Web Search Engines: Solutions to Final Exam, Part I December 13, 2004

Size: px
Start display at page:

Download "Web Search Engines: Solutions to Final Exam, Part I December 13, 2004"

Transcription

1 Web Search Engines: Solutions to Final Exam, Part I December 13, 2004 Problem 1: A. In using the vector model to compare the similarity of two documents, why is it desirable to normalize the vectors to unit length? Answer: To determine the similarity of two pages you want to consider the frequency (or, more generally, significance) of different words in the document, not the overall length of the documents. That is: Suppose that U and V are two documents, W has the same distribution of words as U but is twice as long; X has the same distribution of words as V but is twice as long. Then what you want is that Sim(U,V) = Sim(U,X) = Sim(W,V) = Sim(W,X); and this is achieved if you normalize the vectors and use either the dot product or the vectors. But W dot X = 4* U dot V, and distance(w,x) = 2 * distance(u,v), so using either dot product or distance without normalizing gives wrong results. B. Let D and E be the normalized vectors corresponding to documents D and E. What is the minimum possible value of D E? If D E is equal to this minimum, what can you say about D and E? Answer: The minimum value is 0. This achieved if D and E have no words in common (other than stop words) C. What is the maximum possible value of D E? If D E is equal to this maximum, what can you say about D and E? Answer: The maximum value is 1. This is achieved if D and E have identical word distributions. Problem 2: A. In Google, the inverted index is divided into separate parallel databases handled by separate servers. How is the index divided? Answer: The index is divided by document. The server for a given document is calculated by hashing the document ID to a server index. B. Describe the high-level steps in using the parallel database to answer queries. Answer: The query is sent to all the servers for the inverted index. Each such server looks up each query word in the inverted index and gets a list of documents with the relevance of the document to the query word; calculates an overall list of candidate documents, using the Boolean (hard) constraints in the query; calculates the relevance of each candidate document to the query, using the relevance of the document to each query word, the proximity of the query words in the documents, the PageRank of the document, etc. returns to the main server a list of documents relevant to the query, with a relevance score, sorted in decreasing order of relevance. 1

2 The main query server merges these list to obtain an overall list in decreasing order of relevance. C. Besides the parallelism involved in (A), there are two other types of parallelism involved in the query engine (not including parallelism in the crawler). Describe them briefly. Answer: What I had in mind here was, first that there are Google maintains multiple mirror web clusters at various geographic locations, to achieve robustness and efficient, fast use of the Internet; second, that there are multiple main query servers at each location, to handle different queries in parallel. Some students pointed out that, in addition, there is parallelism with the advertisement server and the spelling checker, which is also true. Problem 3: Pages in the Web graph is divided into the categories SCC, IN, OUT, TENDRILS, and DCC. Suppose that page P is in OUT, page Q is in IN, and that page W is in TENDRILS. Suppose that you now add a link from P to Q and a link from P to W. For each of the following statements, state whether it is definitely true, possibly true, or definitely false: A. Page P is now in IN. Definitely false. B. Page P is now in SCC. Definitely true. C. Page P remains in OUT. Definitely false. D. Page Q remains in IN. Definitely false. E. Page Q is now in SCC. Definitely true. F. Page Q is now in TENDRILS. Definitely false. G. Page W is now in OUT. Possibly true. It could also be now in SCC if previously there had been a path from W to P. G. Page W remains in TENDRILS.Definitely false. H. Some pages other than P, Q, or W have been moved into SCC. Possibly true. I. The diameter of SCC has increased. Possibly true. Problem 4: In the standard PageRank algorithm, every page starts with the same inherent values, and then acquires more value through its inlinks. A. It has been suggested that a link from page P to page Q should be considered as more significant if P and Q are from different domains than if they are from the same domain. Give two arguments in favor of this. Answer: The obvious argument is that A and B are different people, then B s endorsement of A s page is, on the whole, less biased than A s endorsement of his own page. The less obvious answer is this: If P and Q are in different web sites then a link from P to Q is definitely a cross-reference; the author of P is saying that, if you re interested in P, you might want to look at Q. If P and Q are in the same web sites, then a link from P to Q might just be a navigational tool; the author is saying that, if you re browsing the site, here s a way to get to Q. An extreme case of this is where Q is a page that must for some reason be included in the site but is rarely of interest to anyone, such as a privacy notice, a log of raw data, a long dull proof, and so on. Here the link is there so that, if necessary, you can get to the page, but even the author is not saying that anyone would actually want to go to the page. 2

3 B. In Brin and Page s original PageRank paper, they suggest that one could define alternative notions of PageRank by assigning diffferent inherent values to different pages. At an extreme, one could assign all the inherent value to a single starting page START, and have all other pages derive their values via chains of inlinks from START. In terms of the stochastic model, this would correspond to a modified version where, if you flip heads, you follow a random outlink; if you flip tails, you always jump to START, rather than jumping at random in the web. (They tried the experiment with START = John McCarthy s home page.) Now, suppose that you combine this model with the link-weighting scheme in part (A), interpreting more significant as twice as significant. Using this new model, set up the system of linear equations for PageRank in the graph shown below. Assume that the probability of flipping heads, E=0.6. B:T B:V A:START C:W A:U A:X Answer: The equations differ from the standard formulation in that (a) Every cross-domain outlink counts as two outlinks. E.g. B:T contributes 0.6 * 2/5 of its importance to A:START, 0.6*2/5 to C:W; and 0.6*1/5 to B:V. and (b) in the importance formulation, all the inherent important lies in START; in the Markov chain formulation, all flips of tails go to START. In the importance formulation, the equations are START = T U W. T = 0.4 START U = 0.2 START V = 0.12 T W = 0.24 T U V X X = 0.15 U The constant term 0.4 in the first equation only serves to make sure that the solutions add to 1.0. Any other positive value will give the same order of PageRanks. In the Markov chain formulation, the first equation become START = 0.4 START T U V + W X the remaining equations remain unchanged, and the normalizing constraint 3

4 START + T + U + V + W + X = 1.0 is added. Problem 5: Consider an experiment that is doing statistical studies over a sample of 1 million web pages. For any page P, let I(P) be the number of inlinks to P. Let P N be the page with the N th largest value of I(P) (ties broken arbitrarily). Suppose that I(P) follows the inverse power-law distribution, I(P N ) = 200, 000, 000/(N+20) 2.1, where X is the largest integer less than or equal to X. Thus, the page P 1 with the greatest number of inlinks has 200, 000, 000/ = 334, 479 inlinks. A. How many pages have no inlinks? Answer: The function I(P N ) attains 0 at N=8972. Thus, only 8971 pages have any inlinks; 991,029 pages have no inlinks. What is the median value of I(P)? Answer: 0. B. How many links are there in total? What is the average number of links per page? Answer: The total number of links numlinks = 1,000,000 J=1 I(P J ) = 6, 543, 246. The average number of links is numlinks/1,000,000 = C. For any link L, let S(L) (the siblings of L) be the set of links whose head is the same as L. Consider L itself to be an element of S(L). For instance, in the graph in problem 3. if L is the link from A:U C:W then S(L) is the set { A:U C:W, A:X C:W, B:T C:W, B:V C:W }. What is the average size of S(L), averaged over all links in the experimental sample? Answer: We want to evaluate avgsibs = (1/numLinks) L links S(L) Note that each page P has I(P) inlinks, each of which has a sibling set of size I(P). Therefore, in the above sum, the page P contributes I(P) terms corresponding to its different inlinks each of which has size S(L) = I(P). Therefore avgsibs = (1/numLinks) L links S(L) = (1/numLinks) P pages I(P)*I(P) = 121,038.4 Note: The large difference between the median and average number of links per page is characteristic of the power-law distribution. D. Explain, in general terms, how the use of link-based evaluation strategies in popular search engines such as Google tends to exacerbate the very uneven distribution of inlinks among web pages. Answer: Using link-based strategies in search engines means that people using search engines to find pages which is the way a large fraction of pages are found will tend to find pages with many inlinks. Since those are the pages that have been found, those are the pages that will be linked to. Thus, pages with many links tend to get more links and pages with few links tend not to get more links, regardless of inherent quality. Problem 6: It is important that when a crawler downloads a page, it can quickly check whether it has seen the content before. A. How can this check be implemented efficiently? Answer: Hash the contents of the paper to a large signature (64 bit is commonly used. The number of possible values must be much 4

5 larger than the total number of pages to be downloaded.) Then store these signatures in a hash table. When a new page comes, compute its signature, and check in the hash table whether this signature has been seen before. B. It is reasonably frequent that two pages P and Q differ only in their HTML tags and white space. Describe how the method in (A) can be modified to check whether two pages are identical in this sense. Answer: In each page, replace every gap between text that is, every subsection that contains only white space and HTML tags by a single blank character. Then proceed as in (A). Describe an application in which P and Q can be treated as identical (that is, if it has dealt with P, it can ignore Q.) Answer: Any application where you are only interested in the text. E.g. Text-based web mining. Describe an application in which P and Q should not be treated as identical. Answer: The key point here is that hlinks are HTML tags (though anchors are text). Therefore any application that uses links e.g. the crawler itself must treat P and Q as different. C. Suppose that crawler for a general purpose search engine has downloaded URL P and has discovered that its content is exactly identical, including HTML tags and white space, to URL Q, which has already been processed. What does the crawler now do with P? Answer: This is a more ambiguous question than I intended. It s not clear, for example, how Google computes PageRank in such a case: Does it merge P and Q in the PageRank computation or does it treat them as separate pages? The two give different answer. Certainly some notation is made in the Q entry in the document table that URL P is an identical page. Certainly repeated pages are weeded out in the results page to a query. But whether P gets its own document ID or its own entries in the inverted file is not clear. 5

Information Retrieval Spring Web retrieval

Information Retrieval Spring Web retrieval Information Retrieval Spring 2016 Web retrieval The Web Large Changing fast Public - No control over editing or contents Spam and Advertisement How big is the Web? Practically infinite due to the dynamic

More information

Information Retrieval May 15. Web retrieval

Information Retrieval May 15. Web retrieval Information Retrieval May 15 Web retrieval What s so special about the Web? The Web Large Changing fast Public - No control over editing or contents Spam and Advertisement How big is the Web? Practically

More information

~ Ian Hunneybell: WWWT Revision Notes (15/06/2006) ~

~ Ian Hunneybell: WWWT Revision Notes (15/06/2006) ~ . Search Engines, history and different types In the beginning there was Archie (990, indexed computer files) and Gopher (99, indexed plain text documents). Lycos (994) and AltaVista (995) were amongst

More information

Link Analysis in Web Mining

Link Analysis in Web Mining Problem formulation (998) Link Analysis in Web Mining Hubs and Authorities Spam Detection Suppose we are given a collection of documents on some broad topic e.g., stanford, evolution, iraq perhaps obtained

More information

Lecture #3: PageRank Algorithm The Mathematics of Google Search

Lecture #3: PageRank Algorithm The Mathematics of Google Search Lecture #3: PageRank Algorithm The Mathematics of Google Search We live in a computer era. Internet is part of our everyday lives and information is only a click away. Just open your favorite search engine,

More information

2011 Team Essay Solutions. 23, 8(3) = 24. Then 21, 22, 23, 24, 28, 29, and 30 are the integers from

2011 Team Essay Solutions. 23, 8(3) = 24. Then 21, 22, 23, 24, 28, 29, and 30 are the integers from 2011 Team Essay Solutions 1. 7(4) = 28, 7(3) = 21, 7(3) + 8 = 29, 7(2) + 8 = 22, 7(2) + 8(2) = 30, 7 + 8(2) = 23, 8(3) = 24. Then 21, 22, 23, 24, 28, 29, and 30 are the integers from 21 through 30 attainable

More information

An Overview of Search Engine. Hai-Yang Xu Dev Lead of Search Technology Center Microsoft Research Asia

An Overview of Search Engine. Hai-Yang Xu Dev Lead of Search Technology Center Microsoft Research Asia An Overview of Search Engine Hai-Yang Xu Dev Lead of Search Technology Center Microsoft Research Asia haixu@microsoft.com July 24, 2007 1 Outline History of Search Engine Difference Between Software and

More information

CC PROCESAMIENTO MASIVO DE DATOS OTOÑO Lecture 7: Information Retrieval II. Aidan Hogan

CC PROCESAMIENTO MASIVO DE DATOS OTOÑO Lecture 7: Information Retrieval II. Aidan Hogan CC5212-1 PROCESAMIENTO MASIVO DE DATOS OTOÑO 2017 Lecture 7: Information Retrieval II Aidan Hogan aidhog@gmail.com How does Google know about the Web? Inverted Index: Example 1 Fruitvale Station is a 2013

More information

University of Virginia Department of Computer Science. CS 4501: Information Retrieval Fall 2015

University of Virginia Department of Computer Science. CS 4501: Information Retrieval Fall 2015 University of Virginia Department of Computer Science CS 4501: Information Retrieval Fall 2015 2:00pm-3:30pm, Tuesday, December 15th Name: ComputingID: This is a closed book and closed notes exam. No electronic

More information

In = number of words appearing exactly n times N = number of words in the collection of words A = a constant. For example, if N=100 and the most

In = number of words appearing exactly n times N = number of words in the collection of words A = a constant. For example, if N=100 and the most In = number of words appearing exactly n times N = number of words in the collection of words A = a constant. For example, if N=100 and the most common word appears 10 times then A = rn*n/n = 1*10/100

More information

Crawler. Crawler. Crawler. Crawler. Anchors. URL Resolver Indexer. Barrels. Doc Index Sorter. Sorter. URL Server

Crawler. Crawler. Crawler. Crawler. Anchors. URL Resolver Indexer. Barrels. Doc Index Sorter. Sorter. URL Server Authors: Sergey Brin, Lawrence Page Google, word play on googol or 10 100 Centralized system, entire HTML text saved Focused on high precision, even at expense of high recall Relies heavily on document

More information

COMP Page Rank

COMP Page Rank COMP 4601 Page Rank 1 Motivation Remember, we were interested in giving back the most relevant documents to a user. Importance is measured by reference as well as content. Think of this like academic paper

More information

Relevance of a Document to a Query

Relevance of a Document to a Query Relevance of a Document to a Query Computing the relevance of a document to a query has four parts: 1. Computing the significance of a word within document D. 2. Computing the significance of word to document

More information

Web Structure Mining using Link Analysis Algorithms

Web Structure Mining using Link Analysis Algorithms Web Structure Mining using Link Analysis Algorithms Ronak Jain Aditya Chavan Sindhu Nair Assistant Professor Abstract- The World Wide Web is a huge repository of data which includes audio, text and video.

More information

5 Choosing keywords Initially choosing keywords Frequent and rare keywords Evaluating the competition rates of search

5 Choosing keywords Initially choosing keywords Frequent and rare keywords Evaluating the competition rates of search Seo tutorial Seo tutorial Introduction to seo... 4 1. General seo information... 5 1.1 History of search engines... 5 1.2 Common search engine principles... 6 2. Internal ranking factors... 8 2.1 Web page

More information

Web search before Google. (Taken from Page et al. (1999), The PageRank Citation Ranking: Bringing Order to the Web.)

Web search before Google. (Taken from Page et al. (1999), The PageRank Citation Ranking: Bringing Order to the Web.) ' Sta306b May 11, 2012 $ PageRank: 1 Web search before Google (Taken from Page et al. (1999), The PageRank Citation Ranking: Bringing Order to the Web.) & % Sta306b May 11, 2012 PageRank: 2 Web search

More information

CS47300 Web Information Search and Management

CS47300 Web Information Search and Management CS47300 Web Information Search and Management Search Engine Optimization Prof. Chris Clifton 31 October 2018 What is Search Engine Optimization? 90% of search engine clickthroughs are on the first page

More information

Web consists of web pages and hyperlinks between pages. A page receiving many links from other pages may be a hint of the authority of the page

Web consists of web pages and hyperlinks between pages. A page receiving many links from other pages may be a hint of the authority of the page Link Analysis Links Web consists of web pages and hyperlinks between pages A page receiving many links from other pages may be a hint of the authority of the page Links are also popular in some other information

More information

Web Search Ranking. (COSC 488) Nazli Goharian Evaluation of Web Search Engines: High Precision Search

Web Search Ranking. (COSC 488) Nazli Goharian Evaluation of Web Search Engines: High Precision Search Web Search Ranking (COSC 488) Nazli Goharian nazli@cs.georgetown.edu 1 Evaluation of Web Search Engines: High Precision Search Traditional IR systems are evaluated based on precision and recall. Web search

More information

Searching the Web for Information

Searching the Web for Information Search Xin Liu Searching the Web for Information How a Search Engine Works Basic parts: 1. Crawler: Visits sites on the Internet, discovering Web pages 2. Indexer: building an index to the Web's content

More information

Information Networks: PageRank

Information Networks: PageRank Information Networks: PageRank Web Science (VU) (706.716) Elisabeth Lex ISDS, TU Graz June 18, 2018 Elisabeth Lex (ISDS, TU Graz) Links June 18, 2018 1 / 38 Repetition Information Networks Shape of the

More information

Query Processing and Alternative Search Structures. Indexing common words

Query Processing and Alternative Search Structures. Indexing common words Query Processing and Alternative Search Structures CS 510 Winter 2007 1 Indexing common words What is the indexing overhead for a common term? I.e., does leaving out stopwords help? Consider a word such

More information

Information Retrieval. (M&S Ch 15)

Information Retrieval. (M&S Ch 15) Information Retrieval (M&S Ch 15) 1 Retrieval Models A retrieval model specifies the details of: Document representation Query representation Retrieval function Determines a notion of relevance. Notion

More information

The Anatomy of a Large-Scale Hypertextual Web Search Engine

The Anatomy of a Large-Scale Hypertextual Web Search Engine The Anatomy of a Large-Scale Hypertextual Web Search Engine Article by: Larry Page and Sergey Brin Computer Networks 30(1-7):107-117, 1998 1 1. Introduction The authors: Lawrence Page, Sergey Brin started

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

Final Exam Search Engines ( / ) December 8, 2014

Final Exam Search Engines ( / ) December 8, 2014 Student Name: Andrew ID: Seat Number: Final Exam Search Engines (11-442 / 11-642) December 8, 2014 Answer all of the following questions. Each answer should be thorough, complete, and relevant. Points

More information

THE WEB SEARCH ENGINE

THE WEB SEARCH ENGINE International Journal of Computer Science Engineering and Information Technology Research (IJCSEITR) Vol.1, Issue 2 Dec 2011 54-60 TJPRC Pvt. Ltd., THE WEB SEARCH ENGINE Mr.G. HANUMANTHA RAO hanu.abc@gmail.com

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Queries on streams

More information

Information Retrieval Lecture 4: Web Search. Challenges of Web Search 2. Natural Language and Information Processing (NLIP) Group

Information Retrieval Lecture 4: Web Search. Challenges of Web Search 2. Natural Language and Information Processing (NLIP) Group Information Retrieval Lecture 4: Web Search Computer Science Tripos Part II Simone Teufel Natural Language and Information Processing (NLIP) Group sht25@cl.cam.ac.uk (Lecture Notes after Stephen Clark)

More information

10/10/13. Traditional database system. Information Retrieval. Information Retrieval. Information retrieval system? Information Retrieval Issues

10/10/13. Traditional database system. Information Retrieval. Information Retrieval. Information retrieval system? Information Retrieval Issues COS 597A: Principles of Database and Information Systems Information Retrieval Traditional database system Large integrated collection of data Uniform access/modifcation mechanisms Model of data organization

More information

Information Retrieval (IR) Introduction to Information Retrieval. Lecture Overview. Why do we need IR? Basics of an IR system.

Information Retrieval (IR) Introduction to Information Retrieval. Lecture Overview. Why do we need IR? Basics of an IR system. Introduction to Information Retrieval Ethan Phelps-Goodman Some slides taken from http://www.cs.utexas.edu/users/mooney/ir-course/ Information Retrieval (IR) The indexing and retrieval of textual documents.

More information

Survey on Web Structure Mining

Survey on Web Structure Mining Survey on Web Structure Mining Hiep T. Nguyen Tri, Nam Hoai Nguyen Department of Electronics and Computer Engineering Chonnam National University Republic of Korea Email: tuanhiep1232@gmail.com Abstract

More information

Near Neighbor Search in High Dimensional Data (1) Dr. Anwar Alhenshiri

Near Neighbor Search in High Dimensional Data (1) Dr. Anwar Alhenshiri Near Neighbor Search in High Dimensional Data (1) Dr. Anwar Alhenshiri Scene Completion Problem The Bare Data Approach High Dimensional Data Many real-world problems Web Search and Text Mining Billions

More information

INTRODUCTION TO DATA SCIENCE. Link Analysis (MMDS5)

INTRODUCTION TO DATA SCIENCE. Link Analysis (MMDS5) INTRODUCTION TO DATA SCIENCE Link Analysis (MMDS5) Introduction Motivation: accurate web search Spammers: want you to land on their pages Google s PageRank and variants TrustRank Hubs and Authorities (HITS)

More information

Lec 8: Adaptive Information Retrieval 2

Lec 8: Adaptive Information Retrieval 2 Lec 8: Adaptive Information Retrieval 2 Advaith Siddharthan Introduction to Information Retrieval by Manning, Raghavan & Schütze. Website: http://nlp.stanford.edu/ir-book/ Linear Algebra Revision Vectors:

More information

CLOUD COMPUTING PROJECT. By: - Manish Motwani - Devendra Singh Parmar - Ashish Sharma

CLOUD COMPUTING PROJECT. By: - Manish Motwani - Devendra Singh Parmar - Ashish Sharma CLOUD COMPUTING PROJECT By: - Manish Motwani - Devendra Singh Parmar - Ashish Sharma Instructor: Prof. Reddy Raja Mentor: Ms M.Padmini To Implement PageRank Algorithm using Map-Reduce for Wikipedia and

More information

Agenda. Math Google PageRank algorithm. 2 Developing a formula for ranking web pages. 3 Interpretation. 4 Computing the score of each page

Agenda. Math Google PageRank algorithm. 2 Developing a formula for ranking web pages. 3 Interpretation. 4 Computing the score of each page Agenda Math 104 1 Google PageRank algorithm 2 Developing a formula for ranking web pages 3 Interpretation 4 Computing the score of each page Google: background Mid nineties: many search engines often times

More information

Worst-case running time for RANDOMIZED-SELECT

Worst-case running time for RANDOMIZED-SELECT Worst-case running time for RANDOMIZED-SELECT is ), even to nd the minimum The algorithm has a linear expected running time, though, and because it is randomized, no particular input elicits the worst-case

More information

International Journal of Scientific & Engineering Research Volume 2, Issue 12, December ISSN Web Search Engine

International Journal of Scientific & Engineering Research Volume 2, Issue 12, December ISSN Web Search Engine International Journal of Scientific & Engineering Research Volume 2, Issue 12, December-2011 1 Web Search Engine G.Hanumantha Rao*, G.NarenderΨ, B.Srinivasa Rao+, M.Srilatha* Abstract This paper explains

More information

Creating a Classifier for a Focused Web Crawler

Creating a Classifier for a Focused Web Crawler Creating a Classifier for a Focused Web Crawler Nathan Moeller December 16, 2015 1 Abstract With the increasing size of the web, it can be hard to find high quality content with traditional search engines.

More information

Basic techniques. Text processing; term weighting; vector space model; inverted index; Web Search

Basic techniques. Text processing; term weighting; vector space model; inverted index; Web Search Basic techniques Text processing; term weighting; vector space model; inverted index; Web Search Overview Indexes Query Indexing Ranking Results Application Documents User Information analysis Query processing

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 12: Distributed Information Retrieval CS 347 Notes 12 2 CS 347 Notes 12 3 CS 347 Notes 12 4 CS 347 Notes 12 5 Web Search Engine Crawling

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 12: Distributed Information Retrieval CS 347 Notes 12 2 CS 347 Notes 12 3 CS 347 Notes 12 4 Web Search Engine Crawling Indexing Computing

More information

Chapter 2. Descriptive Statistics: Organizing, Displaying and Summarizing Data

Chapter 2. Descriptive Statistics: Organizing, Displaying and Summarizing Data Chapter 2 Descriptive Statistics: Organizing, Displaying and Summarizing Data Objectives Student should be able to Organize data Tabulate data into frequency/relative frequency tables Display data graphically

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Proximity Prestige using Incremental Iteration in Page Rank Algorithm

Proximity Prestige using Incremental Iteration in Page Rank Algorithm Indian Journal of Science and Technology, Vol 9(48), DOI: 10.17485/ijst/2016/v9i48/107962, December 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Proximity Prestige using Incremental Iteration

More information

ΕΠΛ660. Ανάκτηση µε το µοντέλο διανυσµατικού χώρου

ΕΠΛ660. Ανάκτηση µε το µοντέλο διανυσµατικού χώρου Ανάκτηση µε το µοντέλο διανυσµατικού χώρου Σηµερινό ερώτηµα Typically we want to retrieve the top K docs (in the cosine ranking for the query) not totally order all docs in the corpus can we pick off docs

More information

Evaluating the Usefulness of Sentiment Information for Focused Crawlers

Evaluating the Usefulness of Sentiment Information for Focused Crawlers Evaluating the Usefulness of Sentiment Information for Focused Crawlers Tianjun Fu 1, Ahmed Abbasi 2, Daniel Zeng 1, Hsinchun Chen 1 University of Arizona 1, University of Wisconsin-Milwaukee 2 futj@email.arizona.edu,

More information

Chapter 2: Number Systems

Chapter 2: Number Systems Chapter 2: Number Systems Logic circuits are used to generate and transmit 1s and 0s to compute and convey information. This two-valued number system is called binary. As presented earlier, there are many

More information

A Survey of Google's PageRank

A Survey of Google's PageRank http://pr.efactory.de/ A Survey of Google's PageRank Within the past few years, Google has become the far most utilized search engine worldwide. A decisive factor therefore was, besides high performance

More information

Information Retrieval. Lecture 10 - Web crawling

Information Retrieval. Lecture 10 - Web crawling Information Retrieval Lecture 10 - Web crawling Seminar für Sprachwissenschaft International Studies in Computational Linguistics Wintersemester 2007 1/ 30 Introduction Crawling: gathering pages from the

More information

Ranking in a Domain Specific Search Engine

Ranking in a Domain Specific Search Engine Ranking in a Domain Specific Search Engine CS6998-03 - NLP for the Web Spring 2008, Final Report Sara Stolbach, ss3067 [at] columbia.edu Abstract A search engine that runs over all domains must give equal

More information

Unit VIII. Chapter 9. Link Analysis

Unit VIII. Chapter 9. Link Analysis Unit VIII Link Analysis: Page Ranking in web search engines, Efficient Computation of Page Rank using Map-Reduce and other approaches, Topic-Sensitive Page Rank, Link Spam, Hubs and Authorities (Text Book:2

More information

Link Structure Analysis

Link Structure Analysis Link Structure Analysis Kira Radinsky All of the following slides are courtesy of Ronny Lempel (Yahoo!) Link Analysis In the Lecture HITS: topic-specific algorithm Assigns each page two scores a hub score

More information

CSE 494: Information Retrieval, Mining and Integration on the Internet

CSE 494: Information Retrieval, Mining and Integration on the Internet CSE 494: Information Retrieval, Mining and Integration on the Internet Midterm. 18 th Oct 2011 (Instructor: Subbarao Kambhampati) In-class Duration: Duration of the class 1hr 15min (75min) Total points:

More information

A Survey on Web Information Retrieval Technologies

A Survey on Web Information Retrieval Technologies A Survey on Web Information Retrieval Technologies Lan Huang Computer Science Department State University of New York, Stony Brook Presented by Kajal Miyan Michigan State University Overview Web Information

More information

Reading Time: A Method for Improving the Ranking Scores of Web Pages

Reading Time: A Method for Improving the Ranking Scores of Web Pages Reading Time: A Method for Improving the Ranking Scores of Web Pages Shweta Agarwal Asst. Prof., CS&IT Deptt. MIT, Moradabad, U.P. India Bharat Bhushan Agarwal Asst. Prof., CS&IT Deptt. IFTM, Moradabad,

More information

On Compressing Social Networks. Ravi Kumar. Yahoo! Research, Sunnyvale, CA. Jun 30, 2009 KDD 1

On Compressing Social Networks. Ravi Kumar. Yahoo! Research, Sunnyvale, CA. Jun 30, 2009 KDD 1 On Compressing Social Networks Ravi Kumar Yahoo! Research, Sunnyvale, CA KDD 1 Joint work with Flavio Chierichetti, University of Rome Silvio Lattanzi, University of Rome Michael Mitzenmacher, Harvard

More information

EXTRACTION OF RELEVANT WEB PAGES USING DATA MINING

EXTRACTION OF RELEVANT WEB PAGES USING DATA MINING Chapter 3 EXTRACTION OF RELEVANT WEB PAGES USING DATA MINING 3.1 INTRODUCTION Generally web pages are retrieved with the help of search engines which deploy crawlers for downloading purpose. Given a query,

More information

SEO. Definitions/Acronyms. Definitions/Acronyms

SEO. Definitions/Acronyms. Definitions/Acronyms Definitions/Acronyms SEO Search Engine Optimization ITS Web Services September 6, 2007 SEO: Search Engine Optimization SEF: Search Engine Friendly SERP: Search Engine Results Page PR (Page Rank): Google

More information

Lecture 8: Linkage algorithms and web search

Lecture 8: Linkage algorithms and web search Lecture 8: Linkage algorithms and web search Information Retrieval Computer Science Tripos Part II Ronan Cummins 1 Natural Language and Information Processing (NLIP) Group ronan.cummins@cl.cam.ac.uk 2017

More information

Search Engines. Dr. Johan Hagelbäck.

Search Engines. Dr. Johan Hagelbäck. Search Engines Dr. Johan Hagelbäck johan.hagelback@lnu.se http://aiguy.org Search Engines This lecture is about full-text search engines, like Google and Microsoft Bing They allow people to search a large

More information

Lecture 27: Learning from relational data

Lecture 27: Learning from relational data Lecture 27: Learning from relational data STATS 202: Data mining and analysis December 2, 2017 1 / 12 Announcements Kaggle deadline is this Thursday (Dec 7) at 4pm. If you haven t already, make a submission

More information

III Data Structures. Dynamic sets

III Data Structures. Dynamic sets III Data Structures Elementary Data Structures Hash Tables Binary Search Trees Red-Black Trees Dynamic sets Sets are fundamental to computer science Algorithms may require several different types of operations

More information

CS6200 Information Retrieval. David Smith College of Computer and Information Science Northeastern University

CS6200 Information Retrieval. David Smith College of Computer and Information Science Northeastern University CS6200 Information Retrieval David Smith College of Computer and Information Science Northeastern University Indexing Process!2 Indexes Storing document information for faster queries Indexes Index Compression

More information

Graph and Web Mining - Motivation, Applications and Algorithms PROF. EHUD GUDES DEPARTMENT OF COMPUTER SCIENCE BEN-GURION UNIVERSITY, ISRAEL

Graph and Web Mining - Motivation, Applications and Algorithms PROF. EHUD GUDES DEPARTMENT OF COMPUTER SCIENCE BEN-GURION UNIVERSITY, ISRAEL Graph and Web Mining - Motivation, Applications and Algorithms PROF. EHUD GUDES DEPARTMENT OF COMPUTER SCIENCE BEN-GURION UNIVERSITY, ISRAEL Web mining - Outline Introduction Web Content Mining Web usage

More information

68A8 Multimedia DataBases Information Retrieval - Exercises

68A8 Multimedia DataBases Information Retrieval - Exercises 68A8 Multimedia DataBases Information Retrieval - Exercises Marco Gori May 31, 2004 Quiz examples for MidTerm (some with partial solution) 1. About inner product similarity When using the Boolean model,

More information

Vannevar Bush. Information Retrieval. Prophetic: Hypertext. Historic Vision 2/8/17

Vannevar Bush. Information Retrieval. Prophetic: Hypertext. Historic Vision 2/8/17 Information Retrieval Vannevar Bush Director of the Office of Scientific Research and Development (1941-1947) Vannevar Bush,1890-1974 End of WW2 - what next big challenge for scientists? 1 Historic Vision

More information

Averages and Variation

Averages and Variation Averages and Variation 3 Copyright Cengage Learning. All rights reserved. 3.1-1 Section 3.1 Measures of Central Tendency: Mode, Median, and Mean Copyright Cengage Learning. All rights reserved. 3.1-2 Focus

More information

Index Construction. Dictionary, postings, scalable indexing, dynamic indexing. Web Search

Index Construction. Dictionary, postings, scalable indexing, dynamic indexing. Web Search Index Construction Dictionary, postings, scalable indexing, dynamic indexing Web Search 1 Overview Indexes Query Indexing Ranking Results Application Documents User Information analysis Query processing

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS46: Mining Massive Datasets Jure Leskovec, Stanford University http://cs46.stanford.edu /7/ Jure Leskovec, Stanford C46: Mining Massive Datasets Many real-world problems Web Search and Text Mining Billions

More information

A Modified Algorithm to Handle Dangling Pages using Hypothetical Node

A Modified Algorithm to Handle Dangling Pages using Hypothetical Node A Modified Algorithm to Handle Dangling Pages using Hypothetical Node Shipra Srivastava Student Department of Computer Science & Engineering Thapar University, Patiala, 147001 (India) Rinkle Rani Aggrawal

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/24/2014 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2 High dim. data

More information

3.2-Measures of Center

3.2-Measures of Center 3.2-Measures of Center Characteristics of Center: Measures of center, including mean, median, and mode are tools for analyzing data which reflect the value at the center or middle of a set of data. We

More information

Anatomy of a search engine. Design criteria of a search engine Architecture Data structures

Anatomy of a search engine. Design criteria of a search engine Architecture Data structures Anatomy of a search engine Design criteria of a search engine Architecture Data structures Step-1: Crawling the web Google has a fast distributed crawling system Each crawler keeps roughly 300 connection

More information

Discrete Mathematics Introduction

Discrete Mathematics Introduction Discrete Mathematics Introduction Saad Mneimneh 1 Introduction College mathematics will often focus on calculus, and while it is true that calculus is the most important field that started modern mathematics,

More information

CMSC 476/676 Information Retrieval Midterm Exam Spring 2014

CMSC 476/676 Information Retrieval Midterm Exam Spring 2014 CMSC 476/676 Information Retrieval Midterm Exam Spring 2014 Name: You may consult your notes and/or your textbook. This is a 75 minute, in class exam. If there is information missing in any of the question

More information

Logistics. CSE Case Studies. Indexing & Retrieval in Google. Review: AltaVista. BigTable. Index Stream Readers (ISRs) Advanced Search

Logistics. CSE Case Studies. Indexing & Retrieval in Google. Review: AltaVista. BigTable. Index Stream Readers (ISRs) Advanced Search CSE 454 - Case Studies Indexing & Retrieval in Google Some slides from http://www.cs.huji.ac.il/~sdbi/2000/google/index.htm Logistics For next class Read: How to implement PageRank Efficiently Projects

More information

A New Technique for Ranking Web Pages and Adwords

A New Technique for Ranking Web Pages and Adwords A New Technique for Ranking Web Pages and Adwords K. P. Shyam Sharath Jagannathan Maheswari Rajavel, Ph.D ABSTRACT Web mining is an active research area which mainly deals with the application on data

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Analytical survey of Web Page Rank Algorithm

Analytical survey of Web Page Rank Algorithm Analytical survey of Web Page Rank Algorithm Mrs.M.Usha 1, Dr.N.Nagadeepa 2 Research Scholar, Bharathiyar University,Coimbatore 1 Associate Professor, Jairams Arts and Science College, Karur 2 ABSTRACT

More information

Running Head: HOW A SEARCH ENGINE WORKS 1. How a Search Engine Works. Sara Davis INFO Spring Erika Gutierrez.

Running Head: HOW A SEARCH ENGINE WORKS 1. How a Search Engine Works. Sara Davis INFO Spring Erika Gutierrez. Running Head: 1 How a Search Engine Works Sara Davis INFO 4206.001 Spring 2016 Erika Gutierrez May 1, 2016 2 Search engines come in many forms and types, but they all follow three basic steps: crawling,

More information

Recent Researches on Web Page Ranking

Recent Researches on Web Page Ranking Recent Researches on Web Page Pradipta Biswas School of Information Technology Indian Institute of Technology Kharagpur, India Importance of Web Page Internet Surfers generally do not bother to go through

More information

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS Overview of Networks Instructor: Yizhou Sun yzsun@cs.ucla.edu January 10, 2017 Overview of Information Network Analysis Network Representation Network

More information

Weighted Page Rank Algorithm Based on Number of Visits of Links of Web Page

Weighted Page Rank Algorithm Based on Number of Visits of Links of Web Page International Journal of Soft Computing and Engineering (IJSCE) ISSN: 31-307, Volume-, Issue-3, July 01 Weighted Page Rank Algorithm Based on Number of Visits of Links of Web Page Neelam Tyagi, Simple

More information

Indexing Web pages. Web Search: Indexing Web Pages. Indexing the link structure. checkpoint URL s. Connectivity Server: Node table

Indexing Web pages. Web Search: Indexing Web Pages. Indexing the link structure. checkpoint URL s. Connectivity Server: Node table Indexing Web pages Web Search: Indexing Web Pages CPS 296.1 Topics in Database Systems Indexing the link structure AltaVista Connectivity Server case study Bharat et al., The Fast Access to Linkage Information

More information

A Survey on k-means Clustering Algorithm Using Different Ranking Methods in Data Mining

A Survey on k-means Clustering Algorithm Using Different Ranking Methods in Data Mining Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 2, Issue. 4, April 2013,

More information

CMPSCI 646, Information Retrieval (Fall 2003)

CMPSCI 646, Information Retrieval (Fall 2003) CMPSCI 646, Information Retrieval (Fall 2003) Midterm exam solutions Problem CO (compression) 1. The problem of text classification can be described as follows. Given a set of classes, C = {C i }, where

More information

15110 PRINCIPLES OF COMPUTING SAMPLE EXAM 2

15110 PRINCIPLES OF COMPUTING SAMPLE EXAM 2 15110 PRINCIPLES OF COMPUTING SAMPLE EXAM 2 Name Section Directions: Answer each question neatly in the space provided. Please read each question carefully. You have 50 minutes for this exam. No electronic

More information

CHAPTER THREE INFORMATION RETRIEVAL SYSTEM

CHAPTER THREE INFORMATION RETRIEVAL SYSTEM CHAPTER THREE INFORMATION RETRIEVAL SYSTEM 3.1 INTRODUCTION Search engine is one of the most effective and prominent method to find information online. It has become an essential part of life for almost

More information

Part 1: Link Analysis & Page Rank

Part 1: Link Analysis & Page Rank Chapter 8: Graph Data Part 1: Link Analysis & Page Rank Based on Leskovec, Rajaraman, Ullman 214: Mining of Massive Datasets 1 Graph Data: Social Networks [Source: 4-degrees of separation, Backstrom-Boldi-Rosa-Ugander-Vigna,

More information

Outline. Lecture 2: EITN01 Web Intelligence and Information Retrieval. Previous lecture. Representation/Indexing (fig 1.

Outline. Lecture 2: EITN01 Web Intelligence and Information Retrieval. Previous lecture. Representation/Indexing (fig 1. Outline Lecture 2: EITN01 Web Intelligence and Information Retrieval Anders Ardö EIT Electrical and Information Technology, Lund University January 23, 2013 A. Ardö, EIT Lecture 2: EITN01 Web Intelligence

More information

Searching in All the Right Places. How Is Information Organized? Chapter 5: Searching for Truth: Locating Information on the WWW

Searching in All the Right Places. How Is Information Organized? Chapter 5: Searching for Truth: Locating Information on the WWW Chapter 5: Searching for Truth: Locating Information on the WWW Fluency with Information Technology Third Edition by Lawrence Snyder Searching in All the Right Places The Obvious and Familiar To find tax

More information

INTRODUCTION. Chapter GENERAL

INTRODUCTION. Chapter GENERAL Chapter 1 INTRODUCTION 1.1 GENERAL The World Wide Web (WWW) [1] is a system of interlinked hypertext documents accessed via the Internet. It is an interactive world of shared information through which

More information

COMP6237 Data Mining Searching and Ranking

COMP6237 Data Mining Searching and Ranking COMP6237 Data Mining Searching and Ranking Jonathon Hare jsh2@ecs.soton.ac.uk Note: portions of these slides are from those by ChengXiang Cheng Zhai at UIUC https://class.coursera.org/textretrieval-001

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second

More information

Einführung in Web und Data Science Community Analysis. Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme

Einführung in Web und Data Science Community Analysis. Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Einführung in Web und Data Science Community Analysis Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Today s lecture Anchor text Link analysis for ranking Pagerank and variants

More information

Final Exam in Algorithms and Data Structures 1 (1DL210)

Final Exam in Algorithms and Data Structures 1 (1DL210) Final Exam in Algorithms and Data Structures 1 (1DL210) Department of Information Technology Uppsala University February 0th, 2012 Lecturers: Parosh Aziz Abdulla, Jonathan Cederberg and Jari Stenman Location:

More information

Ratios and Proportional Relationships (RP) 6 8 Analyze proportional relationships and use them to solve real-world and mathematical problems.

Ratios and Proportional Relationships (RP) 6 8 Analyze proportional relationships and use them to solve real-world and mathematical problems. Ratios and Proportional Relationships (RP) 6 8 Analyze proportional relationships and use them to solve real-world and mathematical problems. 7.1 Compute unit rates associated with ratios of fractions,

More information