Delaunay Triangulation

Size: px
Start display at page:

Download "Delaunay Triangulation"

Transcription

1 Delaunay Triangulation Steve Oudot slides courtesy of O. Devillers

2 MST

3 MST

4 MST use Kruskal s algorithm with Del as input O(n log n)

5 Last: lower bound for Delaunay Let x 1, x 2,..., x n R, to be sorted x i

6 Last: lower bound for Delaunay Let x 1, x 2,..., x n R, to be sorted (x 1, x 2 1),..., (x n, x 2 n) n points (x i, x 2 i ) x i

7 Last: lower bound for Delaunay Let x 1, x 2,..., x n R, to be sorted (x 1, x 2 1),..., (x n, x 2 n) n points Delaunay order in x x i

8 Last: lower bound for Delaunay Let x 1, x 2,..., x n R, to be sorted (x 1, x 2 1),..., (x n, x 2 n) n points Delaunay f(n) O(n) order in x O(n) O(n) + f(n) Ω(n log n) x i

9 Last: lower bound for Delaunay Ω(n log n)

10 Optimal algorithm for computing Delaunay Division Fusion L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans. on Graphics, 4(2):74 123, April 1985

11 Division-Fusion Classical approach example: sort Problem of size n division into 2 pbs of size O ( n /2) recursive call on sub-problems fusion

12 Division-Fusion Classical approach example: sort Problem of size n division into 2 pbs of size O ( n /2) O(n) recursive call on sub-problems 2 f ( ) n 2 fusion O(n)

13 Division-Fusion Classical approach Problem of size n fusion example: sort f(n) = O(n)+2f ( ) n 2 = O(n log n) division into 2 pbs of size O ( n /2) O(n) recursive call on sub-problems 2 f ( ) n 2 O(n)

14 Division

15 Division

16 Division

17 Division

18 Division Fusion

19 Division Fusion

20 Division Fusion

21 Division Fusion

22 Division Fusion

23 Division

24 Division

25 Division

26 Division

27 Division Fusion

28 Division Fusion

29 Division Fusion

30 Division Fusion

31 Division Fusion

32 Division

33 Division Sort in x

34 Division Sort in x store all the medians

35 Division Sort in x O(n log n) store all the medians query in O(1)

36 Fusion

37 Fusion Monochromatic triangles to be deleted

38 Fusion Bi-chromatic triangles to be construced

39

40 Constructing bi-chromatic edges from top to bottom next edge?

41 Constructing bi-chromatic edges from top to bottom next edge? rising bubble: set of circumscribed circles

42 Constructing bi-chromatic edges from top to bottom next edge? rising bubble: set of circumscribed circles

43 Constructing bi-chromatic edges from top to bottom next edge? rising bubble: set of circumscribed circles

44 Constructing bi-chromatic edges from top to bottom next edge? rising bubble: set of circumscribed circles

45 Constructing bi-chromatic edges from top to bottom next edge? rising bubble: set of circumscribed circles

46 Constructing bi-chromatic edges from top to bottom next edge? rising bubble: set of circumscribed circles

47 Constructing bi-chromatic edges from top to bottom next edge? rising bubble: set of circumscribed circles

48 Constructing bi-chromatic edges from top to bottom next edge? rising bubble: set of circumscribed circles

49 Constructing bi-chromatic edges from top to bottom next edge? rising bubble: set of circumscribed circles

50 Constructing bi-chromatic edges from top to bottom next edge? rising bubble: set of circumscribed circles

51 Constructing bi-chromatic edges from top to bottom next edge? rising bubble: set of circumscribed circles

52 Constructing bi-chromatic edges from top to bottom next edge?

53 p

54 p r b

55 first red vertex crossed by set of circles p r next

56 first blue vertex crossed by set of circles p b next

57 Only one is Delaunay p

58 first red vertex crossed by set of circles p b r r 2 r 2 circle(b, r, r 1 ) r 1 Always look at first neighbor of r ccw

59 first red vertex crossed by set of circles p r b r 2 r 3 r 3 circle(b, r, r 2 ) r 1 Always look at first neighbor of r ccw

60 first red vertex crossed by set of circles r p r 4 b r 2 r 3 r 4 circle(b, r, r 3 ) r 1 Always look at first neighbor of r ccw

61 first red vertex crossed by set of circles r 5 r p r 4 b r 2 r 3 r 5 circle(b, r, r 4 ) r 1 Always look at first neighbor of r ccw

62 first red vertex crossed by set of circles r 5 r p r 4 = r next b r 2 r 3 r 5 circle(b, r, r 4 ) r 1 red, red circle(b, r, r 4 )

63 first blue vertex crossed by set of circles p b r r next b 2 b 2 circle(b, r, b 1 ) b 1 Always look at first neighbor of b cw

64 first blue vertex crossed by set of circles p b r r next b 3 b 2 b 3 circle(b, r, b 2 ) b 1

65 first blue vertex crossed by set of circles p b r r next b 3 b next = b 2 b 3 circle(b, r, b 2 ) b 1 blue, blue circle(b, r, b 2 )

66 p b r r next b next

67 no point p r r next b b next

68 no red p r r next b b next

69 no blue p r r next b b next

70 no red point blue p r r next b b next

71 p b r r next b next

72 b p r

73 b p r r next

74 b p r b next

75 b p r

76 p b r

77 p b r r next

78 p b r b next

79 p b r

80 p b r

81 p b r r next

82 p b r

83 p b b next r

84 p b r

85

86

87

88

89 Complexity of Fusion

90 Complexity of Fusion At each step of the search for r next

91 Complexity of Fusion At each step of the search for r next A red edge is deleted

92 Complexity of Fusion At each step of the search for r next A red edge is deleted At each step of the search for b next

93 Complexity of Fusion At each step of the search for r next A red edge is deleted At each step of the search for b next A blue edge is deleted

94 Complexity of Fusion At each step of the search for r next A red edge is deleted At each step of the search for b next A blue edge is deleted After the choice between r next and b next

95 Complexity of Fusion At each step of the search for r next A red edge is deleted At each step of the search for b next A blue edge is deleted After the choice between r next and b next A black edge is created

96 Complexity of Fusion Complexity red edges + blue edges + black edges

97 Complexity of Fusion Complexity red edges + blue edges + black edges 3 n 2 + 3n 2 + 3n = O(n)

98 Overall Complexity Division = O(n) for any sub-problem + O(n log n) (preprocessing) Fusion = O(n) on sub-pb of size n Division-Fusion = O(n log n)

99 Generalizations

100 Voronoi diagram

101 Voronoi diagram Q Nearest neighbor of q among S

102 Voronoi diagram Q Nearest neighbor of q among S Change

103 Voronoi diagram Q Nearest neighbor of q among S Change ambient space (for q) IR 2 IR 3 IR d

104 Voronoi diagram Q Nearest neighbor of q among S Change metrics Euclidean L 2 L 1, L, L p hyperbolic additive weights multiplicative weights

105 Voronoi diagram Q Nearest neighbor of q among S Change universal set S points of IR d segments of IR d spheres of IR d

106 Points in IR3

107 Points in IR 3 query

108 Points in IR 3 query

109 Points in IR 3 query

110 Points in IR 3 query

111 Points in IR 3 query

112 Points in IR 3 query Nearest neighbor Voronoi diagram

113 Points in IR 3 Voronoi vertex Voronoi diagram

114 Points in IR 3 Voronoi vertex empty sphere Voronoi diagram

115 Points in IR 3 empty sphere tetrahedron Delaunay triangulation

116 Delaunay in 3D Similar to 2D: Delaunay test (empty sphere) incremental algorithm randomized algorithm duality with convex hull in 4D

117 Delaunay in 3D Similar to 2D: different from 2D variable size (linear quadratic)

118 Quadratic example

119 Quadratic example empty sphere

120 Quadratic example Ω(n 2 )

121 Size of Delaunay Θ(n 2 ) worst case Θ(n) uniformly-sampled in unit cube points O(n log n) uniformly-sampled points on a surface

122 Exotic metrics

123 Norm L : max( x, y )

124 Norm L : max( x, y ) query

125 Norm L : max( x, y ) query

126 Norm L : max( x, y ) query

127 Norm L : max( x, y ) query

128 Norm L : max( x, y ) query

129 Norm L : max( x, y ) query

130 Norm L : max( x, y ) query

131 Norm L : max( x, y ) query

132 Norm L : max( x, y ) query

133 Norm L : max( x, y ) bisector

134 Norm L : max( x, y ) bisector

135 Norm L : max( x, y )

136 Norm L : max( x, y )

137 Norm L : max( x, y )

138 Norm L : max( x, y )

139 Norm L : max( x, y ) Voronoi diagram

140 Norm L : max( x, y ) Delaunay Voronoi diagram

141 multiplicatively-weighted points 1 2

142 multiplicatively-weighted points 1 2

143 multiplicatively-weighted points 1 2

144 multiplicatively-weighted points 1 2

145 multiplicatively-weighted points 1 2

146 multiplicatively-weighted points 1 2

147 multiplicatively-weighted points 1 2

148 multiplicatively-weighted points 1 2 circular bisector

149 multiplicatively-weighted points 1 2 circular bisector

150 multiplicatively-weighted points 1 2

151 multiplicatively-weighted points 1 2

152 multiplicatively-weighted points disconnected cell 1 2

153 multiplicatively-weighted points

154 multiplicatively-weighted points

155 multiplicatively-weighted points quadratic size

156 Voronoi diagram of segments

157 Voronoi diagram of segments Q nearest segment

158 Voronoi diagram of segments parabolic bisector

159 Voronoi diagram of segments angle bisector

160 Voronoi diagram of segments points bisector

161 Voronoi diagram of segments Voronoi diagram

162 Voronoi diagram of segments

163 Voronoi diagram of segments

164 Voronoi diagram of segments Dual complex

165 That s all for today

Course 16 Geometric Data Structures for Computer Graphics. Voronoi Diagrams

Course 16 Geometric Data Structures for Computer Graphics. Voronoi Diagrams Course 16 Geometric Data Structures for Computer Graphics Voronoi Diagrams Dr. Elmar Langetepe Institut für Informatik I Universität Bonn Geometric Data Structures for CG July 27 th Voronoi Diagrams San

More information

Voronoi diagram and Delaunay triangulation

Voronoi diagram and Delaunay triangulation Voronoi diagram and Delaunay triangulation Ioannis Emiris & Vissarion Fisikopoulos Dept. of Informatics & Telecommunications, University of Athens Computational Geometry, spring 2015 Outline 1 Voronoi

More information

CS133 Computational Geometry

CS133 Computational Geometry CS133 Computational Geometry Voronoi Diagram Delaunay Triangulation 5/17/2018 1 Nearest Neighbor Problem Given a set of points P and a query point q, find the closest point p P to q p, r P, dist p, q dist(r,

More information

Other Voronoi/Delaunay Structures

Other Voronoi/Delaunay Structures Other Voronoi/Delaunay Structures Overview Alpha hulls (a subset of Delaunay graph) Extension of Voronoi Diagrams Convex Hull What is it good for? The bounding region of a point set Not so good for describing

More information

Voronoi diagrams Delaunay Triangulations. Pierre Alliez Inria

Voronoi diagrams Delaunay Triangulations. Pierre Alliez Inria Voronoi diagrams Delaunay Triangulations Pierre Alliez Inria Voronoi Diagram Voronoi Diagram Voronoi Diagram The collection of the non-empty Voronoi regions and their faces, together with their incidence

More information

Optimal Compression of a Polyline with Segments and Arcs

Optimal Compression of a Polyline with Segments and Arcs Optimal Compression of a Polyline with Segments and Arcs Alexander Gribov Esri 380 New York Street Redlands, CA 92373 Email: agribov@esri.com arxiv:1604.07476v5 [cs.cg] 10 Apr 2017 Abstract This paper

More information

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams in the Plane Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams As important as convex hulls Captures the neighborhood (proximity) information of geometric objects

More information

Notes in Computational Geometry Voronoi Diagrams

Notes in Computational Geometry Voronoi Diagrams Notes in Computational Geometry Voronoi Diagrams Prof. Sandeep Sen and Prof. Amit Kumar Indian Institute of Technology, Delhi Voronoi Diagrams In this lecture, we study Voronoi Diagrams, also known as

More information

COMPUTING CONSTRAINED DELAUNAY

COMPUTING CONSTRAINED DELAUNAY COMPUTING CONSTRAINED DELAUNAY TRIANGULATIONS IN THE PLANE By Samuel Peterson, University of Minnesota Undergraduate The Goal The Problem The Algorithms The Implementation Applications Acknowledgments

More information

CS 532: 3D Computer Vision 14 th Set of Notes

CS 532: 3D Computer Vision 14 th Set of Notes 1 CS 532: 3D Computer Vision 14 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Triangulating

More information

Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here)

Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here) Voronoi Diagrams and Delaunay Triangulation slides by Andy Mirzaian (a subset of the original slides are used here) Voronoi Diagram & Delaunay Triangualtion Algorithms Divide-&-Conquer Plane Sweep Lifting

More information

Introduction to Voronoi Diagrams and Delaunay Triangulations

Introduction to Voronoi Diagrams and Delaunay Triangulations Introduction to Voronoi Diagrams and Delaunay Triangulations Solomon Boulos Introduction to Voronoi Diagrams and Delaunay Triangulations p.1 Voronoi Diagrams Voronoi region: V (p i ) = {x R n p i x p j

More information

Week 8 Voronoi Diagrams

Week 8 Voronoi Diagrams 1 Week 8 Voronoi Diagrams 2 Voronoi Diagram Very important problem in Comp. Geo. Discussed back in 1850 by Dirichlet Published in a paper by Voronoi in 1908 3 Voronoi Diagram Fire observation towers: an

More information

Outline of the presentation

Outline of the presentation Surface Reconstruction Petra Surynková Charles University in Prague Faculty of Mathematics and Physics petra.surynkova@mff.cuni.cz Outline of the presentation My work up to now Surfaces of Building Practice

More information

Wolfgang Mulzer Institut für Informatik. Planar Delaunay Triangulations and Proximity Structures

Wolfgang Mulzer Institut für Informatik. Planar Delaunay Triangulations and Proximity Structures Wolfgang Mulzer Institut für Informatik Planar Delaunay Triangulations and Proximity Structures Proximity Structures Given: a set P of n points in the plane proximity structure: a structure that encodes

More information

Voronoi Diagrams, Delaunay Triangulations and Polytopes

Voronoi Diagrams, Delaunay Triangulations and Polytopes Voronoi Diagrams, Delaunay Triangulations and Polytopes Jean-Daniel Boissonnat MPRI, Lecture 2 Computational Geometry Learning Voronoi, Delaunay & Polytopes MPRI, Lecture 2 1 / 43 Voronoi diagrams in nature

More information

2D Geometry. Pierre Alliez Inria Sophia Antipolis

2D Geometry. Pierre Alliez Inria Sophia Antipolis 2D Geometry Pierre Alliez Inria Sophia Antipolis Outline Sample problems Polygons Graphs Convex hull Voronoi diagram Delaunay triangulation Sample Problems Line Segment Intersection Theorem: Segments (p

More information

Insertions and Deletions in Delaunay Triangulations using Guided Point Location. Kevin Buchin TU Eindhoven

Insertions and Deletions in Delaunay Triangulations using Guided Point Location. Kevin Buchin TU Eindhoven Insertions and Deletions in Delaunay Triangulations using Guided Point Location Kevin Buchin TU Eindhoven Heraklion, 21.1.2013 Guide - Example Construct Delaunay triangulation of convex polygon in linear

More information

VORONOI DIAGRAM PETR FELKEL. FEL CTU PRAGUE Based on [Berg] and [Mount]

VORONOI DIAGRAM PETR FELKEL. FEL CTU PRAGUE   Based on [Berg] and [Mount] VORONOI DIAGRAM PETR FELKEL FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg] and [Mount] Version from 9.11.2017 Talk overview Definition and examples

More information

CAD & Computational Geometry Course plan

CAD & Computational Geometry Course plan Course plan Introduction Segment-Segment intersections Polygon Triangulation Intro to Voronoï Diagrams & Geometric Search Sweeping algorithm for Voronoï Diagrams 1 Voronoi Diagrams Voronoi Diagrams or

More information

Problèmes de robustesse en géométrie algorithmique

Problèmes de robustesse en géométrie algorithmique Problèmes de robustesse en géométrie algorithmique Monique Teillaud ENS - 12 mars 2008 Computational geometry Solving geometric problems algorithms complexity analysis worst case, average, randomized implementation

More information

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5 Voronoi Diagrams and Delaunay Triangulations O Rourke, Chapter 5 Outline Preliminaries Properties and Applications Computing the Delaunay Triangulation Preliminaries Given a function f: R 2 R, the tangent

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

Computational Geometry

Computational Geometry Lecture 12: Lecture 12: Motivation: Terrains by interpolation To build a model of the terrain surface, we can start with a number of sample points where we know the height. Lecture 12: Motivation: Terrains

More information

Computational Geometry

Computational Geometry Computational Geometry Range queries Convex hulls Lower bounds Planar subdivision search Line segment intersection Convex polygons Voronoi diagrams Minimum spanning trees Nearest neighbors Triangulations

More information

Lecture 3 Randomized Algorithms

Lecture 3 Randomized Algorithms Lecture 3 Randomized Algorithms Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology Randomized

More information

Computational Geometry Exercise Duality

Computational Geometry Exercise Duality Computational Geometry Exercise Duality LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Guido Brückner 20.07.2018 1 Duality Transforms We have seen duality for

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

Computational Geometry Lecture Duality of Points and Lines

Computational Geometry Lecture Duality of Points and Lines Computational Geometry Lecture Duality of Points and Lines INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 11.1.2016 Duality Transforms We have seen duality for planar graphs and duality of

More information

Voronoi Diagrams. A Voronoi diagram records everything one would ever want to know about proximity to a set of points

Voronoi Diagrams. A Voronoi diagram records everything one would ever want to know about proximity to a set of points Voronoi Diagrams Voronoi Diagrams A Voronoi diagram records everything one would ever want to know about proximity to a set of points Who is closest to whom? Who is furthest? We will start with a series

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

Computational Geometry

Computational Geometry Computational Geometry 600.658 Convexity A set S is convex if for any two points p, q S the line segment pq S. S p S q Not convex Convex? Convexity A set S is convex if it is the intersection of (possibly

More information

A New Approach to Output-Sensitive Voronoi Diagrams and Delaunay Triangulations

A New Approach to Output-Sensitive Voronoi Diagrams and Delaunay Triangulations A New Approach to Output-Sensitive Voronoi Diagrams and Delaunay Triangulations Don Sheehy INRIA Saclay, France soon: UConn Joint work with Gary Miller at CMU Voronoi Diagrams Voronoi Diagrams The Voronoi

More information

5. DIVIDE AND CONQUER I

5. DIVIDE AND CONQUER I 5. DIVIDE AND CONQUER I mergesort counting inversions closest pair of points randomized quicksort median and selection Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger Topology/Geometry of Geodesics Joseph D. Clinton SNEC-04 28-29 June 2003 Magnus J. Wenninger Introduction Definitions Topology Goldberg s polyhedra Classes of Geodesic polyhedra Triangular tessellations

More information

CS61BL. Lecture 5: Graphs Sorting

CS61BL. Lecture 5: Graphs Sorting CS61BL Lecture 5: Graphs Sorting Graphs Graphs Edge Vertex Graphs (Undirected) Graphs (Directed) Graphs (Multigraph) Graphs (Acyclic) Graphs (Cyclic) Graphs (Connected) Graphs (Disconnected) Graphs (Unweighted)

More information

Voronoi Diagram. Xiao-Ming Fu

Voronoi Diagram. Xiao-Ming Fu Voronoi Diagram Xiao-Ming Fu Outlines Introduction Post Office Problem Voronoi Diagram Duality: Delaunay triangulation Centroidal Voronoi tessellations (CVT) Definition Applications Algorithms Outlines

More information

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017 DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B Fall 2017 LECTURE 2: THE SIMPLICIAL COMPLEX DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU

More information

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces.

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces. Voronoi Diagrams 4 A city builds a set of post offices, and now needs to determine which houses will be served by which office. It would be wasteful for a postman to go out of their way to make a delivery

More information

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Fall, 2012

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Fall, 2012 UMass Lowell Computer Science 91.504 Advanced Algorithms Computational Geometry Prof. Karen Daniels Fall, 2012 Voronoi Diagrams & Delaunay Triangulations O Rourke: Chapter 5 de Berg et al.: Chapters 7,

More information

Delaunay Triangulations

Delaunay Triangulations Delaunay Triangulations (slides mostly by Glenn Eguchi) Motivation: Terrains Set of data points A R 2 Height ƒ(p) defined at each point p in A How can we most naturally approximate height of points not

More information

Lecture 1 Discrete Geometric Structures

Lecture 1 Discrete Geometric Structures Lecture 1 Discrete Geometric Structures Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology

More information

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry Computational Geometry Algorithm Design (10) Computational Geometry Graduate School of Engineering Takashi Chikayama Algorithms formulated as geometry problems Broad application areas Computer Graphics,

More information

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples :

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples : 3. Voronoi Diagrams Examples : 1. Fire Observation Towers Imagine a vast forest containing a number of fire observation towers. Each ranger is responsible for extinguishing any fire closer to her tower

More information

The Farthest Point Delaunay Triangulation Minimizes Angles

The Farthest Point Delaunay Triangulation Minimizes Angles The Farthest Point Delaunay Triangulation Minimizes Angles David Eppstein Department of Information and Computer Science UC Irvine, CA 92717 November 20, 1990 Abstract We show that the planar dual to the

More information

Algorithmische Geometrie Voronoi Diagram

Algorithmische Geometrie Voronoi Diagram Algorithmische Geometrie Voronoi Diagram Martin Held FB Computerwissenschaften Universität Salzburg A 5020 Salzburg, Austria May 28, 2008 Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go

More information

Approximating a set of points by circles

Approximating a set of points by circles Approximating a set of points by circles Sandra Gesing June 2005 Abstract This paper is an abstract of the German diploma thesis Approximation von Punktmengen durch Kreise finished by the author in March

More information

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018)

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018) Homework Assignment Sheet I (Due 16-March-2018) Assignment 1 Let f, g : N R with f(n) := 8n + 4 and g(n) := 1 5 n log 2 n. Prove explicitly that f O(g) and f o(g). Assignment 2 How can you generalize the

More information

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 High-Dimensional Computational Geometry Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 Outline 3-D vector geometry High-D hyperplane intersections Convex hull & its extension to 3

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

Prof. Gill Barequet. Center for Graphics and Geometric Computing, Technion. Dept. of Computer Science The Technion Haifa, Israel

Prof. Gill Barequet. Center for Graphics and Geometric Computing, Technion. Dept. of Computer Science The Technion Haifa, Israel Computational Geometry (CS 236719) http://www.cs.tufts.edu/~barequet/teaching/cg Chapter 1 Introduction 1 Copyright 2002-2009 2009 Prof. Gill Barequet Center for Graphics and Geometric Computing Dept.

More information

Simulations of the quadrilateral-based localization

Simulations of the quadrilateral-based localization Simulations of the quadrilateral-based localization Cluster success rate v.s. node degree. Each plot represents a simulation run. 9/15/05 Jie Gao CSE590-fall05 1 Random deployment Poisson distribution

More information

An Optimal Algorithm for the Euclidean Bottleneck Full Steiner Tree Problem

An Optimal Algorithm for the Euclidean Bottleneck Full Steiner Tree Problem An Optimal Algorithm for the Euclidean Bottleneck Full Steiner Tree Problem Ahmad Biniaz Anil Maheshwari Michiel Smid September 30, 2013 Abstract Let P and S be two disjoint sets of n and m points in the

More information

Voronoi Diagrams. Voronoi Diagrams. Swami Sarvottamananda. Ramakrishna Mission Vivekananda University NIT-IGGA, 2010

Voronoi Diagrams. Voronoi Diagrams. Swami Sarvottamananda. Ramakrishna Mission Vivekananda University NIT-IGGA, 2010 Voronoi Diagrams Swami Sarvottamananda Ramakrishna Mission Vivekananda University NIT-IGGA, 2010 Outline I 1 Introduction Motivation for Voronoi Diagram Historical Notes and Web References 2 Voronoi Diagrams

More information

Delaunay Triangulations. Presented by Glenn Eguchi Computational Geometry October 11, 2001

Delaunay Triangulations. Presented by Glenn Eguchi Computational Geometry October 11, 2001 Delaunay Triangulations Presented by Glenn Eguchi 6.838 Computational Geometry October 11, 2001 Motivation: Terrains Set of data points A R 2 Height ƒ(p) defined at each point p in A How can we most naturally

More information

An Introduction to Computational Geometry: Arrangements and Duality

An Introduction to Computational Geometry: Arrangements and Duality An Introduction to Computational Geometry: Arrangements and Duality Joseph S. B. Mitchell Stony Brook University Some images from [O Rourke, Computational Geometry in C, 2 nd Edition, Chapter 6] Arrangement

More information

2 Delaunay Triangulations

2 Delaunay Triangulations and the closed half-space H(b, a) containingb and with boundary the bisector hyperplane is the locus of all points such that (b 1 a 1 )x 1 + +(b m a m )x m (b 2 1 + + b 2 m)/2 (a 2 1 + + a 2 m)/2. The

More information

Lecture 16: Voronoi Diagrams and Fortune s Algorithm

Lecture 16: Voronoi Diagrams and Fortune s Algorithm contains q changes as a result of the ith insertion. Let P i denote this probability (where the probability is taken over random insertion orders, irrespective of the choice of q). Since q could fall through

More information

Visualize ComplexCities

Visualize ComplexCities Programming Paradigms & Algorithms Chair of Information Architecture ETH Zürich March 1, 2013 OO vs. Procedural Algorithms Recursion Convex Hull Voronoi Shortest Path Evolutionary Algorithms Object-Oriented

More information

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that ( Shelling (Bruggesser-Mani 1971) and Ranking Let be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that. a ranking of vertices

More information

CSE 5311 Notes 13: Computational Geometry

CSE 5311 Notes 13: Computational Geometry CSE 5311 Notes 13: Computational Geometry (Last updated 4/17/17 4:39 PM) SMALLEST ENCLOSING DISK See section 4.7 of de Berg ( http://dx.doi.org.ezproxy.uta.edu/10.1007/978-3-540-77974-2 ) Algorithm MINIDISC(P)

More information

Point Location in Delaunay Triangulations

Point Location in Delaunay Triangulations Point Location in Delaunay Triangulations Inspiration: Graphics software wants to light a model and needs to know which face a light ray hits You moved the mouse and the windowing system would like to

More information

CMPS 3130/6130 Computational Geometry Spring Voronoi Diagrams. Carola Wenk. Based on: Computational Geometry: Algorithms and Applications

CMPS 3130/6130 Computational Geometry Spring Voronoi Diagrams. Carola Wenk. Based on: Computational Geometry: Algorithms and Applications CMPS 3130/6130 Computational Geometry Spring 2015 Voronoi Diagrams Carola Wenk Based on: Computational Geometry: Algorithms and Applications 2/19/15 CMPS 3130/6130 Computational Geometry 1 Voronoi Diagram

More information

Outline. CGAL par l exemplel. Current Partners. The CGAL Project.

Outline. CGAL par l exemplel. Current Partners. The CGAL Project. CGAL par l exemplel Computational Geometry Algorithms Library Raphaëlle Chaine Journées Informatique et GéomG ométrie 1 er Juin 2006 - LIRIS Lyon Outline Overview Strengths Design Structure Kernel Convex

More information

Voronoi diagrams and applications

Voronoi diagrams and applications Voronoi diagrams and applications Prof. Ramin Zabih http://cs100r.cs.cornell.edu Administrivia Last quiz: Thursday 11/15 Prelim 3: Thursday 11/29 (last lecture) A6 is due Friday 11/30 (LDOC) Final projects

More information

arxiv: v1 [cs.cg] 8 Jan 2018

arxiv: v1 [cs.cg] 8 Jan 2018 Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon Eunjin Oh Hee-Kap Ahn arxiv:1801.02292v1 [cs.cg] 8 Jan 2018 Abstract Given a set of sites in a simple polygon, a geodesic Voronoi diagram

More information

Computational Geometry for Imprecise Data

Computational Geometry for Imprecise Data Computational Geometry for Imprecise Data November 30, 2008 PDF Version 1 Introduction Computational geometry deals with algorithms on geometric inputs. Historically, geometric algorithms have focused

More information

A Comparison of Two Fully-Dynamic Delaunay Triangulation Methods

A Comparison of Two Fully-Dynamic Delaunay Triangulation Methods A Comparison of Two Fully-Dynamic Delaunay Triangulation Methods Michael D Adams Department of Electrical and Computer Engineering University of Victoria Victoria, BC, V8W 3P6, Canada Web: http://wwweceuvicca/

More information

Non-Bayesian Classifiers Part I: k-nearest Neighbor Classifier and Distance Functions

Non-Bayesian Classifiers Part I: k-nearest Neighbor Classifier and Distance Functions Non-Bayesian Classifiers Part I: k-nearest Neighbor Classifier and Distance Functions Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551,

More information

Convex Hulls (3D) O Rourke, Chapter 4

Convex Hulls (3D) O Rourke, Chapter 4 Convex Hulls (3D) O Rourke, Chapter 4 Outline Polyhedra Polytopes Euler Characteristic (Oriented) Mesh Representation Polyhedra Definition: A polyhedron is a solid region in 3D space whose boundary is

More information

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W

More information

Computational Geometry

Computational Geometry CS 5633 -- Spring 2004 Computational Geometry Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk CS 5633 Analysis of Algorithms 1 Computational geometry Algorithms for solving

More information

Flavor of Computational Geometry. Voronoi Diagrams. Shireen Y. Elhabian Aly A. Farag University of Louisville

Flavor of Computational Geometry. Voronoi Diagrams. Shireen Y. Elhabian Aly A. Farag University of Louisville Flavor of Computational Geometry Voronoi Diagrams Shireen Y. Elhabian Aly A. Farag University of Louisville March 2010 Pepperoni Sparse Pizzas Olive Sparse Pizzas Just Two Pepperonis A person gets the

More information

Lecture Tessellations, fractals, projection. Amit Zoran. Advanced Topics in Digital Design

Lecture Tessellations, fractals, projection. Amit Zoran. Advanced Topics in Digital Design Lecture Tessellations, fractals, projection Amit Zoran Advanced Topics in Digital Design 67682 The Rachel and Selim Benin School of Computer Science and Engineering The Hebrew University of Jerusalem,

More information

COT5405: GEOMETRIC ALGORITHMS

COT5405: GEOMETRIC ALGORITHMS COT5405: GEOMETRIC ALGORITHMS Objects: Points in, Segments, Lines, Circles, Triangles Polygons, Polyhedra R n Alications Vision, Grahics, Visualizations, Databases, Data mining, Networks, GIS Scientific

More information

Computational Geometry. Lecture 17

Computational Geometry. Lecture 17 Computational Geometry Lecture 17 Computational geometry Algorithms for solving geometric problems in 2D and higher. Fundamental objects: Basic structures: point line segment line point set polygon L17.2

More information

Midpoint Routing algorithms for Delaunay Triangulations

Midpoint Routing algorithms for Delaunay Triangulations Midpoint Routing algorithms for Delaunay Triangulations Weisheng Si and Albert Y. Zomaya Centre for Distributed and High Performance Computing School of Information Technologies Prologue The practical

More information

Average case analysis of dynamic geometric optimization

Average case analysis of dynamic geometric optimization Average case analysis of dynamic geometric optimization David Eppstein Department of Information and Computer Science University of California, Irvine, CA 92717 May 19, 1995 Abstract We maintain the maximum

More information

Wolfgang Mulzer Institut für Informatik. Computational Geometry with Limited Work-Space: State of the Art and Challenges

Wolfgang Mulzer Institut für Informatik. Computational Geometry with Limited Work-Space: State of the Art and Challenges Wolfgang Mulzer Institut für Informatik Computational Geometry with Limited Work-Space: State of the Art and Challenges Algorithms with Limited Work-Space Today s software is versatile, fast, and BIG.

More information

LATEST TRENDS on APPLIED MATHEMATICS, SIMULATION, MODELLING

LATEST TRENDS on APPLIED MATHEMATICS, SIMULATION, MODELLING 3D surface reconstruction of objects by using stereoscopic viewing Baki Koyuncu, Kurtuluş Küllü bkoyuncu@ankara.edu.tr kkullu@eng.ankara.edu.tr Computer Engineering Department, Ankara University, Ankara,

More information

Geometric data structures:

Geometric data structures: Geometric data structures: Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Sham Kakade 2017 1 Announcements: HW3 posted Today: Review: LSH for Euclidean distance Other

More information

Distributed Algorithm for Voronoi Partition of Wireless Sensor Networks with a Limited Sensing Range

Distributed Algorithm for Voronoi Partition of Wireless Sensor Networks with a Limited Sensing Range sensors Article Distributed Algorithm for Voronoi Partition of Wireless Sensor Networks with a Limited Sensing Range Chenlong He 1, * ID, Zuren Feng 1 and Zhigang Ren 2 1 State Key Laboratory for Manufacturing

More information

Lecture 11 Combinatorial Planning: In the Plane

Lecture 11 Combinatorial Planning: In the Plane CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University Lecture 11 Combinatorial Planning: In the Plane Instructor: Jingjin Yu Outline Convex shapes, revisited Combinatorial planning

More information

Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006

Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006 Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006 Outline Reducing the constant from O ( ɛ d) to O ( ɛ (d 1)/2) in uery time Need to know ɛ ahead of time Preprocessing time and

More information

Tight Cocone DIEGO SALUME SEPTEMBER 18, 2013

Tight Cocone DIEGO SALUME SEPTEMBER 18, 2013 Tight Cocone DIEGO SALUME SEPTEMBER 18, 2013 Summary Problem: The Cocone algorithm produces surfaces with holes and artifacts in undersampled areas in the data. Solution: Extend the Cocone algorithm to

More information

Lifting Transform, Voronoi, Delaunay, Convex Hulls

Lifting Transform, Voronoi, Delaunay, Convex Hulls Lifting Transform, Voronoi, Delaunay, Convex Hulls Subhash Suri Department of Computer Science University of California Santa Barbara, CA 93106 1 Lifting Transform (A combination of Pless notes and my

More information

Extensible Point Location Algorithm

Extensible Point Location Algorithm Extensible Point Location Algorithm Rashmi Sundareswara and Paul Schrater Department of Computer Science and Engineering University of Minnesota, Twin Cities, USA sundares@cs.umn.edu, schrater@umn.edu

More information

Line Arrangement. Chapter 6

Line Arrangement. Chapter 6 Line Arrangement Chapter 6 Line Arrangement Problem: Given a set L of n lines in the plane, compute their arrangement which is a planar subdivision. Line Arrangements Problem: Given a set L of n lines

More information

Art Gallery, Triangulation, and Voronoi Regions

Art Gallery, Triangulation, and Voronoi Regions Art Gallery, Triangulation, and Voronoi Regions CS535 Fall 2016 Daniel G. Aliaga Department of Computer Science Purdue University [some slides based on Profs. Shmuel Wimer and Andy Mirzaian Topics Triangulation

More information

Geometric Primitives. primitive operations convex hull closest pair voronoi diagram. primitive operations convex hull closest pair voronoi diagram

Geometric Primitives. primitive operations convex hull closest pair voronoi diagram. primitive operations convex hull closest pair voronoi diagram Geometric Primitives primitive operations convex hull closest pair voronoi diagram Geometric algorithms Applications. Data mining. VLSI design. Computer vision. Mathematical models. Astronomical simulation.

More information

Computational Geometry Lecture Delaunay Triangulation

Computational Geometry Lecture Delaunay Triangulation Computational Geometry Lecture Delaunay Triangulation INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 7.12.2015 1 Modelling a Terrain Sample points p = (x p, y p, z p ) Projection π(p) = (p

More information

6. Concluding Remarks

6. Concluding Remarks [8] K. J. Supowit, The relative neighborhood graph with an application to minimum spanning trees, Tech. Rept., Department of Computer Science, University of Illinois, Urbana-Champaign, August 1980, also

More information

A Family of Butterfly Patterns Inspired by Escher Douglas Dunham University of Minnesota Duluth Duluth, Minnesota

A Family of Butterfly Patterns Inspired by Escher Douglas Dunham University of Minnesota Duluth Duluth, Minnesota 15 th International Conference on Geometry and Graphics A Family of Butterfly Patterns Inspired by Escher Douglas Dunham University of Minnesota Duluth Duluth, Minnesota Outline Families of patterns -

More information

Outline. Other Use of Triangle Inequality Algorithms for Nearest Neighbor Search: Lecture 2. Orchard s Algorithm. Chapter VI

Outline. Other Use of Triangle Inequality Algorithms for Nearest Neighbor Search: Lecture 2. Orchard s Algorithm. Chapter VI Other Use of Triangle Ineuality Algorithms for Nearest Neighbor Search: Lecture 2 Yury Lifshits http://yury.name Steklov Institute of Mathematics at St.Petersburg California Institute of Technology Outline

More information

CMSC 754: Computational Geometry Fall 2002

CMSC 754: Computational Geometry Fall 2002 CMSC 754: Computational Geometry Fall 00 http://www.cs.umd.edu/~mount/754/ Instructor: Dave Mount. Office: AVW 309. Email: mount@cs.umd.edu. Office phone: (301) 405 704. Office hours: Mon 3:00 4:00, Wed

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Computing farthest neighbors on a convex polytope

Computing farthest neighbors on a convex polytope Theoretical Computer Science 296 (2003) 47 58 www.elsevier.com/locate/tcs Computing farthest neighbors on a convex polytope Otfried Cheong a;, Chan-Su Shin b, Antoine Vigneron c a Institute of Information

More information

26 The closest pair problem

26 The closest pair problem The closest pair problem 1 26 The closest pair problem Sweep algorithms solve many kinds of proximity problems efficiently. We present a simple sweep that solves the two-dimensional closest pair problem

More information

Convex Hulls in Three Dimensions. Polyhedra

Convex Hulls in Three Dimensions. Polyhedra Convex Hulls in Three Dimensions Polyhedra Polyhedron 1.A polyhedron is the generalization of a 2- D polygon to 3-D A finite number of flat polygonal faces The boundary or surface of a polyhedron - Zero-dimensional

More information