Geometry of molecules

Size: px
Start display at page:

Download "Geometry of molecules"

Transcription

1 Geometry of molecules 1

2 MOLECULAR GEOMETRY AND ITS APPLICATION TO NANO INFORMATICS AND MOLECULAR DESIGN Sep 29, 2014 The 11th Korea-U.S. Forum on Nanotechnology: Nanomanufacturing, Nanocomposites and Nanoinformatics Seoul National University, Seoul, Korea Deok-Soo Kim Voronoi Diagram Research Center School of Mechanical Engineering Hanyang University, Seoul, Korea

3 Molecular Structure/Function Structure Determines Function. Geometry Determines Structure. Organic and Inorganic No Theory/Tool Yet. 3

4 Contents Voronoi Diagram + Applications MG (Molecular Geometry) and MGOS (MG Operating System) 4

5 VORONOI DIAGRAM

6 Voronoi Diagrams in Nature Wall : the edge of Voronoi Diagram Cell : the Voronoi Region 6

7 Easily Solved Problems Using VD(P) Convex hull Largest empty circle Delaunay triangulation Minimum spanning tree Nearest neighbor Closest pair Etc. 7

8 Voronoi Diagram of Circles (Additively-weighted VD) p 1 p 3 p 2 p 4 V p 5 p 6 8

9 Applications of VD(C) 9

10 Voronoi Diagram of Spheres (Additively-weighted VD) 10

11 APPLICATIONS

12 Connolly Surface (Pentium IV, 3.2 GHz, 1 GB RAM) (1ous; Realtime computation and visualization) 12

13 Comparison: RasMol vs. BetaMol Molecular surface from RasMol (v2.7.3) Molecular surface from BetaMol 13

14 Geometric Questions: Surfaces and Voids 14

15 BetaVoid ( Ferritin (1MFR, #atom: 32,952) 15

16 Cavity in Amorphous Material 16

17 Metal Organic Framework (MOF) Applications adsorption energy storage membrane, etc. Critical Geometric Features Tunnel Pore (Void) Other new materials Li-ion battery Membrane Fuel cell OLED Conducting polymer Etc. 17

18 Tunnels in proteins Carbonic anhydrase XII (PDB ID: 1jd0, #atom: 8142, #residue: 253) 18

19 Volume and Boundary Area Tyrosine Kinase(1XBA) # of Atoms 2068 vdw Vol.(Å 3 ) (time:sec) vdw Area(Å 2 ) (time:sec) Tyrosine Kinase(1XBA) + Gleevec VD (time:sec) QT & BC (time:sec) (Intel Core2 Duo, 3.0GHz, 3GB RAM) Voronoi Diagram Research Center, Hanyang Univ., Korea 19 19

20 MG / MGOS PARADIGM

21 Molecular Geometry: New Discipline Molecular Problem (M) Π Molecular Solution (Y) Φ Problem Transformation Φ -1 Inverse Transformation Geometric Problem (G) Ψ Geometric Solution (X) Geometrization Geometry Kernel Molecular Geometry 21

22 MGOS Application Program : an example #include "MolecularGeometry.h" using namespace MGOS; int main(int argc, char* argv[]) { string pdbfilename = argv[1]; MolecularGeometry MG; MG.loadPDB( pdbfilename ); MG.preprocess(); Include header file Preprocess (VD and QT) // For van-der Waals model cout << "# boundary atoms on van-der Waals model : " << MG.countNumberOfVDWaalsBoundaryAtoms() << endl << endl; MolecularMassProperty vdwmass = MG.computeVDWaalsVolumeAndArea(); cout << "vdw volume : " << vdwmass.getvolume() << endl; cout << "vdw area : " << vdwmass.getarea() << endl << endl; OUTPUT # boundary atoms on van-der Waals model : 401 vdw volume : vdw area : # boundary atoms on LR model : 279 LR volume : LR area : # voids : 4 Volume of largest void : Boundary area of largest void: atom 1 : atom 2 : atom 3 : atom 4 : atom 5 : atom 6 : atom 7 : // For Lee-Richards model double water = 1.4; cout << "# boundary atoms on LR model: " << MG.countNumberOfLeeRichardsBoundaryAtoms(water) << endl << endl; MolecularMassProperty LRMass = MG.computeLeeRichardsVolumeAndArea(water); cout << "LR volume : " << LRMass.getVolume() << endl; cout << "LR area : " << LRMass.getArea() << endl << endl; Count boundary atoms of VDW model Compute volume and area of VDW model Count boundary atoms of LR model MolecularVoidSet LRVoids = MG.computeLeeRichardsVoids( water ); cout << "# voids : " << LRVoids.countNumberOfVoids() << endl; Compute volume and area of LR model MolecularVoid largestvoid = LRVoids.getLargestVoid(); cout << " Volume of largest void : " << largestvoid.getvolume() << endl; cout << " Boundary area of largest void : " << largetsvoid.getarea() << endl; Compute and count LR voids } AtomArrangement atoms = largesvoid.getcontributingatoms(); for ( AtomIterator i_atom=atoms.begin(); i_atom!=atoms.end(); i_atom++, i++ ) { cout << " atom " << i << " : "; cout.precision(3); cout << largesvoid.getareacontributedbyatom( *i_atom ) << endl; } Volume/area of largest LR void Contributing area for each atom of largest LR void 22

23 23 MGOS Architecture Application Program (by User) Middleware (MGOS) (Application Program Interface) Geometry Library

24 Nano Machinery Design MarkIII(k) Planetary Gear Drexler-Merkle Differential Gear Designed by K. Drexler ( 24

25 MG/MM/MD/QM MM/MD/QM Core Building Block For MGI Designing molecules with new functions (Precompetitive 20 projects ) Theory, modeling & simulation: x1000 faster (12 Global trends to 2020) From Mihail Roco, Sep 29, 2014

26 Acknowledgements National Research Foundation (NRF) National Research Lab ( Present) Creative Research Initiative ( ) Members in VDRC Youngsong Cho, Donguk Kim, Joonghyun Ryu, Jae-Kwan Kim, Chulhyung Cho, Chongmin Kim, Chungin Won, Jeongyeon Seo, Mokwon Lee, Jehyun Cha, Chanyoung Song, and Yuri Choi Collaborators. Prof. Kokichi Sugihara (Meiji U, Japan) Prof. Andreas Dress (Bielefeld U, Germany) Dr. Jong Bhak (Teragen Inc.) Prof. Seung Eon Ryu (Life Engineering Dept., Hanyang U) Dr. Roman Laskowski (European Bioinfo Inst, UK) Prof. Chaok Seok (Chemistry, SNU) many others. 26

27 Thank You

Voronoi diagram of 3D spheres: theory and applications

Voronoi diagram of 3D spheres: theory and applications Voronoi diagram of 3D spheres: theory and applications Donguk KIM 1, Youngsong CHO 1, Cheol-Hyung CHO 1, Joonghyun RYU 1 Chong-Min KIM 1 and Deok-Soo KIM 2 1) Voronoi Diagram Research Center, Hanyang University,

More information

Molecular Surface Representation

Molecular Surface Representation Molecular Surface Representation Applications to docking 1 Motivation Studies of protein folding (Lee and Richards). Prediction of biomolecular recognition. Detection of drug binding cavities. Molecular

More information

Molecular Shapes and Surfaces *

Molecular Shapes and Surfaces * OpenStax-CNX module: m11616 1 Molecular Shapes and Surfaces * Lydia E. Kavraki This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 1.0 Topics in this Module

More information

1 Proximity via Graph Spanners

1 Proximity via Graph Spanners CS273: Algorithms for Structure Handout # 11 and Motion in Biology Stanford University Tuesday, 4 May 2003 Lecture #11: 4 May 2004 Topics: Proximity via Graph Spanners Geometric Models of Molecules, I

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Spring 2016 Docking April 17, 2016 Docking Docking attempts to find the best matching between two molecules Docking A More Serious Definition Given two biological molecules determine: Whether the two molecules

More information

66 III Complexes. R p (r) }.

66 III Complexes. R p (r) }. 66 III Complexes III.4 Alpha Complexes In this section, we use a radius constraint to introduce a family of subcomplexes of the Delaunay complex. These complexes are similar to the Čech complexes but differ

More information

A Sweep-Line Algorithm for the Inclusion Hierarchy among Circles

A Sweep-Line Algorithm for the Inclusion Hierarchy among Circles Japan J. Indust. Appl. Math., 23 (2006), 127 138 Area 3 A Sweep-Line Algorithm for the Inclusion Hierarchy among Circles Deok-Soo Kim 1,, Byunghoon Lee 2 and Kokichi Sugihara 3 1 Department of Industrial

More information

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams in the Plane Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams As important as convex hulls Captures the neighborhood (proximity) information of geometric objects

More information

CPSC 695. Methods for interpolation and analysis of continuing surfaces in GIS Dr. M. Gavrilova

CPSC 695. Methods for interpolation and analysis of continuing surfaces in GIS Dr. M. Gavrilova CPSC 695 Methods for interpolation and analysis of continuing surfaces in GIS Dr. M. Gavrilova Overview Data sampling for continuous surfaces Interpolation methods Global interpolation Local interpolation

More information

Computation of tunnels in protein molecules using Delaunay triangulation

Computation of tunnels in protein molecules using Delaunay triangulation Computation of tunnels in protein molecules using Delaunay triangulation Petr Medek Faculty of Informatics Masaryk University Botanická 68a 60 00 Brno, Czech Republic medek@fi.muni.cz Petr Beneš Faculty

More information

Approximating a set of points by circles

Approximating a set of points by circles Approximating a set of points by circles Sandra Gesing June 2005 Abstract This paper is an abstract of the German diploma thesis Approximation von Punktmengen durch Kreise finished by the author in March

More information

Course 16 Geometric Data Structures for Computer Graphics. Voronoi Diagrams

Course 16 Geometric Data Structures for Computer Graphics. Voronoi Diagrams Course 16 Geometric Data Structures for Computer Graphics Voronoi Diagrams Dr. Elmar Langetepe Institut für Informatik I Universität Bonn Geometric Data Structures for CG July 27 th Voronoi Diagrams San

More information

About 5. How do i install APLVORO? 6. Mainwindow components 8. How do i start? 10. Required pbc states 14. What does Coloring method do?

About 5. How do i install APLVORO? 6. Mainwindow components 8. How do i start? 10. Required pbc states 14. What does Coloring method do? APL@VORO Manual APL@VORO Manual 1 APL@Voro User Manual 1.1 1.2 About 5 How do i install APLVORO? 6 2 User interface 2.1 2.2 Mainwindow components 8 How do i start? 10 3 PDB & XTC 3.1 Required pbc states

More information

Mathematical Analysis and Calculation of Molecular Surfaces

Mathematical Analysis and Calculation of Molecular Surfaces Mathematical Analysis and Calculation of Molecular Surfaces Chaoyu Quan, Benjamin Stamm To cite this version: Chaoyu Quan, Benjamin Stamm. Mathematical Analysis and Calculation of Molecular Surfaces. Journal

More information

Voronoi Diagrams. A Voronoi diagram records everything one would ever want to know about proximity to a set of points

Voronoi Diagrams. A Voronoi diagram records everything one would ever want to know about proximity to a set of points Voronoi Diagrams Voronoi Diagrams A Voronoi diagram records everything one would ever want to know about proximity to a set of points Who is closest to whom? Who is furthest? We will start with a series

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Insertions and Deletions in Delaunay Triangulations using Guided Point Location. Kevin Buchin TU Eindhoven

Insertions and Deletions in Delaunay Triangulations using Guided Point Location. Kevin Buchin TU Eindhoven Insertions and Deletions in Delaunay Triangulations using Guided Point Location Kevin Buchin TU Eindhoven Heraklion, 21.1.2013 Guide - Example Construct Delaunay triangulation of convex polygon in linear

More information

Outline. CGAL par l exemplel. Current Partners. The CGAL Project.

Outline. CGAL par l exemplel. Current Partners. The CGAL Project. CGAL par l exemplel Computational Geometry Algorithms Library Raphaëlle Chaine Journées Informatique et GéomG ométrie 1 er Juin 2006 - LIRIS Lyon Outline Overview Strengths Design Structure Kernel Convex

More information

Computational Geometry for Imprecise Data

Computational Geometry for Imprecise Data Computational Geometry for Imprecise Data November 30, 2008 PDF Version 1 Introduction Computational geometry deals with algorithms on geometric inputs. Historically, geometric algorithms have focused

More information

Data Mining Classification: Alternative Techniques. Lecture Notes for Chapter 4. Instance-Based Learning. Introduction to Data Mining, 2 nd Edition

Data Mining Classification: Alternative Techniques. Lecture Notes for Chapter 4. Instance-Based Learning. Introduction to Data Mining, 2 nd Edition Data Mining Classification: Alternative Techniques Lecture Notes for Chapter 4 Instance-Based Learning Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Instance Based Classifiers

More information

Other Voronoi/Delaunay Structures

Other Voronoi/Delaunay Structures Other Voronoi/Delaunay Structures Overview Alpha hulls (a subset of Delaunay graph) Extension of Voronoi Diagrams Convex Hull What is it good for? The bounding region of a point set Not so good for describing

More information

A sweepline algorithm for Euclidean Voronoi diagram of circles

A sweepline algorithm for Euclidean Voronoi diagram of circles Computer-Aided Design 38 (2006) 260 272 www.elsevier.com/locate/cad A sweepline algorithm for Euclidean Voronoi diagram of circles Li Jin a, Donguk Kim b, Lisen Mu a, Deok-Soo Kim c, Shi-Min Hu a, * a

More information

CS-235 Computational Geometry

CS-235 Computational Geometry CS-235 Computational Geometry Computer Science Department Fall Quarter 2002. Computational Geometry Study of algorithms for geometric problems. Deals with discrete shapes: points, lines, polyhedra, polygonal

More information

Generating Tool Paths for Free-Form Pocket Machining Using z-buffer-based Voronoi Diagrams

Generating Tool Paths for Free-Form Pocket Machining Using z-buffer-based Voronoi Diagrams Int J Adv Manuf Technol (1999) 15:182 187 1999 Springer-Verlag London Limited Generating Tool Paths for Free-Form Pocket Machining Using z-buffer-based Voronoi Diagrams Jaehun Jeong and Kwangsoo Kim Department

More information

An Effective Hardware Architecture for Bump Mapping Using Angular Operation

An Effective Hardware Architecture for Bump Mapping Using Angular Operation An Effective Hardware Architecture for Bump Mapping Using Angular Operation Seung-Gi Lee, Woo-Chan Park, Won-Jong Lee, Tack-Don Han, and Sung-Bong Yang Media System Lab. (National Research Lab.) Dept.

More information

Algorithms and Modern Computer Science

Algorithms and Modern Computer Science Algorithms and Modern Computer Science Dr. Marina L. Gavrilova Dept of Comp. Science, University of Calgary, AB, Canada, T2N1N4 My Research Interests Computer modeling and simulation Computational geometry

More information

Topology Control in 3-Dimensional Networks & Algorithms for Multi-Channel Aggregated Co

Topology Control in 3-Dimensional Networks & Algorithms for Multi-Channel Aggregated Co Topology Control in 3-Dimensional Networks & Algorithms for Multi-Channel Aggregated Convergecast Amitabha Ghosh Yi Wang Ozlem D. Incel V.S. Anil Kumar Bhaskar Krishnamachari Dept. of Electrical Engineering,

More information

How Do Computers Solve Geometric Problems? Sorelle Friedler, University of Maryland - College Park

How Do Computers Solve Geometric Problems? Sorelle Friedler, University of Maryland - College Park How Do Computers Solve Geometric Problems? Sorelle Friedler, University of Maryland - College Park http://www.cs.umd.edu/~sorelle Outline Introduction Algorithms Computational Geometry Art Museum Problem

More information

Extraction of Robust Voids and Pockets in Proteins

Extraction of Robust Voids and Pockets in Proteins Eurographics Conference on Visualization (EuroVis) () M. Hlawitschka and T. Weinkauf (Editors) Short Papers Extraction of Robust Voids and Pockets in Proteins Raghavendra Sridharamurthy, Harish Doraiswamy,

More information

Tight Cocone DIEGO SALUME SEPTEMBER 18, 2013

Tight Cocone DIEGO SALUME SEPTEMBER 18, 2013 Tight Cocone DIEGO SALUME SEPTEMBER 18, 2013 Summary Problem: The Cocone algorithm produces surfaces with holes and artifacts in undersampled areas in the data. Solution: Extend the Cocone algorithm to

More information

CMPS 3130/6130 Computational Geometry Spring Voronoi Diagrams. Carola Wenk. Based on: Computational Geometry: Algorithms and Applications

CMPS 3130/6130 Computational Geometry Spring Voronoi Diagrams. Carola Wenk. Based on: Computational Geometry: Algorithms and Applications CMPS 3130/6130 Computational Geometry Spring 2015 Voronoi Diagrams Carola Wenk Based on: Computational Geometry: Algorithms and Applications 2/19/15 CMPS 3130/6130 Computational Geometry 1 Voronoi Diagram

More information

Computational Geometry Lecture Duality of Points and Lines

Computational Geometry Lecture Duality of Points and Lines Computational Geometry Lecture Duality of Points and Lines INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 11.1.2016 Duality Transforms We have seen duality for planar graphs and duality of

More information

Geometric Computation: Introduction

Geometric Computation: Introduction : Introduction Piotr Indyk Welcome to 6.838! Overview and goals Course Information Syllabus 2D Convex hull Signup sheet Geometric computation occurs everywhere: Geographic Information Systems (GIS): nearest

More information

Delaunay Triangulation

Delaunay Triangulation Delaunay Triangulation Steve Oudot slides courtesy of O. Devillers MST MST MST use Kruskal s algorithm with Del as input O(n log n) Last: lower bound for Delaunay Let x 1, x 2,..., x n R, to be sorted

More information

International Journal of Computational Geometry & Applications c World Scientific Publishing Company

International Journal of Computational Geometry & Applications c World Scientific Publishing Company International Journal of Computational Geometry & Applications c World Scientific Publishing Company EUCLIDEAN VORONOI DIAGRAM FOR CIRCLES IN A CIRCLE DONGUK KIM Voronoi Diagram Research Center, Hanyang

More information

Programmazione. Prof. Marco Bertini

Programmazione. Prof. Marco Bertini Programmazione Prof. Marco Bertini marco.bertini@unifi.it http://www.micc.unifi.it/bertini/ Hello world : a review Some differences between C and C++ Let s review some differences between C and C++ looking

More information

Fuzzy Voronoi Diagram

Fuzzy Voronoi Diagram Fuzzy Voronoi Diagram Mohammadreza Jooyandeh and Ali Mohades Khorasani Mathematics and Computer Science, Amirkabir University of Technology, Hafez Ave., Tehran, Iran mohammadreza@jooyandeh.info,mohades@aut.ac.ir

More information

Voronoi diagram and Delaunay triangulation

Voronoi diagram and Delaunay triangulation Voronoi diagram and Delaunay triangulation Ioannis Emiris & Vissarion Fisikopoulos Dept. of Informatics & Telecommunications, University of Athens Computational Geometry, spring 2015 Outline 1 Voronoi

More information

Prof. Gill Barequet. Center for Graphics and Geometric Computing, Technion. Dept. of Computer Science The Technion Haifa, Israel

Prof. Gill Barequet. Center for Graphics and Geometric Computing, Technion. Dept. of Computer Science The Technion Haifa, Israel Computational Geometry (CS 236719) http://www.cs.tufts.edu/~barequet/teaching/cg Chapter 1 Introduction 1 Copyright 2002-2009 2009 Prof. Gill Barequet Center for Graphics and Geometric Computing Dept.

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

APBS electrostatics in VMD

APBS electrostatics in VMD APBS electrostatics in VMD The VMD molecular graphics software package provides support for both the execution of APBS and the visualization of the resulting electrostatic potentials. Documentation on

More information

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that ( Shelling (Bruggesser-Mani 1971) and Ranking Let be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that. a ranking of vertices

More information

CS133 Computational Geometry

CS133 Computational Geometry CS133 Computational Geometry Voronoi Diagram Delaunay Triangulation 5/17/2018 1 Nearest Neighbor Problem Given a set of points P and a query point q, find the closest point p P to q p, r P, dist p, q dist(r,

More information

Introduction to Voronoi Diagrams and Delaunay Triangulations

Introduction to Voronoi Diagrams and Delaunay Triangulations Introduction to Voronoi Diagrams and Delaunay Triangulations Solomon Boulos Introduction to Voronoi Diagrams and Delaunay Triangulations p.1 Voronoi Diagrams Voronoi region: V (p i ) = {x R n p i x p j

More information

Week 8 Voronoi Diagrams

Week 8 Voronoi Diagrams 1 Week 8 Voronoi Diagrams 2 Voronoi Diagram Very important problem in Comp. Geo. Discussed back in 1850 by Dirichlet Published in a paper by Voronoi in 1908 3 Voronoi Diagram Fire observation towers: an

More information

Research Article Implementation of Personal Health Device Communication Protocol Applying ISO/IEEE

Research Article Implementation of Personal Health Device Communication Protocol Applying ISO/IEEE Distributed Sensor Networks, Article ID 291295, 4 pages http://dx.doi.org/10.1155/2014/291295 Research Article Implementation of Personal Health Device Communication Protocol Applying ISO/IEEE 11073-20601

More information

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry Computational Geometry Algorithm Design (10) Computational Geometry Graduate School of Engineering Takashi Chikayama Algorithms formulated as geometry problems Broad application areas Computer Graphics,

More information

Verification of the Hexagonal Ray Tracing Module and the CMFD Acceleration in ntracer

Verification of the Hexagonal Ray Tracing Module and the CMFD Acceleration in ntracer KNS 2017 Autumn Gyeongju Verification of the Hexagonal Ray Tracing Module and the CMFD Acceleration in ntracer October 27, 2017 Seongchan Kim, Changhyun Lim, Young Suk Ban and Han Gyu Joo * Reactor Physics

More information

Computational Geometry

Computational Geometry Lecture 12: Lecture 12: Motivation: Terrains by interpolation To build a model of the terrain surface, we can start with a number of sample points where we know the height. Lecture 12: Motivation: Terrains

More information

NEW VERSION PROGRAM SUMMARY

NEW VERSION PROGRAM SUMMARY ARVO-CL:The OpenCL Version of the ARVO Package An Efficient Tool for Computing the Accessible Surface Area and the Excluded Volume of Proteins via Analytical Equations Ján Buša Jr. a,b,c,, Shura Hayryan

More information

Implementing Geometric Algorithms. Wouter van Toll June 20, 2017

Implementing Geometric Algorithms. Wouter van Toll June 20, 2017 Implementing Geometric Algorithms Wouter van Toll June 20, 2017 Introduction 6/20/2017 Lecture: Implementing Geometric Algorithms 2 Focus of this course Create algorithms to solve geometric problems Prove

More information

COMPUTING CONSTRAINED DELAUNAY

COMPUTING CONSTRAINED DELAUNAY COMPUTING CONSTRAINED DELAUNAY TRIANGULATIONS IN THE PLANE By Samuel Peterson, University of Minnesota Undergraduate The Goal The Problem The Algorithms The Implementation Applications Acknowledgments

More information

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Collision Detection Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Euler Angle RBE

More information

Point Cloud Collision Detection

Point Cloud Collision Detection Point Cloud Collision Detection Uni Paderborn & Gabriel Zachmann Uni Bonn Point Clouds Modern acquisition methods (scanning, sampling synthetic objects) lead to modern object representations. Efficient

More information

2D & 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems

2D & 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems 2D & 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems Choon Ki Ahn, Jung Hun Park, and Wook Hyun Kwon 1 Abstract CEMTool is a command style design and analyzing package for scientific

More information

Lane Detection using Fuzzy C-Means Clustering

Lane Detection using Fuzzy C-Means Clustering Lane Detection using Fuzzy C-Means Clustering Kwang-Baek Kim, Doo Heon Song 2, Jae-Hyun Cho 3 Dept. of Computer Engineering, Silla University, Busan, Korea 2 Dept. of Computer Games, Yong-in SongDam University,

More information

Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here)

Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here) Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here) Voronoi Diagram & Delaunay Triangualtion Algorithms Divide-&-Conquer Plane Sweep Lifting

More information

Feature Extraction for Illustrating 3D Stone Tools from Unorganized Point Clouds

Feature Extraction for Illustrating 3D Stone Tools from Unorganized Point Clouds Feature Extraction for Illustrating 3D Stone Tools from Unorganized Point Clouds Enkhbayar Altantsetseg 1) Yuta Muraki 2) Katsutsugu Matsuyama 2) Fumito Chiba 3) Kouichi Konno 2) 1) Graduate School of

More information

Voronoi Diagrams. Voronoi Diagrams. Swami Sarvottamananda. Ramakrishna Mission Vivekananda University NIT-IGGA, 2010

Voronoi Diagrams. Voronoi Diagrams. Swami Sarvottamananda. Ramakrishna Mission Vivekananda University NIT-IGGA, 2010 Voronoi Diagrams Swami Sarvottamananda Ramakrishna Mission Vivekananda University NIT-IGGA, 2010 Outline I 1 Introduction Motivation for Voronoi Diagram Historical Notes and Web References 2 Voronoi Diagrams

More information

Topological estimation using witness complexes. Vin de Silva, Stanford University

Topological estimation using witness complexes. Vin de Silva, Stanford University Topological estimation using witness complexes, Acknowledgements Gunnar Carlsson (Mathematics, Stanford) principal collaborator Afra Zomorodian (CS/Robotics, Stanford) persistent homology software Josh

More information

(Master Course) Mohammad Farshi Department of Computer Science, Yazd University. Yazd Univ. Computational Geometry.

(Master Course) Mohammad Farshi Department of Computer Science, Yazd University. Yazd Univ. Computational Geometry. 1 / 17 (Master Course) Mohammad Farshi Department of Computer Science, Yazd University 1392-1 2 / 17 : Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars, Algorithms and Applications, 3rd Edition,

More information

Call-by-Type Functions in C++ Command-Line Arguments in C++ CS 16: Solving Problems with Computers I Lecture #5

Call-by-Type Functions in C++ Command-Line Arguments in C++ CS 16: Solving Problems with Computers I Lecture #5 Call-by-Type Functions in C++ Command-Line Arguments in C++ CS 16: Solving Problems with Computers I Lecture #5 Ziad Matni Dept. of Computer Science, UCSB Administrative CHANGED T.A. OFFICE/OPEN LAB HOURS!

More information

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5 Voronoi Diagrams and Delaunay Triangulations O Rourke, Chapter 5 Outline Preliminaries Properties and Applications Computing the Delaunay Triangulation Preliminaries Given a function f: R 2 R, the tangent

More information

Lifting Transform, Voronoi, Delaunay, Convex Hulls

Lifting Transform, Voronoi, Delaunay, Convex Hulls Lifting Transform, Voronoi, Delaunay, Convex Hulls Subhash Suri Department of Computer Science University of California Santa Barbara, CA 93106 1 Lifting Transform (A combination of Pless notes and my

More information

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 High-Dimensional Computational Geometry Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 Outline 3-D vector geometry High-D hyperplane intersections Convex hull & its extension to 3

More information

vector<process*> Delete(vector<process*> DeleteQ, int ID); vector<process*> DeleteW(vector<process*> DeleteWQ, int IDW);

vector<process*> Delete(vector<process*> DeleteQ, int ID); vector<process*> DeleteW(vector<process*> DeleteWQ, int IDW); Matt Ramsay & Robert Brown CS 470 Process Management Project 2/15/02 File: main.cpp Uncommented Code: /*********************************** ** Matthew Ramsay Robert Brown ** ** CS470 Dr. Deborah Hwang **

More information

BOOLEAN EXPRESSIONS CONTROL FLOW (IF-ELSE) INPUT/OUTPUT. Problem Solving with Computers-I

BOOLEAN EXPRESSIONS CONTROL FLOW (IF-ELSE) INPUT/OUTPUT. Problem Solving with Computers-I BOOLEAN EXPRESSIONS CONTROL FLOW (IF-ELSE) INPUT/OUTPUT Problem Solving with Computers-I Announcements HW02: Complete (individually)using dark pencil or pen, turn in during lab section next Wednesday Please

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Fall, 2012

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Fall, 2012 UMass Lowell Computer Science 91.504 Advanced Algorithms Computational Geometry Prof. Karen Daniels Fall, 2012 Voronoi Diagrams & Delaunay Triangulations O Rourke: Chapter 5 de Berg et al.: Chapters 7,

More information

The Computational Geometry Algorithms Library. Andreas Fabri GeometryFactory

The Computational Geometry Algorithms Library. Andreas Fabri GeometryFactory The Computational Geometry Algorithms Library Andreas Fabri GeometryFactory Mission Statement Make the large body of geometric algorithms developed in the field of computational geometry available for

More information

Art Gallery, Triangulation, and Voronoi Regions

Art Gallery, Triangulation, and Voronoi Regions Art Gallery, Triangulation, and Voronoi Regions CS535 Fall 2016 Daniel G. Aliaga Department of Computer Science Purdue University [some slides based on Profs. Shmuel Wimer and Andy Mirzaian Topics Triangulation

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

Voronoi Diagram. Xiao-Ming Fu

Voronoi Diagram. Xiao-Ming Fu Voronoi Diagram Xiao-Ming Fu Outlines Introduction Post Office Problem Voronoi Diagram Duality: Delaunay triangulation Centroidal Voronoi tessellations (CVT) Definition Applications Algorithms Outlines

More information

Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006

Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006 Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006 Outline Reducing the constant from O ( ɛ d) to O ( ɛ (d 1)/2) in uery time Need to know ɛ ahead of time Preprocessing time and

More information

MINIMIZATION OF PART WARPAGE IN INJECTION MOLDING THROUGH IDEAL WALL THICKNESS DISTRIBUTION

MINIMIZATION OF PART WARPAGE IN INJECTION MOLDING THROUGH IDEAL WALL THICKNESS DISTRIBUTION MINIMIZATION OF PART WARPAGE IN INJECTION MOLDING THROUGH IDEAL WALL THICKNESS DISTRIBUTION Seminar: Auslegung und Simulation von temperaturbeanspruchten Kunststoffbauteilen MSc ME ETH Mario Studer Prof.

More information

Simulations of the quadrilateral-based localization

Simulations of the quadrilateral-based localization Simulations of the quadrilateral-based localization Cluster success rate v.s. node degree. Each plot represents a simulation run. 9/15/05 Jie Gao CSE590-fall05 1 Random deployment Poisson distribution

More information

Wolfgang Mulzer Institut für Informatik. Computational Geometry with Limited Work-Space: State of the Art and Challenges

Wolfgang Mulzer Institut für Informatik. Computational Geometry with Limited Work-Space: State of the Art and Challenges Wolfgang Mulzer Institut für Informatik Computational Geometry with Limited Work-Space: State of the Art and Challenges Algorithms with Limited Work-Space Today s software is versatile, fast, and BIG.

More information

C Compilation Model. Comp-206 : Introduction to Software Systems Lecture 9. Alexandre Denault Computer Science McGill University Fall 2006

C Compilation Model. Comp-206 : Introduction to Software Systems Lecture 9. Alexandre Denault Computer Science McGill University Fall 2006 C Compilation Model Comp-206 : Introduction to Software Systems Lecture 9 Alexandre Denault Computer Science McGill University Fall 2006 Midterm Date: Thursday, October 19th, 2006 Time: from 16h00 to 17h30

More information

Linked List using a Sentinel

Linked List using a Sentinel Linked List using a Sentinel Linked List.h / Linked List.h Using a sentinel for search Created by Enoch Hwang on 2/1/10. Copyright 2010 La Sierra University. All rights reserved. / #include

More information

primitive arrays v. vectors (1)

primitive arrays v. vectors (1) Arrays 1 primitive arrays v. vectors (1) 2 int a[10]; allocate new, 10 elements vector v(10); // or: vector v; v.resize(10); primitive arrays v. vectors (1) 2 int a[10]; allocate new, 10 elements

More information

Proximity Graphs for Defining Surfaces over Point Clouds

Proximity Graphs for Defining Surfaces over Point Clouds Proximity Graphs for Defining Surfaces over Point Clouds Germany Gabriel Zachmann University of Bonn Germany Zurich June, 2004 Surface Definition based on MLS Surface can be approximated by implicit function,

More information

Measuring Properties of Molecular Surfaces Using Ray Casting

Measuring Properties of Molecular Surfaces Using Ray Casting Measuring Properties of Molecular Surfaces Using Ray Casting Mike Phillips, Iliyan Georgiev, Anna Katharina Dehof, Stefan Nickels, Lukas Marsalek, Hans-Peter Lenhof, Andreas Hildebrandt, Philipp Slusallek

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Notes in Computational Geometry Voronoi Diagrams

Notes in Computational Geometry Voronoi Diagrams Notes in Computational Geometry Voronoi Diagrams Prof. Sandeep Sen and Prof. Amit Kumar Indian Institute of Technology, Delhi Voronoi Diagrams In this lecture, we study Voronoi Diagrams, also known as

More information

Smallest Intersecting Circle for a Set of Polygons

Smallest Intersecting Circle for a Set of Polygons Smallest Intersecting Circle for a Set of Polygons Peter Otfried Joachim Christian Marc Esther René Michiel Antoine Alexander 31st August 2005 1 Introduction Motivated by automated label placement of groups

More information

Time-space Trade-offs for Voronoi Diagrams

Time-space Trade-offs for Voronoi Diagrams Time-space Trade-offs for Voronoi Diagrams Matias Korman Wolfgang Mulzer André van Renssen National institute of informatics. Tokyo, Japan Institut für Informatik, Freie Universität Berlin, Germany National

More information

The Contour-Buildup Algorithm to Calculate the Analytical Molecular Surface

The Contour-Buildup Algorithm to Calculate the Analytical Molecular Surface JOURNAL OF STRUCTURAL BIOLOGY 116, 138 143 (1996) ARTICLE NO. 0022 The Contour-Buildup Algorithm to Calculate the Analytical Molecular Surface MAXIM TOTROV Skirball Institute of Biomolecular Medicine,

More information

for Heterogeneous Accelerators

for Heterogeneous Accelerators Target Independent Runtime System for Heterogeneous Accelerators Jaejin Lee Dept. of Computer Science and Engineering Seoul National University http://aces.snu.ac.kr Enabling Technology for Deep Learning

More information

CS103 Lecture 1 Slides. Introduction Mark Redekopp

CS103 Lecture 1 Slides. Introduction Mark Redekopp 1 CS103 Lecture 1 Slides Introduction Mark Redekopp 2 What is Computer Science All science is computer science It is very interdisciplinary: Math, Engineering, Medicine, Natural sciences, Art, Linguistics,

More information

Lab 1: First Steps in C++ - Eclipse

Lab 1: First Steps in C++ - Eclipse Lab 1: First Steps in C++ - Eclipse Step Zero: Select workspace 1. Upon launching eclipse, we are ask to chose a workspace: 2. We select a new workspace directory (e.g., C:\Courses ): 3. We accept the

More information

CPSC 695. Geometric Algorithms in Biometrics. Dr. Marina L. Gavrilova

CPSC 695. Geometric Algorithms in Biometrics. Dr. Marina L. Gavrilova CPSC 695 Geometric Algorithms in Biometrics Dr. Marina L. Gavrilova Biometric goals Verify users Identify users Synthesis - recently Biometric identifiers Courtesy of Bromba GmbH Classification of identifiers

More information

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples :

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples : 3. Voronoi Diagrams Examples : 1. Fire Observation Towers Imagine a vast forest containing a number of fire observation towers. Each ranger is responsible for extinguishing any fire closer to her tower

More information

On a Nearest-Neighbour Problem in Minkowski and Power Metrics

On a Nearest-Neighbour Problem in Minkowski and Power Metrics On a Nearest-Neighbour Problem in Minkowski and Power Metrics M.L. Gavrilova Dept of Comp. Science, University of Calgary Calgary, AB, Canada, T2N1N4 marina@cpsc.ucalgary.ca Abstract. The paper presents

More information

Fingerprint Indexing using Minutiae and Pore Features

Fingerprint Indexing using Minutiae and Pore Features Fingerprint Indexing using Minutiae and Pore Features R. Singh 1, M. Vatsa 1, and A. Noore 2 1 IIIT Delhi, India, {rsingh, mayank}iiitd.ac.in 2 West Virginia University, Morgantown, USA, afzel.noore@mail.wvu.edu

More information

Lecture 1 Discrete Geometric Structures

Lecture 1 Discrete Geometric Structures Lecture 1 Discrete Geometric Structures Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology

More information

S E U N G G Y U L E E

S E U N G G Y U L E E S E U N G G Y U L E E personal information Birth Republic of Korea, May 9 1989 e-mail sglee89@nims.re.kr 509sky@hanmail.net homepage http://elie.korea.ac.kr/ sky509 phone +82-042-717-5717 research interests

More information

Benchmark tests of Parallel PHOENICS for Windows (collected by jzw, 2006; edited by dbs)

Benchmark tests of Parallel PHOENICS for Windows (collected by jzw, 2006; edited by dbs) Benchmark tests of Parallel PHOENICS for Windows (collected by jzw, 2006; edited by dbs) Speed-up data are reported below for PHOENICS Library cases with increased cell numbers, and for some industrial

More information

Overloading Functions & Command Line Use in C++ CS 16: Solving Problems with Computers I Lecture #6

Overloading Functions & Command Line Use in C++ CS 16: Solving Problems with Computers I Lecture #6 Overloading Functions & Command Line Use in C++ CS 16: Solving Problems with Computers I Lecture #6 Ziad Matni Dept. of Computer Science, UCSB A reminder about Labs Announcements Please make sure you READ

More information

Solutions to Exercise 4 Algebraic Curve, Surface Splines IV: Molecular Models

Solutions to Exercise 4 Algebraic Curve, Surface Splines IV: Molecular Models Solutions to Exercise 4 Algebraic Curve, Surface Splines IV: Molecular Models CS384R, CAM 395T, BME 385J: Fall 2007 Question 1. Describe the LEG (Labelled Embedded Graph) atomic representations as per

More information