (MiB/s) Table : Transfer speed from hard disk to main memory, and from main memory to hard disk, for different matrix sizes A Mebibyte is defined as 2 20 bytes 3

4 Executed on May 4, 202 Benchmark results for tesla Transfer speed (MiB/s) Hard disk to memory Memory to hard disk Size of matrix (MiB) Figure : Transfer speed from hard disk to main memory, and from main memory to hard disk, for different matrix sizes 4 Transfer speed between and main memory To obtain the transfer speed from internal memory to main memory, and from main memory to internal memory, several matrices of floats with different number of rows and columns have been created, and the time required to transfer these matrices from internal memory to main memory, and viceversa, has been measured. In order to obtain a more accurate measure, for each number of rows and columns, ten transfers were carried out in both directions. The median of the results for each case is reported. Table 2 shows the transfer speed obtained for several numbers of rows and columns, from to main memory, and from main memory to. Note that the transfer speed is given in Mebibytes per second (MiB/s) 2. Rows Columns Size Main memory (MiB) Main memory (MiB/s) (MiB/s) Table 2: Transfer speed from to main memory, and from main memory to, for different matrix sizes 2 A Mebibyte is defined as 2 20 bytes 4

5 Benchmark results for tesla2 Executed on May 4, 202 The same tests have been done using padding to allocate the matrices in the internal memory. When padding is applied, it may be necessary to reserve additional storage to ensure that corresponding pointers in any given row will continue to meet the alignment requirements for coalescing. Padding is the recommended allocation method for 2D arrays. Table 3 shows the transfer speed obtained for several numbers of rows and columns, from to main memory, and from main memory to, when padding is in use. Note that the transfer speed is given in Mebibytes per second. Rows Columns Size Main memory (MiB) Main memory (MiB/s) (MiB/s) Table 3: Transfer speed from to main memory, and from main memory to, when using padding, for different matrix sizes Figure 2 shows the transfer speed from to main memory, and from main memory to, with and without padding Transfer speed (MiB/s) > main memory (with padding) Main memory -> (with padding) -> main memory Main memory -> Size of matrix (MiB) Figure 2: Transfer speed from to main memory, and from main memory to, with and without padding, for different matrix sizes 5

6 Executed on May 4, 202 Benchmark results for tesla2 5 Transfer speed between two s To obtain the transfer speed between two s using Direct or via main memory, several matrices of floats with different number of rows and columns have been created, and the time required to transfer these matrices from one to another, both using Direct and via main memory, has been measured. In order to obtain a more accurate measure, for each number of rows and columns, ten transfers were carried out in both directions. The median of the results for each case is reported. Table 4 shows the transfer speed obtained for several numbers of rows and columns, from one to another both using Direct and via main memory. Note that the transfer speed is given in Mebibytes per second (MiB/s) 3. These results are reported graphically in Figure 3. Rows Columns Size (MiB) 2 (MiB/s) MM 2 (MiB/s) Table 4: Transfer speed from one to another using Direct and via main memory Transfer speed (MiB/s) >2 ->MM-> Size of matrix (MiB) Figure 3: Transfer speed from one to another using Direct and via main memory 3 A Mebibyte is defined as 2 20 bytes 6

7 Benchmark results for tesla2 Executed on May 4, Matrix-matrix multiplication performance This section shows both the time required and the GFLOPS obtained by the and the on tesla2 when computing the operation: C = αab + βc, where A R m k, B R k n, C R m n, and α and β are scalars. This operation has been performed on the by calling the CBLAS cblas_sgemm() function, and on the by calling the CUBLAS cublassgemm() function. Different m, n, and k values have been used. For each value of m, the n and k values have been obtained as 25, 50, 75, and 0% of m. In order to obtain a more accurate measure, for each combination of m, n, and k, ten operations have been carried on in both and. Then, the median of the outcomes for each case has been computed. The GFLOPS for each combination of m, n, and k has been computed as: 2mnk 9 GF LOP S = time Table 5 shows the time and GFLOPS results obtained for the given m, n, and k values. m n k (ms) (ms) GFLOPS GFLOPS Table 5: Time and GFLOPS for the operation C = αab + βc on the and on the for different m, n and k values Figure 4 shows the time to compute the operation C = αab + βc on the and on the (notice that n and k are 25, 50, 75, and 0% of m). Figure 5 shows the and GFLOPS for these values of m, n and k. 7

8 Executed on May 4, 202 Benchmark results for tesla (a) n and k are 25% of m (b) n and k are 50% of m 0000 e (c) n and k are 75% of m (d) n and k are 0% of m Figure 4: Time to compute the operation C = αab + βc on the and on the 00 GFLOPS GFLOPS n=k=25% m n=k=50% m n=k=75% m n=k=0% m n=k=25% m n=k=50% m n=k=75% m n=k=0% m Figure 5: and GFLOPS for C = αab + βc with several m, n and k values (n and k are 25, 50, 75, and 0% of m) 8

9 Benchmark results for tesla2 Executed on May 4, Matrix-vector multiplication performance This section shows both the time required and the GFLOPS obtained by the and the on tesla2 when computing the operation: y = αax + βy, where A R m n, x R n, y R m, and α and β are scalars. This operation has been performed on the by calling the CBLAS cblas_sgemv() function, and on the by calling the CUBLAS cublassgemv function. Different m and n values have been used. For each value of m, the n values have been obtained as 25, 50, 75, and 0% of m. In order to obtain a more accurate measure, for each combination of m and n, ten operations have been carried on in both and. Then, the median of the outcomes for each case has been computed. The GFLOPS for each combination of m and n has been computed as: GF LOP S = 2mn 9 time Table 6 shows the time and GFLOPS results obtained for the given m and n values. Figure 6 shows the time to compute the operation y = αax + βy on the and on the (notice that n is 25, 50, 75, and 0% of m). Figure 7 shows the and GFLOPS for these values of m and n. 9

10 Executed on May 4, 202 Benchmark results for tesla2 m n (ms) (ms) GFLOPS GFLOPS Table 6: Time and GFLOPS for the operation y = αax + βy on the and on the for different m and n values

11 Benchmark results for tesla2 Executed on May 4, (a) n is 25% of m (b) n is 50% of m (c) n is 75% of m (d) n is 0% of m Figure 6: Time to compute the operation y = αax + βy on the and on the 0 GFLOPS GFLOPS n=25% m n=50% m n=75% m n=0% m n=25% m n=50% m n=75% m n=0% m Figure 7: and GFLOPS for y = αax + βy with several m and n values (n is 25, 50, 75, and 0% of m)

Accelerating GPU Kernels for Dense Linear Algebra

Accelerating GPU Kernels for Dense Linear Algebra Accelerating GPU Kernels for Dense Linear Algebra Rajib Nath, Stan Tomov, and Jack Dongarra Innovative Computing Lab University of Tennessee, Knoxville July 9, 21 xgemm performance of CUBLAS-2.3 on GTX28

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

QR Decomposition on GPUs

QR Decomposition on GPUs QR Decomposition QR Algorithms Block Householder QR Andrew Kerr* 1 Dan Campbell 1 Mark Richards 2 1 Georgia Tech Research Institute 2 School of Electrical and Computer Engineering Georgia Institute of

More information

Double-Precision Matrix Multiply on CUDA

Double-Precision Matrix Multiply on CUDA Double-Precision Matrix Multiply on CUDA Parallel Computation (CSE 60), Assignment Andrew Conegliano (A5055) Matthias Springer (A995007) GID G--665 February, 0 Assumptions All matrices are square matrices

More information

Auto-tunable GPU BLAS

Auto-tunable GPU BLAS Auto-tunable GPU BLAS Jarle Erdal Steinsland Master of Science in Computer Science Submission date: June 2011 Supervisor: Anne Cathrine Elster, IDI Norwegian University of Science and Technology Department

More information

GPU Fundamentals Jeff Larkin November 14, 2016

GPU Fundamentals Jeff Larkin November 14, 2016 GPU Fundamentals Jeff Larkin , November 4, 206 Who Am I? 2002 B.S. Computer Science Furman University 2005 M.S. Computer Science UT Knoxville 2002 Graduate Teaching Assistant 2005 Graduate

More information

HIGH PERFORMANCE NUMERICAL LINEAR ALGEBRA. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

HIGH PERFORMANCE NUMERICAL LINEAR ALGEBRA. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 1 HIGH PERFORMANCE NUMERICAL LINEAR ALGEBRA Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 2 BLAS BLAS 1, 2, 3 Performance GEMM Optimized BLAS Parallel

More information

Tesla Architecture, CUDA and Optimization Strategies

Tesla Architecture, CUDA and Optimization Strategies Tesla Architecture, CUDA and Optimization Strategies Lan Shi, Li Yi & Liyuan Zhang Hauptseminar: Multicore Architectures and Programming Page 1 Outline Tesla Architecture & CUDA CUDA Programming Optimization

More information

Introduction to CUDA

Introduction to CUDA Introduction to CUDA Overview HW computational power Graphics API vs. CUDA CUDA glossary Memory model, HW implementation, execution Performance guidelines CUDA compiler C/C++ Language extensions Limitations

More information

GREAT PERFORMANCE FOR TINY PROBLEMS: BATCHED PRODUCTS OF SMALL MATRICES. Nikolay Markovskiy Peter Messmer

GREAT PERFORMANCE FOR TINY PROBLEMS: BATCHED PRODUCTS OF SMALL MATRICES. Nikolay Markovskiy Peter Messmer GREAT PERFORMANCE FOR TINY PROBLEMS: BATCHED PRODUCTS OF SMALL MATRICES Nikolay Markovskiy Peter Messmer ABOUT CP2K Atomistic and molecular simulations of solid state From ab initio DFT and Hartree-Fock

More information

Device Memories and Matrix Multiplication

Device Memories and Matrix Multiplication Device Memories and Matrix Multiplication 1 Device Memories global, constant, and shared memories CUDA variable type qualifiers 2 Matrix Multiplication an application of tiling runningmatrixmul in the

More information

DIFFERENTIAL. Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka

DIFFERENTIAL. Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka USE OF FOR Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Mini workshop on advanced numerical methods

More information

EFFICIENT SPARSE MATRIX-VECTOR MULTIPLICATION ON GPUS USING THE CSR STORAGE FORMAT

EFFICIENT SPARSE MATRIX-VECTOR MULTIPLICATION ON GPUS USING THE CSR STORAGE FORMAT EFFICIENT SPARSE MATRIX-VECTOR MULTIPLICATION ON GPUS USING THE CSR STORAGE FORMAT JOSEPH L. GREATHOUSE, MAYANK DAGA AMD RESEARCH 11/20/2014 THIS TALK IN ONE SLIDE Demonstrate how to save space and time

More information

GPU & High Performance Computing (by NVIDIA) CUDA. Compute Unified Device Architecture Florian Schornbaum

GPU & High Performance Computing (by NVIDIA) CUDA. Compute Unified Device Architecture Florian Schornbaum GPU & High Performance Computing (by NVIDIA) CUDA Compute Unified Device Architecture 29.02.2008 Florian Schornbaum GPU Computing Performance In the last few years the GPU has evolved into an absolute

More information

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Veerendra Allada, Troy Benjegerdes Electrical and Computer Engineering, Ames Laboratory Iowa State University &

More information

CUDA Memory Model. Monday, 21 February Some material David Kirk, NVIDIA and Wen-mei W. Hwu, (used with permission)

CUDA Memory Model. Monday, 21 February Some material David Kirk, NVIDIA and Wen-mei W. Hwu, (used with permission) CUDA Memory Model Some material David Kirk, NVIDIA and Wen-mei W. Hwu, 2007-2009 (used with permission) 1 G80 Implementation of CUDA Memories Each thread can: Grid Read/write per-thread registers Read/write

More information

CS 179 Lecture 4. GPU Compute Architecture

CS 179 Lecture 4. GPU Compute Architecture CS 179 Lecture 4 GPU Compute Architecture 1 This is my first lecture ever Tell me if I m not speaking loud enough, going too fast/slow, etc. Also feel free to give me lecture feedback over email or at

More information

Review. Lecture 10. Today s Outline. Review. 03b.cu. 03?.cu CUDA (II) Matrix addition CUDA-C API

Review. Lecture 10. Today s Outline. Review. 03b.cu. 03?.cu CUDA (II) Matrix addition CUDA-C API Review Lecture 10 CUDA (II) host device CUDA many core processor threads thread blocks grid # threads >> # of cores to be efficient Threads within blocks can cooperate Threads between thread blocks cannot

More information

1/25/12. Administrative

1/25/12. Administrative Administrative L3: Memory Hierarchy Optimization I, Locality and Data Placement Next assignment due Friday, 5 PM Use handin program on CADE machines handin CS6235 lab1 TA: Preethi Kotari - Email:

More information

Sparse Linear Algebra in CUDA

Sparse Linear Algebra in CUDA Sparse Linear Algebra in CUDA HPC - Algorithms and Applications Alexander Pöppl Technical University of Munich Chair of Scientific Computing November 22 nd 2017 Table of Contents Homework - Worksheet 2

More information

Automatic Development of Linear Algebra Libraries for the Tesla Series

Automatic Development of Linear Algebra Libraries for the Tesla Series Automatic Development of Linear Algebra Libraries for the Tesla Series Enrique S. Quintana-Ortí quintana@icc.uji.es Universidad Jaime I de Castellón (Spain) Dense Linear Algebra Major problems: Source

More information

CSE 160 Lecture 24. Graphical Processing Units

CSE 160 Lecture 24. Graphical Processing Units CSE 160 Lecture 24 Graphical Processing Units Announcements Next week we meet in 1202 on Monday 3/11 only On Weds 3/13 we have a 2 hour session Usual class time at the Rady school final exam review SDSC

More information

A study on linear algebra operations using extended precision floating-point arithmetic on GPUs

A study on linear algebra operations using extended precision floating-point arithmetic on GPUs A study on linear algebra operations using extended precision floating-point arithmetic on GPUs Graduate School of Systems and Information Engineering University of Tsukuba November 2013 Daichi Mukunoki

More information

Automated Finite Element Computations in the FEniCS Framework using GPUs

Automated Finite Element Computations in the FEniCS Framework using GPUs Automated Finite Element Computations in the FEniCS Framework using GPUs Florian Rathgeber (f.rathgeber10@imperial.ac.uk) Advanced Modelling and Computation Group (AMCG) Department of Earth Science & Engineering

More information

BLAS: Basic Linear Algebra Subroutines I

BLAS: Basic Linear Algebra Subroutines I BLAS: Basic Linear Algebra Subroutines I Most numerical programs do similar operations 90% time is at 10% of the code If these 10% of the code is optimized, programs will be fast Frequently used subroutines

More information

CUDA. Schedule API. Language extensions. nvcc. Function type qualifiers (1) CUDA compiler to handle the standard C extensions.

CUDA. Schedule API. Language extensions. nvcc. Function type qualifiers (1) CUDA compiler to handle the standard C extensions. Schedule CUDA Digging further into the programming manual Application Programming Interface (API) text only part, sorry Image utilities (simple CUDA examples) Performace considerations Matrix multiplication

More information

GPU Programming. Lecture 2: CUDA C Basics. Miaoqing Huang University of Arkansas 1 / 34

GPU Programming. Lecture 2: CUDA C Basics. Miaoqing Huang University of Arkansas 1 / 34 1 / 34 GPU Programming Lecture 2: CUDA C Basics Miaoqing Huang University of Arkansas 2 / 34 Outline Evolvements of NVIDIA GPU CUDA Basic Detailed Steps Device Memories and Data Transfer Kernel Functions

More information

Effect of memory latency

Effect of memory latency CACHE AWARENESS Effect of memory latency Consider a processor operating at 1 GHz (1 ns clock) connected to a DRAM with a latency of 100 ns. Assume that the processor has two ALU units and it is capable

More information

By: Tomer Morad Based on: Erik Lindholm, John Nickolls, Stuart Oberman, John Montrym. NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE In IEEE Micro 28(2), 2008 } } Erik Lindholm, John Nickolls,

More information

Introduction to CELL B.E. and GPU Programming. Agenda

Introduction to CELL B.E. and GPU Programming. Agenda Introduction to CELL B.E. and GPU Programming Department of Electrical & Computer Engineering Rutgers University Agenda Background CELL B.E. Architecture Overview CELL B.E. Programming Environment GPU

More information

BLAS: Basic Linear Algebra Subroutines I

BLAS: Basic Linear Algebra Subroutines I BLAS: Basic Linear Algebra Subroutines I Most numerical programs do similar operations 90% time is at 10% of the code If these 10% of the code is optimized, programs will be fast Frequently used subroutines

More information

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes.

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes. HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes Ian Glendinning Outline NVIDIA GPU cards CUDA & OpenCL Parallel Implementation

More information

Matrix-Matrix Multiplications on GPUs for Accelerating a Parallel Fluid Dynamics Code

Matrix-Matrix Multiplications on GPUs for Accelerating a Parallel Fluid Dynamics Code Matrix-Matrix Multiplications on GPUs for Accelerating a Parallel Fluid Dynamics Code by Kenneth Webster A research paper presented to the University of Waterloo in partial fulfillment of the requirement

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline! Fermi Architecture! Kernel optimizations! Launch configuration! Global memory throughput! Shared memory access! Instruction throughput / control

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline Fermi/Kepler Architecture Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control

More information

Performance and power analysis for high performance computation benchmarks

Performance and power analysis for high performance computation benchmarks Cent. Eur. J. Comp. Sci. 3(1) 2013 1-16 DOI: 10.2478/s13537-013-0101-5 Central European Journal of Computer Science Performance and power analysis for high performance computation benchmarks Research Article

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms http://sudalab.is.s.u-tokyo.ac.jp/~reiji/pna14/ [ 10 ] GPU and CUDA Parallel Numerical Algorithms / IST / UTokyo 1 PNA16 Lecture Plan General Topics 1. Architecture and Performance

More information

University of Bielefeld

University of Bielefeld Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach Introduction to GPU Programming using CUDA Olaf Kaczmarek University of Bielefeld STRONGnet Summerschool 2011 ZIF Bielefeld

More information

CUDA Programming Model

CUDA Programming Model CUDA Xing Zeng, Dongyue Mou Introduction Example Pro & Contra Trend Introduction Example Pro & Contra Trend Introduction What is CUDA? - Compute Unified Device Architecture. - A powerful parallel programming

More information

arxiv: v1 [physics.comp-ph] 25 Feb 2016

arxiv: v1 [physics.comp-ph] 25 Feb 2016 GPU performance analysis of a nodal discontinuous Galerin method for acoustic and elastic models arxiv:1602.07997v1 [physics.comp-ph] 25 Feb 2016 A. Modave 1, A. St-Cyr 2, and T. Warburton 1 1 Virginia

More information

General Purpose GPU Computing in Partial Wave Analysis

General Purpose GPU Computing in Partial Wave Analysis JLAB at 12 GeV - INT General Purpose GPU Computing in Partial Wave Analysis Hrayr Matevosyan - NTC, Indiana University November 18/2009 COmputationAL Challenges IN PWA Rapid Increase in Available Data

More information

Mathematical computations with GPUs

Mathematical computations with GPUs Master Educational Program Information technology in applications Mathematical computations with GPUs GPU architecture Alexey A. Romanenko arom@ccfit.nsu.ru Novosibirsk State University GPU Graphical Processing

More information

CUDA Optimization: Memory Bandwidth Limited Kernels CUDA Webinar Tim C. Schroeder, HPC Developer Technology Engineer

CUDA Optimization: Memory Bandwidth Limited Kernels CUDA Webinar Tim C. Schroeder, HPC Developer Technology Engineer CUDA Optimization: Memory Bandwidth Limited Kernels CUDA Webinar Tim C. Schroeder, HPC Developer Technology Engineer Outline We ll be focussing on optimizing global memory throughput on Fermi-class GPUs

More information

CS GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8 Markus Hadwiger, KAUST Reading Assignment #5 (until March 12) Read (required): Programming Massively Parallel Processors book, Chapter

More information

GPU Acceleration of the Longwave Rapid Radiative Transfer Model in WRF using CUDA Fortran. G. Ruetsch, M. Fatica, E. Phillips, N.

GPU Acceleration of the Longwave Rapid Radiative Transfer Model in WRF using CUDA Fortran. G. Ruetsch, M. Fatica, E. Phillips, N. GPU Acceleration of the Longwave Rapid Radiative Transfer Model in WRF using CUDA Fortran G. Ruetsch, M. Fatica, E. Phillips, N. Juffa Outline WRF and RRTM Previous Work CUDA Fortran Features RRTM in CUDA

More information

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve Administrative Issues L11: Sparse Linear Algebra on GPUs Next assignment, triangular solve Due 5PM, Tuesday, March 15 handin cs6963 lab 3 Project proposals Due 5PM, Wednesday, March 7 (hard

More information

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Ziming Zhong Vladimir Rychkov Alexey Lastovetsky Heterogeneous Computing

More information

Solving Dense Linear Systems on Graphics Processors

Solving Dense Linear Systems on Graphics Processors Solving Dense Linear Systems on Graphics Processors Sergio Barrachina Maribel Castillo Francisco Igual Rafael Mayo Enrique S. Quintana-Ortí High Performance Computing & Architectures Group Universidad

More information

High-Performance Computing Using GPUs

High-Performance Computing Using GPUs High-Performance Computing Using GPUs Luca Caucci caucci@email.arizona.edu Center for Gamma-Ray Imaging November 7, 2012 Outline Slide 1 of 27 Why GPUs? What is CUDA? The CUDA programming model Anatomy

More information

GPU Performance Optimisation. Alan Gray EPCC The University of Edinburgh

GPU Performance Optimisation. Alan Gray EPCC The University of Edinburgh GPU Performance Optimisation EPCC The University of Edinburgh Hardware NVIDIA accelerated system: Memory Memory GPU vs CPU: Theoretical Peak capabilities NVIDIA Fermi AMD Magny-Cours (6172) Cores 448 (1.15GHz)

More information

Parallelising Pipelined Wavefront Computations on the GPU

Parallelising Pipelined Wavefront Computations on the GPU Parallelising Pipelined Wavefront Computations on the GPU S.J. Pennycook G.R. Mudalige, S.D. Hammond, and S.A. Jarvis. High Performance Systems Group Department of Computer Science University of Warwick

More information

An Evaluation of Unified Memory Technology on NVIDIA GPUs

An Evaluation of Unified Memory Technology on NVIDIA GPUs An Evaluation of Unified Memory Technology on NVIDIA GPUs Wenqiang Li 1, Guanghao Jin 2, Xuewen Cui 1, Simon See 1,3 Center for High Performance Computing, Shanghai Jiao Tong University, China 1 Tokyo

More information

What is GPU? CS 590: High Performance Computing. GPU Architectures and CUDA Concepts/Terms

What is GPU? CS 590: High Performance Computing. GPU Architectures and CUDA Concepts/Terms CS 590: High Performance Computing GPU Architectures and CUDA Concepts/Terms Fengguang Song Department of Computer & Information Science IUPUI What is GPU? Conventional GPUs are used to generate 2D, 3D

More information

Parallel Numerics. 1 Data Dependency Graphs & DAGs. Exercise 3: Vector/Vector Operations & P2P Communication II

Parallel Numerics. 1 Data Dependency Graphs & DAGs. Exercise 3: Vector/Vector Operations & P2P Communication II Technische Universität München WiSe 2014/15 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Sebastian Rettenberger, M.Sc. Parallel Numerics Exercise 3: Vector/Vector Operations

More information

Accelerating Linpack with CUDA on heterogeneous clusters

Accelerating Linpack with CUDA on heterogeneous clusters Accelerating Linpack with CUDA on heterogeneous clusters Massimiliano Fatica NVIDIA Corporation 2701 San Tomas Expressway Santa Clara CA 95050 mfatica@nvidia.com ABSTRACT This paper describes the use of

More information

GPU Profiling and Optimization. Scott Grauer-Gray

GPU Profiling and Optimization. Scott Grauer-Gray GPU Profiling and Optimization Scott Grauer-Gray Benefits of GPU Programming "Free" speedup with new architectures More cores in new architecture Improved features such as L1 and L2 cache Increased shared/local

More information

Introduction to CUDA (1 of n*)

Introduction to CUDA (1 of n*) Administrivia Introduction to CUDA (1 of n*) Patrick Cozzi University of Pennsylvania CIS 565 - Spring 2011 Paper presentation due Wednesday, 02/23 Topics first come, first serve Assignment 4 handed today

More information

E6895 Advanced Big Data Analytics Lecture 8: GPU Examples and GPU on ios devices

E6895 Advanced Big Data Analytics Lecture 8: GPU Examples and GPU on ios devices E6895 Advanced Big Data Analytics Lecture 8: GPU Examples and GPU on ios devices Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist, Graph

More information

B. Tech. Project Second Stage Report on

B. Tech. Project Second Stage Report on B. Tech. Project Second Stage Report on GPU Based Active Contours Submitted by Sumit Shekhar (05007028) Under the guidance of Prof Subhasis Chaudhuri Table of Contents 1. Introduction... 1 1.1 Graphic

More information

THE USE of graphics processing units (GPUs) in scientific

THE USE of graphics processing units (GPUs) in scientific Proceedings of the International Multiconference on Computer Science and Information Technology pp. 285 291 ISBN 978-83-60810-14-9 ISSN 1896-7094 Testing Tesla Architecture for Scientific Computing: the

More information

Implementing a Speech Recognition System on a GPU using CUDA. Presented by Omid Talakoub Astrid Yi

Implementing a Speech Recognition System on a GPU using CUDA. Presented by Omid Talakoub Astrid Yi Implementing a Speech Recognition System on a GPU using CUDA Presented by Omid Talakoub Astrid Yi Outline Background Motivation Speech recognition algorithm Implementation steps GPU implementation strategies

More information

Introduction to GPGPU and GPU-architectures

Introduction to GPGPU and GPU-architectures Introduction to GPGPU and GPU-architectures Henk Corporaal Gert-Jan van den Braak http://www.es.ele.tue.nl/ Contents 1. What is a GPU 2. Programming a GPU 3. GPU thread scheduling 4. GPU performance bottlenecks

More information

GPU Memory Memory issue for CUDA programming

GPU Memory Memory issue for CUDA programming Memory issue for CUDA programming Variable declaration Memory Scope Lifetime device local int LocalVar; local thread thread device shared int SharedVar; shared block block device int GlobalVar; global

More information

Programming in CUDA. Malik M Khan

Programming in CUDA. Malik M Khan Programming in CUDA October 21, 2010 Malik M Khan Outline Reminder of CUDA Architecture Execution Model - Brief mention of control flow Heterogeneous Memory Hierarchy - Locality through data placement

More information

arxiv: v1 [hep-lat] 29 Oct 2008

arxiv: v1 [hep-lat] 29 Oct 2008 arxiv:0810.5365v1 [hep-lat] 29 Oct 2008 Kipton Barros E-mail: kbarros@bu.edu Ronald Babich E-mail: rbabich@bu.edu Richard Brower E-mail: brower@bu.edu Michael A. Clark Center for Computational Science,

More information

Accelerating Dense Linear Algebra for GPUs, Multicores and Hybrid Architectures: an Autotuned and Algorithmic Approach

Accelerating Dense Linear Algebra for GPUs, Multicores and Hybrid Architectures: an Autotuned and Algorithmic Approach University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-21 Accelerating Dense Linear Algebra for GPUs, Multicores and Hybrid Architectures: an

More information

CUDA Architecture & Programming Model

CUDA Architecture & Programming Model CUDA Architecture & Programming Model Course on Multi-core Architectures & Programming Oliver Taubmann May 9, 2012 Outline Introduction Architecture Generation Fermi A Brief Look Back At Tesla What s New

More information

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou Study and implementation of computational methods for Differential Equations in heterogeneous systems Asimina Vouronikoy - Eleni Zisiou Outline Introduction Review of related work Cyclic Reduction Algorithm

More information

Introduction to GPU computing

Introduction to GPU computing Introduction to GPU computing Nagasaki Advanced Computing Center Nagasaki, Japan The GPU evolution The Graphic Processing Unit (GPU) is a processor that was specialized for processing graphics. The GPU

More information

Hand-Tuned SGEMM on GT200 GPU

Hand-Tuned SGEMM on GT200 GPU Hand-Tuned SGEMM on GT200 GPU Lung-Sheng Chien Department of Mathematics, Tsing Hua university, R.O.C. (Taiwan) d947207@oz.nthu.edu.tw February 2010, version 1.1 Abstract: in this work, we improve SGEMM

More information

Cuda Compilation Utilizing the NVIDIA GPU Oct 19, 2017

Cuda Compilation Utilizing the NVIDIA GPU Oct 19, 2017 Cuda Compilation Utilizing the NVIDIA GPU Oct 19, 2017 This document will essentially provide the reader with the understanding on how to use the CUDA 7.0 environment within the Electrical and Computer

More information

Introduction to CUDA Programming

Introduction to CUDA Programming Introduction to CUDA Programming Steve Lantz Cornell University Center for Advanced Computing October 30, 2013 Based on materials developed by CAC and TACC Outline Motivation for GPUs and CUDA Overview

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model Parallel Programming Principle and Practice Lecture 9 Introduction to GPGPUs and CUDA Programming Model Outline Introduction to GPGPUs and Cuda Programming Model The Cuda Thread Hierarchy / Memory Hierarchy

More information

Multi GPU Performance of Conjugate Gradient Algorithm with Staggered Fermions

Multi GPU Performance of Conjugate Gradient Algorithm with Staggered Fermions of Conjugate Gradient Algorithm with Staggered Fermions, Weonjong Lee Lattice Gauge Theory Research Center, FPRD, and CTP Department of Physics and Astronomy, Seoul National University, Seoul, 151-747,

More information

CUDA Toolkit 4.1 CUSPARSE Library. PG _v01 January 2012

CUDA Toolkit 4.1 CUSPARSE Library. PG _v01 January 2012 CUDA Toolkit 4.1 CUSPARSE Library PG-05329-041_v01 January 2012 Contents 1 Introduction 2 1.1 New and Legacy CUSPARSE API........................ 2 1.2 Naming Convention................................

More information

S4289: Efficient solution of multiple scalar and block-tridiagonal equations

S4289: Efficient solution of multiple scalar and block-tridiagonal equations S4289: Efficient solution of multiple scalar and block-tridiagonal equations Endre László endre.laszlo [at] oerc.ox.ac.uk Oxford e-research Centre, University of Oxford, UK Pázmány Péter Catholic University,

More information

Lecture 6 CSE 260 Parallel Computation (Fall 2015) Scott B. Baden. Computing with Graphical Processing Units CUDA Programming Matrix multiplication

Lecture 6 CSE 260 Parallel Computation (Fall 2015) Scott B. Baden. Computing with Graphical Processing Units CUDA Programming Matrix multiplication Lecture 6 CSE 260 Parallel Computation (Fall 2015) Scott B. Baden Computing with Graphical Processing Units CUDA Programming Matrix multiplication Announcements A2 has been released: Matrix multiplication

More information

Fundamental Optimizations in CUDA Peng Wang, Developer Technology, NVIDIA

Fundamental Optimizations in CUDA Peng Wang, Developer Technology, NVIDIA Fundamental Optimizations in CUDA Peng Wang, Developer Technology, NVIDIA Optimization Overview GPU architecture Kernel optimization Memory optimization Latency optimization Instruction optimization CPU-GPU

More information

Applications of Berkeley s Dwarfs on Nvidia GPUs

Applications of Berkeley s Dwarfs on Nvidia GPUs Applications of Berkeley s Dwarfs on Nvidia GPUs Seminar: Topics in High-Performance and Scientific Computing Team N2: Yang Zhang, Haiqing Wang 05.02.2015 Overview CUDA The Dwarfs Dynamic Programming Sparse

More information

Multithreaded Architectures and The Sort Benchmark. Phil Garcia Hank Korth Dept. of Computer Science and Engineering Lehigh University

Multithreaded Architectures and The Sort Benchmark. Phil Garcia Hank Korth Dept. of Computer Science and Engineering Lehigh University Multithreaded Architectures and The Sort Benchmark Phil Garcia Hank Korth Dept. of Computer Science and Engineering Lehigh University About our Sort Benchmark Based on the benchmark proposed in A measure

More information

Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor

Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor Juan C. Pichel Centro de Investigación en Tecnoloxías da Información (CITIUS) Universidade de Santiago de Compostela, Spain

More information

CUDA Lecture 2. Manfred Liebmann. Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17

CUDA Lecture 2. Manfred Liebmann. Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17 CUDA Lecture 2 Manfred Liebmann Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17 manfred.liebmann@tum.de December 15, 2015 CUDA Programming Fundamentals CUDA

More information

Memory. Lecture 2: different memory and variable types. Memory Hierarchy. CPU Memory Hierarchy. Main memory

Memory. Lecture 2: different memory and variable types. Memory Hierarchy. CPU Memory Hierarchy. Main memory Memory Lecture 2: different memory and variable types Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford e-research Centre Key challenge in modern computer architecture

More information

Homework 3 (r1.2) Due: Part (A) -- Apr 28, 2017, 11:55pm Part (B) -- Apr 28, 2017, 11:55pm Part (C) -- Apr 28, 2017, 11:55pm

Homework 3 (r1.2) Due: Part (A) -- Apr 28, 2017, 11:55pm Part (B) -- Apr 28, 2017, 11:55pm Part (C) -- Apr 28, 2017, 11:55pm Second Semester, 2016 17 Homework 3 (r1.2) Due: Part (A) -- Apr 28, 2017, 11:55pm Part (B) -- Apr 28, 2017, 11:55pm Part (C) -- Apr 28, 2017, 11:55pm Instruction: Submit your answers electronically through

More information

CSE 591: GPU Programming. Programmer Interface. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591: GPU Programming. Programmer Interface. Klaus Mueller. Computer Science Department Stony Brook University CSE 591: GPU Programming Programmer Interface Klaus Mueller Computer Science Department Stony Brook University Compute Levels Encodes the hardware capability of a GPU card newer cards have higher compute

More information

Chapter 04. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1

Chapter 04. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1 Chapter 04 Authors: John Hennessy & David Patterson Copyright 2011, Elsevier Inc. All rights Reserved. 1 Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for

More information

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE)

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) NATALIA GIMELSHEIN ANSHUL GUPTA STEVE RENNICH SEID KORIC NVIDIA IBM NVIDIA NCSA WATSON SPARSE MATRIX PACKAGE (WSMP) Cholesky, LDL T, LU factorization

More information

Code Optimizations for High Performance GPU Computing

Code Optimizations for High Performance GPU Computing Code Optimizations for High Performance GPU Computing Yi Yang and Huiyang Zhou Department of Electrical and Computer Engineering North Carolina State University 1 Question to answer Given a task to accelerate

More information

Lecture 2: different memory and variable types

Lecture 2: different memory and variable types Lecture 2: different memory and variable types Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford e-research Centre Lecture 2 p. 1 Memory Key challenge in modern

More information

Massively Parallel Architectures

Massively Parallel Architectures Massively Parallel Architectures A Take on Cell Processor and GPU programming Joel Falcou - LRI joel.falcou@lri.fr Bat. 490 - Bureau 104 20 janvier 2009 Motivation The CELL processor Harder,Better,Faster,Stronger

More information

Computer Graphics. Coordinate Systems and Change of Frames. Based on slides by Dianna Xu, Bryn Mawr College

Computer Graphics. Coordinate Systems and Change of Frames. Based on slides by Dianna Xu, Bryn Mawr College Computer Graphics Coordinate Systems and Change of Frames Based on slides by Dianna Xu, Bryn Mawr College Linear Independence A set of vectors independent if is linearly If a set of vectors is linearly

More information

Performance and accuracy of the matrix multiplication routines : CUBLAS on Nvidia Tesla versus MKL and ATLAS on Intel Nehalem

Performance and accuracy of the matrix multiplication routines : CUBLAS on Nvidia Tesla versus MKL and ATLAS on Intel Nehalem Performance and accuracy of the matrix multiplication routines : on Nvidia Tesla versus and on Intel Nehalem Philippe Estival, Luc Giraud To cite this version: Philippe Estival, Luc Giraud. Performance

More information

This is a draft chapter from an upcoming CUDA textbook by David Kirk from NVIDIA and Prof. Wen-mei Hwu from UIUC.

This is a draft chapter from an upcoming CUDA textbook by David Kirk from NVIDIA and Prof. Wen-mei Hwu from UIUC. David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 This is a draft chapter from an upcoming CUDA textbook by David Kirk from NVIDIA and Prof. Wen-mei Hwu from UIUC. Please send any comment to dkirk@nvidia.com

More information

Introduction to GPGPUs and to CUDA programming model

Introduction to GPGPUs and to CUDA programming model Introduction to GPGPUs and to CUDA programming model www.cineca.it Marzia Rivi m.rivi@cineca.it GPGPU architecture CUDA programming model CUDA efficient programming Debugging & profiling tools CUDA libraries

More information

Evaluation and Tuning of the Level 3 CUBLAS for Graphics Processors

Evaluation and Tuning of the Level 3 CUBLAS for Graphics Processors Evaluation and Tuning of the Level 3 CUBLAS for Graphics Processors Sergio Barrachina Maribel Castillo Francisco D. Igual Rafael Mayo Enrique S. Quintana-Ortí Depto. de Ingeniería y Ciencia de Computadores

More information

Submission instructions (read carefully): SS17 / Assignment 4 Instructor: Markus Püschel. ETH Zurich

Submission instructions (read carefully): SS17 / Assignment 4 Instructor: Markus Püschel. ETH Zurich 263-2300-00: How To Write Fast Numerical Code Assignment 4: 120 points Due Date: Th, April 13th, 17:00 http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-eth-spring17/course.html Questions: fastcode@lists.inf.ethz.ch

More information

State-of-the-art in Heterogeneous Computing

State-of-the-art in Heterogeneous Computing State-of-the-art in Heterogeneous Computing Guest Lecture NTNU Trond Hagen, Research Manager SINTEF, Department of Applied Mathematics 1 Overview Introduction GPU Programming Strategies Trends: Heterogeneous

More information

General Purpose GPU programming (GP-GPU) with Nvidia CUDA. Libby Shoop

General Purpose GPU programming (GP-GPU) with Nvidia CUDA. Libby Shoop General Purpose GPU programming (GP-GPU) with Nvidia CUDA Libby Shoop 3 What is (Historical) GPGPU? General Purpose computation using GPU and graphics API in applications other than 3D graphics GPU accelerates

More information