Algorithms and Modern Computer Science

Size: px
Start display at page:

Download "Algorithms and Modern Computer Science"

Transcription

1 Algorithms and Modern Computer Science Dr. Marina L. Gavrilova Dept of Comp. Science, University of Calgary, AB, Canada, T2N1N4

2 My Research Interests Computer modeling and simulation Computational geometry Image processing Visualization Voronoi diagram and Delaunay triangulation Biometric technologies Collision detection optimization Terrain modeling and visualization Exact computation Computational methods in spatial analysis and GIS

3 Affiliations Co-Founder, Biometric Technologies Laboratory, sponsored by CFI Grant, ES 221 Co-Founder, SPARCS Laboratory for Spatial Analysis and Computational Science, sponsored by GEOIDE, ICT 7 th floor

4 Data Structures to be Studied Hashing and hash tables Trees Spatial subdivisions Graphs Flow networks Geometric data structures

5 Algorithms to be studies Search heuristics Encoding and compression techniques Linear programming Dynamic programming Game design techniques Randomized algorithms

6 Long-Term Goals of Research in Computer Science Provide a solution to a problem Decrease possibility of an error Improve methodology or invent a novel solution Make solution more robust Make solution more efficient Make solution less memory consuming

7 Examples of data structures applications in areas of computer Typical applications: science Heaps for data ordering and faster access in operating systems K-d d trees for multi-dimensional database searches B, B*, B+ trees for file accesses Geometric data structures for geographical data representation and processing Compression algorithms for remote access, Internet, network transmission and security Search heuristics for game strategy implementation

8 More Advanced Applications Data structures in Optimization and Computer Simulation Data structures in Image Processing and Computer Graphics Data structures in GIS (Geographical Information Systems) and statistical analysis Data structures in biometrics

9 Part 1. Optimization and Computer Modeling Space partitioning Trees Geometric data structures Biological systems (plants, corals) Granular-type materials (silo, shaker, billiards) Molecular systems (fluids, lipid bilayers, protein docking) GIS terrain modeling

10 Pool of Data Structures Dynamic Delaunay triangulation P 1 P 1 P 1 P 2 P 2 P 2 P 4 P 4 P 4 P 3 P 3 P 3 INCIRCLE( P, P, P, P ) > INCIRCLE( P, P, P, P ) = INCIRCLE( P, P, P, P ) < Spatial subdivisions k cells Segment trees K-d trees Interval trees Combination of data structures

11 Collision detection optimization Problem: A set of n moving particles is given in the plane or 3D with equations of their motion. It is required to detect and handle collisions between objects and/or boundaries. Collisions are instantaneous and one-on on-one one only. Approach: Use dynamic data structures in the context of time-step event oriented simulation model. Data structures implemented are: dynamic generalized DT regular spatial subdivision regular spatial tree set of segment tree

12 The nearest-neighbor neighbor problem Task: To find the nearest-neighbor neighbor in a system of circular objects {Gavrilova 01} Approach: To use generalized Voronoi diagram in Manhattan and power metric and k-d k d tree as a data structure. The Initial Distribution Generator (IDG) module: Used to create various input configurations: the uniform distribution of sites in a square, the uniform distribution of sites in a circle, cross, ring, degenerate grid and degenerate circle.. The parameters for automatic generation are: the number of sites,, the distribution of their radii, the size of the area, and the type of the distribution. The Nearest-Neighbour Neighbour Monitor (NNM) module: The program constructs the additively weighted supremum VD, the power diagram and the k-d tree in supremum metric; performs series of nearest-neighbour neighbour searches and displays statistics. Tests: large data sets (10000 particles), silo model

13 Example: supremum VD and DT The supremum weighted Voronoi diagram (left) and the corresponding Delaunay triangulation (right) for 1000 randomly distributed sites.

14 Application to Silo model Silo model: Newton-Euler method, power, supremum and k-k d methods compared, simple and efficient solution to a problem. Analysis of pressure on cylinder boundaries is performed. Silo: Query time vs. Number of Sites (1000 queries) Time (sec.) Suprem Pow er k-d Number of sites

15 Study of porous materials in 3d Collaborators: N.N. Medvedev, V.A.Luchnikov,, V. P. Voloshin, Russian Academy of Sciences, Novosibirsk [Luchnikov[ 01]. Task: To study the properties of the system of polydisperse spheres in 3D, confined inside a cylindrical container. Approach: A boundary of a container is considered as one of the elements of the system. To compute the Voronoi network for a set of balls in a cylinder we use the modification of the known 3D incremental construction technique, discussed in {Gavrilova et. al.} The center of an empty sphere, which moves inside the system so that it touches at least three objects at any moment of time, defines an edge of the 3D Voronoi network. Tests: porous materials, molecular structures

16 Example: 3D Euclidean Voronoi diagram 3D Euclidean Voronoi diagram: hyperbolic arcs identify voids empty spaces around items obtained by Monte Carlo method.

17 Experiments The approach was tested on a system representing dense packing of 300 Lennard-Jones atoms. The largest channels of the Voronoi network occur near to the wall of the cylinder. A fraction of large channels along the wall is higher for the model with the fixed diameter (right) than for the model with relaxed diameter (left).

18 Part 2. Image processing and Computer Graphics Space partitioning Trees Geometric data structures Compression Search heuristics Image reconstruction Image compression Morphing Detail enhancement Image comparison Pattern recognition

19 Pattern Matching Aside from a problem of measuring the distance, pattern matching between the template and the given image is a very serious problem on its own.

20 Template Matching approach to Symbol Recognition Compare an image with each template and see which one gives the best mach (courtesy of Prof. Jim Parker, U of C)

21 Good Match Most of the pixels overlap means a good match (courtesy of Prof. Jim Parker, U of C) Image Template

22 Template comparison The most common methods are based on bit-map comparison techniques, scaling, rotating and modifying image to fit the template through the use of linear operators, and extracting template boundaries or skeleton (also called medial axis) for the comparison purposes. In addition, template comparison methods also differ, being based on either pixel to pixel, important features positions, or boundary/skeleton comparison.

23 Distance transform Definition 1. Given an n x m binary image I of white and black pixels, the distance transform of I is a map that assigns to each pixel the distance to the nearest black pixel (a feature). The distance transform method introduced in [Gavrilova and Alsuwayel] ] is based on fast scans of image in the top-bottom and left-right directions using a fast polygonal chain maintenance algorithm. After the distance transform is build, it can be used to visualize proximity information in a form of temperature map. As the distance from the black pixels (features)( increases, the color intensity changes.

24 Distance Transform Given an n x m binary image I of white and black pixels, the distance transform of I is a map that assigns to each pixel the distance to the nearest black pixel (a feature).

25 Medial axis transform The medial axis,, or skeleton of the set D, denoted M(D), is defined as the locus of points inside D which lie at the centers of all closed discs (or spheres) which are maximal in D, together with the limit points of this locus.

26 Medial axis transform

27 Voronoi diagram in 3D

28 Part 3. Social Sciences and GIS Space partitioning Grids Distance metrics Geometric data structures Terrain visualization Terrain modeling Urban planning City planning GIS systems design Navigation and tracking problems Statistical analysis

29 GIS studies - SPARCS Lab Collaborators: S. Bertazzon, Dept. of Geography, C. Gold, Hong Kong Polytechnic, M. Goodchild, Santa Barbara Problem: study or patterns and correlation among attributed geographical entities, including health, demographic, education etc. statistics. Approach: pattern analysis using 3D Voronoi diagram, spatial statistics and autocorrelation using L p metrics, pattern matching and visualization

30 Terrain models

31 Quantitative Map Analysis Population, Km.

32 DEM: Digital Elevation Model Contains only relative Height Regular interval Pixel color determine height Discrete resolution

33 Non-Photo Photo-Realistic Real-time 3D Terrain Rendering Uses DEM as input of the application Generates frame coherent animated view in real-time Uses texturing, shades, particles etc. for layer visualization

34 Part 4. Biometrics Hashing Space partitioning Trees Geometric data structures Searching Biometric identification Biometric recognition Biometric synthesis

35 Background Biometrics refers to the automatic identification of a person based on his/her physiological or behavioral characteristics.

36 Thermogram vs. distance transform Thermogram of an ear (Brent Griffith, Infrared Thermography Laboratory, Lawrence Berkeley National Laboratory )

37 Use of metrics Regularity of metric allows to measure the distances from some distinct features of the template more precisely, and ignore minor discrepancies originated from noise and imprecise measurement while obtaining the data. We presume that the behavioral identifiers, such as typing pattern, voice and handwriting styles will be less susceptible to improvement using the proposed weighted distance methodology than the physiological identifiers.

38 Geometric algorithms in biometrics The methodology is making its way to the core methods of biometrics, such as fingerprint identification, iris and retina matching, face analysis, ear geometry and others (see recent works by [Xiao, Zhang, Burge]. The methods are using Voronoi diagram to partition the area of a studies image and compute some important features (such as areas of Voronoi region, boundary simplification etc.) and compare with similarly obtained characteristics of other biometric data.

39 Nearest Neighbor Approach Voronoi diagram Directions of feature points

40 Delaunay Triangulation of Minutiae Points

41 (a) Binary Hand (b) Hand Contour

42 Spatial Interpolation using RBF(Radial Basis Functions) Deformation in 2D and 3D

43 Topology-based solution to generating biometric information Finally, one of the most challenging areas is a recently emerged problem of generating biometric information, or so-called inverse problem in biometrics. In order to verify the validity of algorithms being developed, and to ensure that the methods work efficiently and with low error rates in real-life life applications, a number of biometric data can be artificially created, resembling samples taken from live subjects. In order to perform this procedure, a variety of methods should be used, but the idea that we explore is based on the extraction of important topological information from the relatively small set of samples (such as boundary, skeleton, important features etc), applying variety of computational geometry methods, and then using these geometric samples to generate the adequate set of test data.

44 Conclusion Data structures and algorithms studies in the course are powerful tools not only for basic operation of computer systems and networks but also a vast array of techniques for advancing the state of the research in various computer science disciplines.

CPSC 695. Geometric Algorithms in Biometrics. Dr. Marina L. Gavrilova

CPSC 695. Geometric Algorithms in Biometrics. Dr. Marina L. Gavrilova CPSC 695 Geometric Algorithms in Biometrics Dr. Marina L. Gavrilova Biometric goals Verify users Identify users Synthesis - recently Biometric identifiers Courtesy of Bromba GmbH Classification of identifiers

More information

On a Nearest-Neighbour Problem in Minkowski and Power Metrics

On a Nearest-Neighbour Problem in Minkowski and Power Metrics On a Nearest-Neighbour Problem in Minkowski and Power Metrics M.L. Gavrilova Dept of Comp. Science, University of Calgary Calgary, AB, Canada, T2N1N4 marina@cpsc.ucalgary.ca Abstract. The paper presents

More information

CPSC 695. Methods for interpolation and analysis of continuing surfaces in GIS Dr. M. Gavrilova

CPSC 695. Methods for interpolation and analysis of continuing surfaces in GIS Dr. M. Gavrilova CPSC 695 Methods for interpolation and analysis of continuing surfaces in GIS Dr. M. Gavrilova Overview Data sampling for continuous surfaces Interpolation methods Global interpolation Local interpolation

More information

On the data structures and algorithms for contact detection in granular media (DEM) V. Ogarko, May 2010, P2C course

On the data structures and algorithms for contact detection in granular media (DEM) V. Ogarko, May 2010, P2C course On the data structures and algorithms for contact detection in granular media (DEM) V. Ogarko, May 2010, P2C course Discrete element method (DEM) Single particle Challenges: -performance O(N) (with low

More information

Optimization Techniques in an Event-Driven Simulation of a Shaker Ball Mill

Optimization Techniques in an Event-Driven Simulation of a Shaker Ball Mill Optimization Techniques in an Event-Driven Simulation of a Shaker Ball Mill Marina Gavrilova 1, Jon Rokne 1, Dmitri Gavrilov 2, and Oleg Vinogradov 3 1 Dept of Comp. Science, Universit of Calgary, Calgary,

More information

Digital Image Processing Fundamentals

Digital Image Processing Fundamentals Ioannis Pitas Digital Image Processing Fundamentals Chapter 7 Shape Description Answers to the Chapter Questions Thessaloniki 1998 Chapter 7: Shape description 7.1 Introduction 1. Why is invariance to

More information

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams in the Plane Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams As important as convex hulls Captures the neighborhood (proximity) information of geometric objects

More information

Visualization and Analysis of Inverse Kinematics Algorithms Using Performance Metric Maps

Visualization and Analysis of Inverse Kinematics Algorithms Using Performance Metric Maps Visualization and Analysis of Inverse Kinematics Algorithms Using Performance Metric Maps Oliver Cardwell, Ramakrishnan Mukundan Department of Computer Science and Software Engineering University of Canterbury

More information

DiFi: Distance Fields - Fast Computation Using Graphics Hardware

DiFi: Distance Fields - Fast Computation Using Graphics Hardware DiFi: Distance Fields - Fast Computation Using Graphics Hardware Avneesh Sud Dinesh Manocha UNC-Chapel Hill http://gamma.cs.unc.edu/difi Distance Fields Distance Function For a site a scalar function f:r

More information

DATA MODELS IN GIS. Prachi Misra Sahoo I.A.S.R.I., New Delhi

DATA MODELS IN GIS. Prachi Misra Sahoo I.A.S.R.I., New Delhi DATA MODELS IN GIS Prachi Misra Sahoo I.A.S.R.I., New Delhi -110012 1. Introduction GIS depicts the real world through models involving geometry, attributes, relations, and data quality. Here the realization

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

Maps as Numbers: Data Models

Maps as Numbers: Data Models Maps as Numbers: Data Models vertices E Reality S E S arcs S E Conceptual Models nodes E Logical Models S Start node E End node S Physical Models 1 The Task An accurate, registered, digital map that can

More information

Lecture 6: GIS Spatial Analysis. GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University

Lecture 6: GIS Spatial Analysis. GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University Lecture 6: GIS Spatial Analysis GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University 1 Spatial Data It can be most simply defined as information that describes the distribution

More information

The Computational Geometry Algorithms Library. Andreas Fabri GeometryFactory

The Computational Geometry Algorithms Library. Andreas Fabri GeometryFactory The Computational Geometry Algorithms Library Andreas Fabri GeometryFactory Mission Statement Make the large body of geometric algorithms developed in the field of computational geometry available for

More information

Representing Geography

Representing Geography Data models and axioms Chapters 3 and 7 Representing Geography Road map Representing the real world Conceptual models: objects vs fields Implementation models: vector vs raster Vector topological model

More information

Voronoi diagram of 3D spheres: theory and applications

Voronoi diagram of 3D spheres: theory and applications Voronoi diagram of 3D spheres: theory and applications Donguk KIM 1, Youngsong CHO 1, Cheol-Hyung CHO 1, Joonghyun RYU 1 Chong-Min KIM 1 and Deok-Soo KIM 2 1) Voronoi Diagram Research Center, Hanyang University,

More information

Week 8 Voronoi Diagrams

Week 8 Voronoi Diagrams 1 Week 8 Voronoi Diagrams 2 Voronoi Diagram Very important problem in Comp. Geo. Discussed back in 1850 by Dirichlet Published in a paper by Voronoi in 1908 3 Voronoi Diagram Fire observation towers: an

More information

Lecture 6: Multimedia Information Retrieval Dr. Jian Zhang

Lecture 6: Multimedia Information Retrieval Dr. Jian Zhang Lecture 6: Multimedia Information Retrieval Dr. Jian Zhang NICTA & CSE UNSW COMP9314 Advanced Database S1 2007 jzhang@cse.unsw.edu.au Reference Papers and Resources Papers: Colour spaces-perceptual, historical

More information

Lecture 10: Image Descriptors and Representation

Lecture 10: Image Descriptors and Representation I2200: Digital Image processing Lecture 10: Image Descriptors and Representation Prof. YingLi Tian Nov. 15, 2017 Department of Electrical Engineering The City College of New York The City University of

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

Nearest Neighbor Predictors

Nearest Neighbor Predictors Nearest Neighbor Predictors September 2, 2018 Perhaps the simplest machine learning prediction method, from a conceptual point of view, and perhaps also the most unusual, is the nearest-neighbor method,

More information

Implementing Geometric Algorithms. Wouter van Toll June 20, 2017

Implementing Geometric Algorithms. Wouter van Toll June 20, 2017 Implementing Geometric Algorithms Wouter van Toll June 20, 2017 Introduction 6/20/2017 Lecture: Implementing Geometric Algorithms 2 Focus of this course Create algorithms to solve geometric problems Prove

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 9: Representation and Description AASS Learning Systems Lab, Dep. Teknik Room T1209 (Fr, 11-12 o'clock) achim.lilienthal@oru.se Course Book Chapter 11 2011-05-17 Contents

More information

Geometric Computation: Introduction

Geometric Computation: Introduction : Introduction Piotr Indyk Welcome to 6.838! Overview and goals Course Information Syllabus 2D Convex hull Signup sheet Geometric computation occurs everywhere: Geographic Information Systems (GIS): nearest

More information

(Refer Slide Time 00:17) Welcome to the course on Digital Image Processing. (Refer Slide Time 00:22)

(Refer Slide Time 00:17) Welcome to the course on Digital Image Processing. (Refer Slide Time 00:22) Digital Image Processing Prof. P. K. Biswas Department of Electronics and Electrical Communications Engineering Indian Institute of Technology, Kharagpur Module Number 01 Lecture Number 02 Application

More information

Chapter 11 Representation & Description

Chapter 11 Representation & Description Chain Codes Chain codes are used to represent a boundary by a connected sequence of straight-line segments of specified length and direction. The direction of each segment is coded by using a numbering

More information

Geometric Computation: Introduction. Piotr Indyk

Geometric Computation: Introduction. Piotr Indyk Geometric Computation: Introduction Piotr Indyk Welcome to 6.850! Overview and goals Course Information Closest pair Signup sheet Geometric Computation Geometric computation occurs everywhere: Robotics:

More information

CS 532: 3D Computer Vision 14 th Set of Notes

CS 532: 3D Computer Vision 14 th Set of Notes 1 CS 532: 3D Computer Vision 14 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Triangulating

More information

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry Computational Geometry Algorithm Design (10) Computational Geometry Graduate School of Engineering Takashi Chikayama Algorithms formulated as geometry problems Broad application areas Computer Graphics,

More information

Mathematical Morphology and Distance Transforms. Robin Strand

Mathematical Morphology and Distance Transforms. Robin Strand Mathematical Morphology and Distance Transforms Robin Strand robin.strand@it.uu.se Morphology Form and structure Mathematical framework used for: Pre-processing Noise filtering, shape simplification,...

More information

Scalar Visualization

Scalar Visualization Scalar Visualization 5-1 Motivation Visualizing scalar data is frequently encountered in science, engineering, and medicine, but also in daily life. Recalling from earlier, scalar datasets, or scalar fields,

More information

LECTURE 2 SPATIAL DATA MODELS

LECTURE 2 SPATIAL DATA MODELS LECTURE 2 SPATIAL DATA MODELS Computers and GIS cannot directly be applied to the real world: a data gathering step comes first. Digital computers operate in numbers and characters held internally as binary

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Data Mining Classification: Alternative Techniques. Lecture Notes for Chapter 4. Instance-Based Learning. Introduction to Data Mining, 2 nd Edition

Data Mining Classification: Alternative Techniques. Lecture Notes for Chapter 4. Instance-Based Learning. Introduction to Data Mining, 2 nd Edition Data Mining Classification: Alternative Techniques Lecture Notes for Chapter 4 Instance-Based Learning Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Instance Based Classifiers

More information

A Subquadratic Algorithm for the Straight Skeleton

A Subquadratic Algorithm for the Straight Skeleton A Subquadratic Algorithm for the Straight Skeleton David Eppstein Dept. Information and Computer Science Univ. of California, Irvine http://www.ics.uci.edu/ eppstein/ (Joint work with Jeff Erickson, Duke

More information

The Crust and Skeleton Applications in GIS

The Crust and Skeleton Applications in GIS The Crust and Skeleton Applications in GIS Christopher Gold and Maciek Dakowicz School of Computing, University of Glamorgan Pontypridd CF37 1DL Wales UK christophergold@voronoi.com Abstract This paper

More information

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces.

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. joint work with (S. Osher, R. Fedkiw and M. Kang) Desired properties for surface reconstruction:

More information

x + 2 = 0 or Our limits of integration will apparently be a = 2 and b = 4.

x + 2 = 0 or Our limits of integration will apparently be a = 2 and b = 4. QUIZ ON CHAPTER 6 - SOLUTIONS APPLICATIONS OF INTEGRALS; MATH 15 SPRING 17 KUNIYUKI 15 POINTS TOTAL, BUT 1 POINTS = 1% Note: The functions here are continuous on the intervals of interest. This guarantees

More information

Hot topics and Open problems in Computational Geometry. My (limited) perspective. Class lecture for CSE 546,

Hot topics and Open problems in Computational Geometry. My (limited) perspective. Class lecture for CSE 546, Hot topics and Open problems in Computational Geometry. My (limited) perspective Class lecture for CSE 546, 2-13-07 Some slides from this talk are from Jack Snoeyink and L. Kavrakis Key trends on Computational

More information

3D Modeling: Solid Models

3D Modeling: Solid Models CS 430/536 Computer Graphics I 3D Modeling: Solid Models Week 9, Lecture 18 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science

More information

MODELING AND HIERARCHY

MODELING AND HIERARCHY MODELING AND HIERARCHY Introduction Models are abstractions of the world both of the real world in which we live and of virtual worlds that we create with computers. We are all familiar with mathematical

More information

Carmen Alonso Montes 23rd-27th November 2015

Carmen Alonso Montes 23rd-27th November 2015 Practical Computer Vision: Theory & Applications 23rd-27th November 2015 Wrap up Today, we are here 2 Learned concepts Hough Transform Distance mapping Watershed Active contours 3 Contents Wrap up Object

More information

Outline. CGAL par l exemplel. Current Partners. The CGAL Project.

Outline. CGAL par l exemplel. Current Partners. The CGAL Project. CGAL par l exemplel Computational Geometry Algorithms Library Raphaëlle Chaine Journées Informatique et GéomG ométrie 1 er Juin 2006 - LIRIS Lyon Outline Overview Strengths Design Structure Kernel Convex

More information

Topic 6 Representation and Description

Topic 6 Representation and Description Topic 6 Representation and Description Background Segmentation divides the image into regions Each region should be represented and described in a form suitable for further processing/decision-making Representation

More information

International Journal of Advance Engineering and Research Development. Iris Recognition and Automated Eye Tracking

International Journal of Advance Engineering and Research Development. Iris Recognition and Automated Eye Tracking International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 Special Issue SIEICON-2017,April -2017 e-issn : 2348-4470 p-issn : 2348-6406 Iris

More information

Data Structures for Approximate Proximity and Range Searching

Data Structures for Approximate Proximity and Range Searching Data Structures for Approximate Proximity and Range Searching David M. Mount University of Maryland Joint work with: Sunil Arya (Hong Kong U. of Sci. and Tech) Charis Malamatos (Max Plank Inst.) 1 Introduction

More information

M. Andrea Rodríguez-Tastets. I Semester 2008

M. Andrea Rodríguez-Tastets. I Semester 2008 M. -Tastets Universidad de Concepción,Chile andrea@udec.cl I Semester 2008 Outline refers to data with a location on the Earth s surface. Examples Census data Administrative boundaries of a country, state

More information

Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts

Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts MSc Computer Games and Entertainment Maths & Graphics II 2013 Lecturer(s): FFL (with Gareth Edwards) Fractal Terrain Based on

More information

Topic 5: Raster and Vector Data Models

Topic 5: Raster and Vector Data Models Geography 38/42:286 GIS 1 Topic 5: Raster and Vector Data Models Chapters 3 & 4: Chang (Chapter 4: DeMers) 1 The Nature of Geographic Data Most features or phenomena occur as either: discrete entities

More information

Flavor of Computational Geometry. Voronoi Diagrams. Shireen Y. Elhabian Aly A. Farag University of Louisville

Flavor of Computational Geometry. Voronoi Diagrams. Shireen Y. Elhabian Aly A. Farag University of Louisville Flavor of Computational Geometry Voronoi Diagrams Shireen Y. Elhabian Aly A. Farag University of Louisville March 2010 Pepperoni Sparse Pizzas Olive Sparse Pizzas Just Two Pepperonis A person gets the

More information

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

Statistical surfaces and interpolation. This is lecture ten

Statistical surfaces and interpolation. This is lecture ten Statistical surfaces and interpolation This is lecture ten Data models for representation of surfaces So far have considered field and object data models (represented by raster and vector data structures).

More information

Outline of the presentation

Outline of the presentation Surface Reconstruction Petra Surynková Charles University in Prague Faculty of Mathematics and Physics petra.surynkova@mff.cuni.cz Outline of the presentation My work up to now Surfaces of Building Practice

More information

Algorithmische Geometrie Voronoi Diagram

Algorithmische Geometrie Voronoi Diagram Algorithmische Geometrie Voronoi Diagram Martin Held FB Computerwissenschaften Universität Salzburg A 5020 Salzburg, Austria May 28, 2008 Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go

More information

Image-Based Buildings and Facades

Image-Based Buildings and Facades Image-Based Buildings and Facades Peter Wonka Associate Professor of Computer Science Arizona State University Daniel G. Aliaga Associate Professor of Computer Science Purdue University Challenge Generate

More information

Lecture 18 Representation and description I. 2. Boundary descriptors

Lecture 18 Representation and description I. 2. Boundary descriptors Lecture 18 Representation and description I 1. Boundary representation 2. Boundary descriptors What is representation What is representation After segmentation, we obtain binary image with interested regions

More information

Algorithms for GIS csci3225

Algorithms for GIS csci3225 Algorithms for GIS csci3225 Laura Toma Bowdoin College Spatial data types and models Spatial data in GIS satellite imagery planar maps surfaces networks point cloud (LiDAR) Spatial data in GIS satellite

More information

3D TERRAIN SKELETON APPROXIMATION FROM CONTOURS

3D TERRAIN SKELETON APPROXIMATION FROM CONTOURS 3D TERRAIN SKELETON APPROXIMATION FROM CONTOURS K. Matuk, C.M. Gold, Z. Li The Department of Land Surveying & Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong. (krzysiek.matuk,lszlli)@polyu.edu.hk

More information

Algorithms for GIS. Spatial data: Models and representation (part I) Laura Toma. Bowdoin College

Algorithms for GIS. Spatial data: Models and representation (part I) Laura Toma. Bowdoin College Algorithms for GIS Spatial data: Models and representation (part I) Laura Toma Bowdoin College Outline Spatial data in GIS applications Point data Networks Terrains Planar maps and meshes Data structures

More information

Computational Geometry

Computational Geometry Lecture 12: Lecture 12: Motivation: Terrains by interpolation To build a model of the terrain surface, we can start with a number of sample points where we know the height. Lecture 12: Motivation: Terrains

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information

Other Voronoi/Delaunay Structures

Other Voronoi/Delaunay Structures Other Voronoi/Delaunay Structures Overview Alpha hulls (a subset of Delaunay graph) Extension of Voronoi Diagrams Convex Hull What is it good for? The bounding region of a point set Not so good for describing

More information

APPENDIX: DETAILS ABOUT THE DISTANCE TRANSFORM

APPENDIX: DETAILS ABOUT THE DISTANCE TRANSFORM APPENDIX: DETAILS ABOUT THE DISTANCE TRANSFORM To speed up the closest-point distance computation, 3D Euclidean Distance Transform (DT) can be used in the proposed method. A DT is a uniform discretization

More information

APPROACH TO ACCURATE PHOTOREALISTIC MODEL GENERATION FOR COMPLEX 3D OBJECTS

APPROACH TO ACCURATE PHOTOREALISTIC MODEL GENERATION FOR COMPLEX 3D OBJECTS Knyaz, Vladimir APPROACH TO ACCURATE PHOTOREALISTIC MODEL GENERATION FOR COMPLEX 3D OBJECTS Vladimir A. Knyaz, Sergey Yu. Zheltov State Research Institute of Aviation System (GosNIIAS), Victorenko str.,

More information

Vision-Based Technologies for Security in Logistics. Alberto Isasi

Vision-Based Technologies for Security in Logistics. Alberto Isasi Vision-Based Technologies for Security in Logistics Alberto Isasi aisasi@robotiker.es INFOTECH is the Unit of ROBOTIKER-TECNALIA specialised in Research, Development and Application of Information and

More information

Introduction to Geographic Information Science. Some Updates. Last Lecture 4/6/2017. Geography 4103 / Raster Data and Tesselations.

Introduction to Geographic Information Science. Some Updates. Last Lecture 4/6/2017. Geography 4103 / Raster Data and Tesselations. Geography 43 / 3 Introduction to Geographic Information Science Raster Data and Tesselations Schedule Some Updates Last Lecture We finished DBMS and learned about storage of data in complex databases Relational

More information

Collision Detection. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill

Collision Detection. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill Collision Detection These slides are mainly from Ming Lin s course notes at UNC Chapel Hill http://www.cs.unc.edu/~lin/comp259-s06/ Computer Animation ILE5030 Computer Animation and Special Effects 2 Haptic

More information

Surface Topology ReebGraph

Surface Topology ReebGraph Sub-Topics Compute bounding box Compute Euler Characteristic Estimate surface curvature Line description for conveying surface shape Extract skeletal representation of shapes Morse function and surface

More information

Subset Warping: Rubber Sheeting with Cuts

Subset Warping: Rubber Sheeting with Cuts Subset Warping: Rubber Sheeting with Cuts Pierre Landau and Eric Schwartz February 14, 1994 Correspondence should be sent to: Eric Schwartz Department of Cognitive and Neural Systems Boston University

More information

Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here)

Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here) Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here) Voronoi Diagram & Delaunay Triangualtion Algorithms Divide-&-Conquer Plane Sweep Lifting

More information

SOME stereo image-matching methods require a user-selected

SOME stereo image-matching methods require a user-selected IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 3, NO. 2, APRIL 2006 207 Seed Point Selection Method for Triangle Constrained Image Matching Propagation Qing Zhu, Bo Wu, and Zhi-Xiang Xu Abstract In order

More information

Shape representation by skeletonization. Shape. Shape. modular machine vision system. Feature extraction shape representation. Shape representation

Shape representation by skeletonization. Shape. Shape. modular machine vision system. Feature extraction shape representation. Shape representation Shape representation by skeletonization Kálmán Palágyi Shape It is a fundamental concept in computer vision. It can be regarded as the basis for high-level image processing stages concentrating on scene

More information

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong)

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) References: [1] http://homepages.inf.ed.ac.uk/rbf/hipr2/index.htm [2] http://www.cs.wisc.edu/~dyer/cs540/notes/vision.html

More information

CoE4TN4 Image Processing

CoE4TN4 Image Processing CoE4TN4 Image Processing Chapter 11 Image Representation & Description Image Representation & Description After an image is segmented into regions, the regions are represented and described in a form suitable

More information

CPSC / Sonny Chan - University of Calgary. Collision Detection II

CPSC / Sonny Chan - University of Calgary. Collision Detection II CPSC 599.86 / 601.86 Sonny Chan - University of Calgary Collision Detection II Outline Broad phase collision detection: - Problem definition and motivation - Bounding volume hierarchies - Spatial partitioning

More information

Overview. Efficient Simplification of Point-sampled Surfaces. Introduction. Introduction. Neighborhood. Local Surface Analysis

Overview. Efficient Simplification of Point-sampled Surfaces. Introduction. Introduction. Neighborhood. Local Surface Analysis Overview Efficient Simplification of Pointsampled Surfaces Introduction Local surface analysis Simplification methods Error measurement Comparison PointBased Computer Graphics Mark Pauly PointBased Computer

More information

1. INTRODUCTION TO DEM

1. INTRODUCTION TO DEM 1. INTRODUCTION TO DEM 1.1 What is DEM? Engineers often have to face problems in which the mechanical behaviour of materials or structures consisting of separate components like grains, stone blocks, bricks

More information

Albert M. Vossepoel. Center for Image Processing

Albert M. Vossepoel.   Center for Image Processing Albert M. Vossepoel www.ph.tn.tudelft.nl/~albert scene image formation sensor pre-processing image enhancement image restoration texture filtering segmentation user analysis classification CBP course:

More information

Maps as Numbers: Data Models

Maps as Numbers: Data Models Maps as Numbers: Data Models vertices nodes tart node nd node arcs Reality Conceptual Models The Task An accurate, registered, digital map that can be queried and analyzed Translate: Real World Locations,

More information

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics DIGITAL TERRAIN MODELLING Endre Katona University of Szeged Department of Informatics katona@inf.u-szeged.hu The problem: data sources data structures algorithms DTM = Digital Terrain Model Terrain function:

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

A New Algorithm for Shape Detection

A New Algorithm for Shape Detection IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 19, Issue 3, Ver. I (May.-June. 2017), PP 71-76 www.iosrjournals.org A New Algorithm for Shape Detection Hewa

More information

Implementation of Flight Simulator using 3-Dimensional Terrain Modeling

Implementation of Flight Simulator using 3-Dimensional Terrain Modeling Implementation of Flight Simulator using 3-Dimensional Terrain Modeling 1 1, First Author School of Computer Engineering, Hanshin University, Osan City, S. Korea, stryoo@hs.ac.kr Abstract During the last

More information

Preferred directions for resolving the non-uniqueness of Delaunay triangulations

Preferred directions for resolving the non-uniqueness of Delaunay triangulations Preferred directions for resolving the non-uniqueness of Delaunay triangulations Christopher Dyken and Michael S. Floater Abstract: This note proposes a simple rule to determine a unique triangulation

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Welcome to the lectures on computer graphics. We have

More information

Raster Data. James Frew ESM 263 Winter

Raster Data. James Frew ESM 263 Winter Raster Data 1 Vector Data Review discrete objects geometry = points by themselves connected lines closed polygons attributes linked to feature ID explicit location every point has coordinates 2 Fields

More information

Overview of Computer Vision. CS308 Data Structures

Overview of Computer Vision. CS308 Data Structures Overview of Computer Vision CS308 Data Structures What is Computer Vision? Deals with the development of the theoretical and algorithmic basis by which useful information about the 3D world can be automatically

More information

VORONOI DIAGRAM PETR FELKEL. FEL CTU PRAGUE Based on [Berg] and [Mount]

VORONOI DIAGRAM PETR FELKEL. FEL CTU PRAGUE   Based on [Berg] and [Mount] VORONOI DIAGRAM PETR FELKEL FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg] and [Mount] Version from 9.11.2017 Talk overview Definition and examples

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

7. Nearest neighbors. Learning objectives. Centre for Computational Biology, Mines ParisTech

7. Nearest neighbors. Learning objectives. Centre for Computational Biology, Mines ParisTech Foundations of Machine Learning CentraleSupélec Paris Fall 2016 7. Nearest neighbors Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe-agathe.azencott@mines-paristech.fr Learning

More information

Collision Detection based on Spatial Partitioning

Collision Detection based on Spatial Partitioning Simulation in Computer Graphics Collision Detection based on Spatial Partitioning Matthias Teschner Computer Science Department University of Freiburg Outline introduction uniform grid Octree and k-d tree

More information

Subject Index. Journal of Discrete Algorithms 5 (2007)

Subject Index. Journal of Discrete Algorithms 5 (2007) Journal of Discrete Algorithms 5 (2007) 751 755 www.elsevier.com/locate/jda Subject Index Ad hoc and wireless networks Ad hoc networks Admission control Algorithm ; ; A simple fast hybrid pattern-matching

More information

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking Representation REPRESENTATION & DESCRIPTION After image segmentation the resulting collection of regions is usually represented and described in a form suitable for higher level processing. Most important

More information

Geographic Information Systems. using QGIS

Geographic Information Systems. using QGIS Geographic Information Systems using QGIS 1 - INTRODUCTION Generalities A GIS (Geographic Information System) consists of: -Computer hardware -Computer software - Digital Data Generalities GIS softwares

More information

LASER ADDITIVE MANUFACTURING PROCESS PLANNING AND AUTOMATION

LASER ADDITIVE MANUFACTURING PROCESS PLANNING AND AUTOMATION LASER ADDITIVE MANUFACTURING PROCESS PLANNING AND AUTOMATION Jun Zhang, Jianzhong Ruan, Frank Liou Department of Mechanical and Aerospace Engineering and Engineering Mechanics Intelligent Systems Center

More information

Spatial Data Models. Raster uses individual cells in a matrix, or grid, format to represent real world entities

Spatial Data Models. Raster uses individual cells in a matrix, or grid, format to represent real world entities Spatial Data Models Raster uses individual cells in a matrix, or grid, format to represent real world entities Vector uses coordinates to store the shape of spatial data objects David Tenenbaum GEOG 7

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) April 1, 2003 [Angel 9.10] Frank Pfenning Carnegie

More information

Analytical and Computer Cartography Winter Lecture 9: Geometric Map Transformations

Analytical and Computer Cartography Winter Lecture 9: Geometric Map Transformations Analytical and Computer Cartography Winter 2017 Lecture 9: Geometric Map Transformations Cartographic Transformations Attribute Data (e.g. classification) Locational properties (e.g. projection) Graphics

More information

Color Dithering with n-best Algorithm

Color Dithering with n-best Algorithm Color Dithering with n-best Algorithm Kjell Lemström, Jorma Tarhio University of Helsinki Department of Computer Science P.O. Box 26 (Teollisuuskatu 23) FIN-00014 University of Helsinki Finland {klemstro,tarhio}@cs.helsinki.fi

More information

Robust biometric image watermarking for fingerprint and face template protection

Robust biometric image watermarking for fingerprint and face template protection Robust biometric image watermarking for fingerprint and face template protection Mayank Vatsa 1, Richa Singh 1, Afzel Noore 1a),MaxM.Houck 2, and Keith Morris 2 1 West Virginia University, Morgantown,

More information