Lab 5: Image Analysis with ArcGIS 10 Unsupervised Classification

Size: px
Start display at page:

Download "Lab 5: Image Analysis with ArcGIS 10 Unsupervised Classification"

Transcription

1 Lab 5: Image Analysis with ArcGIS 10 Unsupervised Classification Peter E. Price TerraView 2010 Peter E. Price All rights reserved Revised 03/2011 Revised for Geob 373 by BK Feb 28, V3 The information contained in this document is the exclusive property of Peter E. Price. This work is protected under United States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, except as expressly permitted in writing by Peter E. Price. The information contained in this document is subject to change without notice. 1

2 As mentioned previously, unsupervised classification uses clustering routines to create the number of classes designated by the analyst. It is up to the analyst to assign meaningful identities to the classes after processing. A typical procedure would be for the analyst to specify a large number of classes and then refine and group them to produce features such as areas of land cover types. The unsupervised classification option provided by ESRI is the Iso Cluster Unsupervised Classification, also known as ISODATA (Iterative Self-Organized Data Analysis Techniques A) (Command 3 in the Classification toolbar dropdown menu). Unsupervised classifications usually do not have unclassified pixels if the parameters are set correctly. As mentioned in Lab 4, Iso Cluster Unsupervised Classification is the only unsupervised classification tool provided. It differs from the Iso Cluster tool in the Spatial Analyst Tools in that it creates an output classified image as well as a signature file. This command, however, does not offer control over the number of iterations used to define the clusters that is found in the Iso Cluster tool in the Spatial Analyst Tools > Multivariate functions as is shown below. You will now perform an unsupervised classification on the HouAirport_TM.tif image. Use the map document (.MXD) that you saved from the supervised classification. Clean the table of contents so that you only retain your base images and aerials, your unfiltered classification, and your best filtered result. Add the 2001 NLCD 1 layer (NLCD_2001.lyr) (downloaded from the Lab 5 web page) to the Table of Contents. Save As a new map document: Lab5.MXD. From the Classification toolbar, select the Iso Cluster Unsupervised Classification drop-down. Input HouAirport_TM.tif as the raster band. Specify the Number of classes as 24, name the output classified raster file HouAir24ISO, a Minimum class size (default, 20), a Sample interval of 1, and an Output signature file for future use. Your window should look like the example 1 NCLD: The USGS Multi-Resolution Land Characteristics Consortium s (MRLCC) National Land Cover Database (NLCD). 2

3 below. Given the small size of the study area, we can set the default Sample interval to 1. When working with larger files it may be necessary to set the sample interval to a greater number if the output contains fewer classes than requested it may be an indication that the sampling interval should be increased. The result should look something like the example below (the colours assigned to each class may differ). Note that the number of classes may differ from the 24 specified, and that some numbers may be skipped (e.g., dropped because that class didn t meet the minimum class size). 3

4 Compare the unsupervised classification with the MLC supervised classification you did earlier, the NLCD layer, the airport aerials and the original TM image. The unsupervised image looks noisy but it contains a lot of valuable information. As the analyst, it is now your job to make a useful classification from the unsupervised classes. Your assignment is to develop a limited set of classes that represent major groups of land cover. If you go to the USGS MRLCC site you can examine the 2001 NLCD classification scheme (one based on the Anderson scheme) A PDF of a report that documents the creation of the 2001 product is available here. If you open the attribute table of the 2001 NLCD layer you can see the correspondence between the class names and numbers: You will begin by assigning real identities to the ISO classes that were created. Use the TM image, aerials, and the NLCD product to help guide your interpretation. A good approach to this is to use your unsupervised classification as the top layer and Swipe it over the other layers. 4

5 An improvement on the plain swipe is to open the classification table of the ISO layer and select a class. This highlights a single class; it can now be compared with the underlying images and classifications. As shown in the example below, first changing the ISO symbology to a gray scale (1) allows the selected class (2) to be highlighted without visual clutter. Use the Identify tool (highlighted in the image below - 3) to view the class values in the underlying layers To improve your efficiency and workflow, first export the ISO classification table, place it in an Excel spreadsheet, and record your observations in the spreadsheet. To export the table, open the classification table and go to the drop down menu. Select the Export option and save the table as a.dbf with an appropriate file name. 5

6 Open the exported table in an Excel spreadsheet you will need to change the file type to All Files (*.*) in order for Excel to recognize the dbf. Save As the file to an.xlsx file. An example spreadsheet is presented below. You should add columns to the file in which to place the NCLD class numbers and the class names from your supervised (MLC) image, as well as a column for the ISO class names. Obviously some judgement will be required in deciding upon an ISO class name, as there will be multiple NCLD classes that fall within a single ISO class, and a single MLC 6

7 class will contain many ISO classes (and vice versa). You will need to identify the dominant class associated with each ISO class something where swiping will be an important contributor to your decision (e.g., you will need to ignore small groups of NCLD and MLC pixels within an ISO class). In order to simplify the comparisons amongst the multiple datasets, use the ISO class names listed below, and follow the equivalences listed between the classes used in the supervised classification (the Maximum Likelihood Classification) and the NLCD 2001 classes (class numbers and names are presented here). The numbers in brackets (##) indicate that that class is present but typically in lower numbers, relative to the other classes. Note, however, that you will find just about every combination of ISO class / MLC class / NLCD class occurs, although the numbers of cells involved should typically be very low. MLC CLASS # MLC CLASS NAME NLCD CLASS # ISO CLASS NAME (DERIVED FROM THE NLCD CLASS NAMES) ISO RECLASS # 1 Dry grass 21, 22, (23) Developed, Open space 1 2 Forest 21, (22), 41, Forest 2 42, 43, (71), 90 4 Parking lot (22), (23), 24 Developed, High intensity 4 5 Building roof (21), 22, 23, Developed, Medium Intensity Green grass 21, 22, 23, (24), 42, (71) Developed, Low intensity 6 The ISO reclass numbers will be used to simplify the 22 ISO classes into 5 classes directly compatible with the MLC classes. I ve also ordered them so that they roughly correspond to the MLC scheme. You should note that the NLCD class names are land-use oriented rather than land-cover oriented (as are the MLC class names). You can see from the incomplete spreadsheet example presented below that, as expected, there are multiple ISO classes associated with a single ISO class name. Merging some ISO classes that have obvious relationships is needed. As shown in the example below, ISO classes 1 and 3 appear to be primarily associated with forest (ISO reclass # 2), classes 4 and 16 correspond primarily to Developed, Open space (ISO reclass # 1), and classes 9 and 10 to Developed, Low intensity (ISO reclass # 6). Once you have completed the table, the 24 ISO classes will need to be reassigned into a smaller set of comprehensive classes using the Reclassify tool. To make the reclassification exercise easier, you should add a column to the spreadsheet wherein you will place the reclassified numbers (ISO Reclass number) as given above (and as shown in the example spreadsheet below). 7

8 Once you have completed your assessment of every ISO class, open the Reclassify tool by going to ArcToolbox > Spatial Analyst Tools > Reclass > Reclassify. This will open the Reclassify menu seen below. The input is the HouAir24ISO layer. If the classes do not appear, be sure the Reclass field is Value and click the Unique button. Enter the new class designations in the New values boxes. Save the completed reclassification to an appropriate file name such as HouAir6ISO. 8

9 If needed, add the reclassified image to the Table of Contents. Set the symbology to display the new classes (match the colour scheme used in your MLC image) and label them appropriately. Your results should look something like the image below. You should clean up the ISO results following the protocol you used in Lab 4 (e.g., Majority Filter, Boundary Clean). Use your skills and the tools you have explored to create a map that represents the major land cover types in this area. Place the map in a Word document with an explanation of your process and the results. Discuss the differences you observe between the NLCD layer, your MLC results, and your ISO classification results. In order to more formally compare your MLC classification to the ISO classification, open the attribute tables of both images (the final images that have been filtered and cleaned) and prepare a summary table similar to the one presented below (include both the raw pixel counts as well as the relative percentages for each class). Class # MLC Class Name MLC Count % ISO Class Name 1 Dry grass Developed, Open 2 Forest Forest 4 Parking lot Developed, High 5 Building roof Developed, Medium 6 Green grass Developed, Low ISO Count % 12

10 A (pseudo) Accuracy Classification A final step in most image classification projects would be an accuracy assessment and the creation of a confusion matrix. As mentioned in class, the proper way to conduct such an assessment would be to collect ground truth in this case, using the higher-resolution aerial photos to provide an assessment of what the land cover actually is. To do this with some statistical rigour, we need to create a number of randomly positioned points throughout the classified image, assign the ISO class name to each point, and then determine through visual inspection at each point what the true land cover is. Once all of the points have been ground truthed, we can create a confusion matrix and calculate the relevant statistics that will tell us how well our classification did. ESRI has provided a number of tools within the Segmentation and Classification toolset (found within the Spatial Analyst set of tools) that automate most of the accuracy assessment / construction of the confusion matrix process. I will lead you through the steps of completing an accuracy assessment, but for the purposes of this lab we will make the assumption that the results of your supervised classification are the truth to which we will compare the results of the ISO unsupervised classification. Step 1) Create the Accuracy Assessment Points: Select your final ISO file (after being filtered and cleaned) as the input raster, provide an appropriate output file name (this will be a point file, it can be either a shapefile or in a geodatabase), and accept the defaults for the other fields (the Target Field should be classified since we want to know what classes in the ISO image are associated with each stratified randomly placed point). You should see a point file containing 500 points scattered about the ISO image. Open the attribute table to see what the file contains. 12

11 Step 2) Update the Accuracy Assessment Points: Select your final MLC image as the Input Raster, the point file you just created in step 1 is the Input Accuracy Assessment Points file, provide an appropriate name for the output file, and change the Target Field to Ground_Truth. Open the attribute table of the output accuracy assessment points file and note that it now contains attributes from both the classified image (the ISO image) and the GrndTruth image (the MLC image). You now need to compute the confusion matrix. Step 3: Create Confusion Matrix: This tool takes the accuracy assessment results and creates a confusion matrix (basically it creates a pivot table [Classified as the rows, GrndTruth as the columns, and the counts as the values] and then calculates a number of statistics from that pivot table). 12

12 You final results should look something like that presented below, although everyone s results will look slightly different (based on the random placement of points, and of the differences in everyone s classifications). Given the order in which we specified the classification and the ground truth, the rows represent the ISO classes and the columns the MLC classes. If you selected the.dbf option you will need to format the cells (removing the decimal places for those cells that are simple counts, and setting the number of decimal points to 5 for those that are statistics) so that your table looks similar to that presented above. Based on the results of your (pseudo) accuracy assessment, which ISO class was the most accurately classified (looking at both the Producer s and the User s Accuracy values), and which was the most poorly classified? What was the Percent Correctly Classified, and what is the Kappa coefficient, for your results? Include a copy of the accuracy assessment in your report. You should provide the proper class names in your table (e.g., row C_1 should be Developed, Open space while column C_1 should be Dry Grass). In your final project you will be required to produce both an unsupervised and a supervised classification of a Landsat scene that you will personally download, and provide similar details / discussion as outlined in your labs. 12

Raster Classification with ArcGIS Desktop. Rebecca Richman Andy Shoemaker

Raster Classification with ArcGIS Desktop. Rebecca Richman Andy Shoemaker Raster Classification with ArcGIS Desktop Rebecca Richman Andy Shoemaker Raster Classification What is it? - Classifying imagery into different land use/ land cover classes based on the pixel values of

More information

ArcGIS Pro: Image Segmentation, Classification, and Machine Learning. Jeff Liedtke and Han Hu

ArcGIS Pro: Image Segmentation, Classification, and Machine Learning. Jeff Liedtke and Han Hu ArcGIS Pro: Image Segmentation, Classification, and Machine Learning Jeff Liedtke and Han Hu Overview of Image Classification in ArcGIS Pro Overview of the classification workflow Classification tools

More information

Lab 9. Julia Janicki. Introduction

Lab 9. Julia Janicki. Introduction Lab 9 Julia Janicki Introduction My goal for this project is to map a general land cover in the area of Alexandria in Egypt using supervised classification, specifically the Maximum Likelihood and Support

More information

Digital Image Classification Geography 4354 Remote Sensing

Digital Image Classification Geography 4354 Remote Sensing Digital Image Classification Geography 4354 Remote Sensing Lab 11 Dr. James Campbell December 10, 2001 Group #4 Mark Dougherty Paul Bartholomew Akisha Williams Dave Trible Seth McCoy Table of Contents:

More information

Data: a collection of numbers or facts that require further processing before they are meaningful

Data: a collection of numbers or facts that require further processing before they are meaningful Digital Image Classification Data vs. Information Data: a collection of numbers or facts that require further processing before they are meaningful Information: Derived knowledge from raw data. Something

More information

This is the general guide for landuse mapping using mid-resolution remote sensing data

This is the general guide for landuse mapping using mid-resolution remote sensing data This is the general guide for landuse mapping using mid-resolution remote sensing data February 11 2015 This document has been prepared for Training workshop on REDD+ Research Project in Peninsular Malaysia

More information

DIGITAL IMAGE ANALYSIS. Image Classification: Object-based Classification

DIGITAL IMAGE ANALYSIS. Image Classification: Object-based Classification DIGITAL IMAGE ANALYSIS Image Classification: Object-based Classification Image classification Quantitative analysis used to automate the identification of features Spectral pattern recognition Unsupervised

More information

The Feature Analyst Extension for ERDAS IMAGINE

The Feature Analyst Extension for ERDAS IMAGINE The Feature Analyst Extension for ERDAS IMAGINE Automated Feature Extraction Software for GIS Database Maintenance We put the information in GIS SM A Visual Learning Systems, Inc. White Paper September

More information

Aerial photography: Principles. Visual interpretation of aerial imagery

Aerial photography: Principles. Visual interpretation of aerial imagery Aerial photography: Principles Visual interpretation of aerial imagery Overview Introduction Benefits of aerial imagery Image interpretation Elements Tasks Strategies Keys Accuracy assessment Benefits

More information

Figure 1: Workflow of object-based classification

Figure 1: Workflow of object-based classification Technical Specifications Object Analyst Object Analyst is an add-on package for Geomatica that provides tools for segmentation, classification, and feature extraction. Object Analyst includes an all-in-one

More information

Classification (or thematic) accuracy assessment. Lecture 8 March 11, 2005

Classification (or thematic) accuracy assessment. Lecture 8 March 11, 2005 Classification (or thematic) accuracy assessment Lecture 8 March 11, 2005 Why and how Remote sensing-derived thematic information are becoming increasingly important. Unfortunately, they contain errors.

More information

Using ArcGIS for Landcover Classification. Presented by CORE GIS May 8, 2012

Using ArcGIS for Landcover Classification. Presented by CORE GIS May 8, 2012 Using ArcGIS for Landcover Classification Presented by CORE GIS May 8, 2012 How to use ArcGIS for Image Classification 1. Find and download the right data 2. Have a look at the data (true color/false color)

More information

Introduction to digital image classification

Introduction to digital image classification Introduction to digital image classification Dr. Norman Kerle, Wan Bakx MSc a.o. INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Purpose of lecture Main lecture topics Review

More information

STUDENT PAGES GIS Tutorial Treasure in the Treasure State

STUDENT PAGES GIS Tutorial Treasure in the Treasure State STUDENT PAGES GIS Tutorial Treasure in the Treasure State Copyright 2015 Bear Trust International GIS Tutorial 1 Exercise 1: Make a Hand Drawn Map of the School Yard and Playground Your teacher will provide

More information

(Refer Slide Time: 0:51)

(Refer Slide Time: 0:51) Introduction to Remote Sensing Dr. Arun K Saraf Department of Earth Sciences Indian Institute of Technology Roorkee Lecture 16 Image Classification Techniques Hello everyone welcome to 16th lecture in

More information

Lab #4 Introduction to Image Processing II and Map Accuracy Assessment

Lab #4 Introduction to Image Processing II and Map Accuracy Assessment FOR 324 Natural Resources Information Systems Lab #4 Introduction to Image Processing II and Map Accuracy Assessment (Adapted from the Idrisi Tutorial, Introduction Image Processing Exercises, Exercise

More information

INTRODUCTION TO GIS WORKSHOP EXERCISE

INTRODUCTION TO GIS WORKSHOP EXERCISE 111 Mulford Hall, College of Natural Resources, UC Berkeley (510) 643-4539 INTRODUCTION TO GIS WORKSHOP EXERCISE This exercise is a survey of some GIS and spatial analysis tools for ecological and natural

More information

RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O

RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O TOPICS COVERED Spatial Analyst basics Raster / Vector conversion Raster data

More information

Making Yield Contour Maps Using John Deere Data

Making Yield Contour Maps Using John Deere Data Making Yield Contour Maps Using John Deere Data Exporting the Yield Data Using JDOffice 1. Data Format On Hard Drive 2. Start program JD Office. a. From the PC Card menu on the left of the screen choose

More information

GEOG 487 Lesson 7: Step- by- Step Activity

GEOG 487 Lesson 7: Step- by- Step Activity GEOG 487 Lesson 7: Step- by- Step Activity Part I: Review the Relevant Data Layers and Organize the Map Document In Part I, we will review the data and organize the map document for analysis. 1. Unzip

More information

Exporting ArcScene to 3D Web Scenes. Documents. An Esri White Paper November 2013

Exporting ArcScene to 3D Web Scenes. Documents. An Esri White Paper November 2013 Exporting ArcScene to 3D Web Scenes Documents An Esri White Paper November 2013 Copyright 2013 Esri All rights reserved. Printed in the United States of America. The information contained in this document

More information

Combine Yield Data From Combine to Contour Map Ag Leader

Combine Yield Data From Combine to Contour Map Ag Leader Combine Yield Data From Combine to Contour Map Ag Leader Exporting the Yield Data Using SMS Program 1. Data format On Hard Drive. 2. Start program SMS Basic. a. In the File menu choose Open. b. Click on

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Videos that show how to copy/paste data

More information

GIS Fundamentals: Supplementary Lessons with ArcGIS Pro

GIS Fundamentals: Supplementary Lessons with ArcGIS Pro Station Analysis (parts 1 & 2) What You ll Learn: - Practice various skills using ArcMap. - Combining parcels, land use, impervious surface, and elevation data to calculate suitabilities for various uses

More information

Raster Data Model & Analysis

Raster Data Model & Analysis Topics: 1. Understanding Raster Data 2. Adding and displaying raster data in ArcMap 3. Converting between floating-point raster and integer raster 4. Converting Vector data to Raster 5. Querying Raster

More information

Image Classification. RS Image Classification. Present by: Dr.Weerakaset Suanpaga

Image Classification. RS Image Classification. Present by: Dr.Weerakaset Suanpaga Image Classification Present by: Dr.Weerakaset Suanpaga D.Eng(RS&GIS) 6.1 Concept of Classification Objectives of Classification Advantages of Multi-Spectral data for Classification Variation of Multi-Spectra

More information

Ex. 4: Locational Editing of The BARC

Ex. 4: Locational Editing of The BARC Ex. 4: Locational Editing of The BARC Using the BARC for BAER Support Document Updated: April 2010 These exercises are written for ArcGIS 9.x. Some steps may vary slightly if you are working in ArcGIS

More information

Introduction to LiDAR

Introduction to LiDAR Introduction to LiDAR Our goals here are to introduce you to LiDAR data. LiDAR data is becoming common, provides ground, building, and vegetation heights at high accuracy and detail, and is available statewide.

More information

Obtaining Submerged Aquatic Vegetation Coverage from Satellite Imagery and Confusion Matrix Analysis

Obtaining Submerged Aquatic Vegetation Coverage from Satellite Imagery and Confusion Matrix Analysis Obtaining Submerged Aquatic Vegetation Coverage from Satellite Imagery and Confusion Matrix Analysis Brian Madore April 7, 2015 This document shows the procedure for obtaining a submerged aquatic vegetation

More information

ii. From the Tools menu choose Multi-Extract

ii. From the Tools menu choose Multi-Extract Created By: Grant J. Firl Advisors: Paul Evangelista, Jim Graham Date: November 2010 Software: ArcGIS v9.2, TUGZip v3.5 Lesson 8: Mosaicking and Clipping Landsat Data The purpose of this tutorial is to

More information

Lab 10: Raster Analyses

Lab 10: Raster Analyses Lab 10: Raster Analyses What You ll Learn: Spatial analysis and modeling with raster data. You will estimate the access costs for all points on a landscape, based on slope and distance to roads. You ll

More information

MAG Demographic Map Viewer Training

MAG Demographic Map Viewer Training Exercise 1 In this exercise you will create a map showing the percentage of Hispanic population of each block group, showing eight data breaks using equal intervals, an orange and purple color scheme,

More information

GEO 465/565 Lab 6: Modeling Landslide Susceptibility

GEO 465/565 Lab 6: Modeling Landslide Susceptibility 1 GEO 465/565 Lab 6: Modeling Landslide Susceptibility This lab will give you more practice in understanding and building a GIS analysis model. Recall from class lecture that a GIS analysis model is a

More information

Object Based Image Analysis: Introduction to ecognition

Object Based Image Analysis: Introduction to ecognition Object Based Image Analysis: Introduction to ecognition ecognition Developer 9.0 Description: We will be using ecognition and a simple image to introduce students to the concepts of Object Based Image

More information

Using ArcScan for ArcGIS

Using ArcScan for ArcGIS ArcGIS 9 Using ArcScan for ArcGIS Copyright 00 005 ESRI All rights reserved. Printed in the United States of America. The information contained in this document is the exclusive property of ESRI. This

More information

Select the Parks within Forest Acres

Select the Parks within Forest Acres Select the Parks within Forest Acres TASKS RESULT 1. Add the county boundary, municipalities and parks (pts.) layers to your map 2. Save your map (.mxd) to your desktop Your map should look something like

More information

Using Imagery for Intelligence Analysis

Using Imagery for Intelligence Analysis 2013 Esri International User Conference July 8 12, 2013 San Diego, California Technical Workshop Using Imagery for Intelligence Analysis Renee Bernstein Natalie Campos Esri UC2013. Technical Workshop.

More information

Setting up a 3D Environment for the City of Portland

Setting up a 3D Environment for the City of Portland Setting up a 3D Environment for the City of Portland www.learn.arcgis.com 380 New York Street Redlands, California 92373 8100 USA Copyright 2018 Esri All rights reserved. Printed in the United States of

More information

Lab 3: Digitizing in ArcGIS Pro

Lab 3: Digitizing in ArcGIS Pro Lab 3: Digitizing in ArcGIS Pro What You ll Learn: In this Lab you ll be introduced to basic digitizing techniques using ArcGIS Pro. You should read Chapter 4 in the GIS Fundamentals textbook before starting

More information

Module 7 Raster operations

Module 7 Raster operations Introduction Geo-Information Science Practical Manual Module 7 Raster operations 7. INTRODUCTION 7-1 LOCAL OPERATIONS 7-2 Mathematical functions and operators 7-5 Raster overlay 7-7 FOCAL OPERATIONS 7-8

More information

Geographical Information Systems Institute. Center for Geographic Analysis, Harvard University. LAB EXERCISE 1: Basic Mapping in ArcMap

Geographical Information Systems Institute. Center for Geographic Analysis, Harvard University. LAB EXERCISE 1: Basic Mapping in ArcMap Harvard University Introduction to ArcMap Geographical Information Systems Institute Center for Geographic Analysis, Harvard University LAB EXERCISE 1: Basic Mapping in ArcMap Individual files (lab instructions,

More information

GIS Exercise 10 March 30, 2018 The USGS NCGMP09v11 tools

GIS Exercise 10 March 30, 2018 The USGS NCGMP09v11 tools GIS Exercise 10 March 30, 2018 The USGS NCGMP09v11 tools As a result of the collaboration between ESRI (the manufacturer of ArcGIS) and USGS, ESRI released its Geologic Mapping Template (GMT) in 2009 which

More information

GEO 465/565 - Lab 7 Working with GTOPO30 Data in ArcGIS 9

GEO 465/565 - Lab 7 Working with GTOPO30 Data in ArcGIS 9 GEO 465/565 - Lab 7 Working with GTOPO30 Data in ArcGIS 9 This lab explains how work with a Global 30-Arc-Second (GTOPO30) digital elevation model (DEM) from the U.S. Geological Survey. This dataset can

More information

Glacier Mapping and Monitoring

Glacier Mapping and Monitoring Glacier Mapping and Monitoring Exercises Tobias Bolch Universität Zürich TU Dresden tobias.bolch@geo.uzh.ch Exercise 1: Visualizing multi-spectral images with Erdas Imagine 2011 a) View raster data: Open

More information

Introduction to LiDAR

Introduction to LiDAR Introduction to LiDAR Our goals here are to introduce you to LiDAR data, to show you how to download it for an area of interest, and to better understand the data and uses through some simple manipulations.

More information

RASTER ANALYSIS GIS Analysis Winter 2016

RASTER ANALYSIS GIS Analysis Winter 2016 RASTER ANALYSIS GIS Analysis Winter 2016 Raster Data The Basics Raster Data Format Matrix of cells (pixels) organized into rows and columns (grid); each cell contains a value representing information.

More information

Geomatica II Course guide

Geomatica II Course guide Course guide Geomatica Version 2017 SP4 2017 PCI Geomatics Enterprises, Inc. All rights reserved. COPYRIGHT NOTICE Software copyrighted by PCI Geomatics Enterprises, Inc., 90 Allstate Parkway, Suite 501

More information

Joining data from an Excel spreadsheet

Joining data from an Excel spreadsheet Geographic Information for Vector Surveillance Day 3 of a 3 day course with Malaria examples Getting your own data into QGIS Learning objectives be able to join data from an Excel spreadsheet to a shapefile

More information

A Vector Agent-Based Unsupervised Image Classification for High Spatial Resolution Satellite Imagery

A Vector Agent-Based Unsupervised Image Classification for High Spatial Resolution Satellite Imagery A Vector Agent-Based Unsupervised Image Classification for High Spatial Resolution Satellite Imagery K. Borna 1, A. B. Moore 2, P. Sirguey 3 School of Surveying University of Otago PO Box 56, Dunedin,

More information

Classifying. Stuart Green Earthobservation.wordpress.com MERMS 12 - L4

Classifying. Stuart Green Earthobservation.wordpress.com MERMS 12 - L4 Classifying Stuart Green Earthobservation.wordpress.com Stuart.Green@Teagasc.ie MERMS 12 - L4 Classifying Replacing the digital numbers in each pixel (that tell us the average spectral properties of everything

More information

GST 105: Introduction to Remote Sensing Lab 6: Supervised Classification

GST 105: Introduction to Remote Sensing Lab 6: Supervised Classification GST 105: Introduction to Remote Sensing Lab 6: Supervised Classification Objective Perform a Supervised classification Document Version: 2014-08-08 (Beta) Author: Richard : Smith, Ph.D. Texas A&M University

More information

Masking Lidar Cliff-Edge Artifacts

Masking Lidar Cliff-Edge Artifacts Masking Lidar Cliff-Edge Artifacts Methods 6/12/2014 Authors: Abigail Schaaf is a Remote Sensing Specialist at RedCastle Resources, Inc., working on site at the Remote Sensing Applications Center in Salt

More information

Remote Sensing & Photogrammetry W4. Beata Hejmanowska Building C4, room 212, phone:

Remote Sensing & Photogrammetry W4. Beata Hejmanowska Building C4, room 212, phone: Remote Sensing & Photogrammetry W4 Beata Hejmanowska Building C4, room 212, phone: +4812 617 22 72 605 061 510 galia@agh.edu.pl 1 General procedures in image classification Conventional multispectral classification

More information

Graded Project. Microsoft Excel

Graded Project. Microsoft Excel Graded Project Microsoft Excel INTRODUCTION 1 PROJECT SCENARIO 1 CREATING THE WORKSHEET 2 GRAPHING YOUR RESULTS 4 INSPECTING YOUR COMPLETED FILE 6 PREPARING YOUR FILE FOR SUBMISSION 6 Contents iii Microsoft

More information

Raster Suitability Analysis: Siting a Wind Farm Facility North Of Beijing, China

Raster Suitability Analysis: Siting a Wind Farm Facility North Of Beijing, China Raster Suitability Analysis: Siting a Wind Farm Facility North Of Beijing, China Written by Gabriel Holbrow and Barbara Parmenter, revised on10/22/2018 for 10.6.1 Raster Suitability Analysis: Siting a

More information

Priming the Pump Stage II

Priming the Pump Stage II Priming the Pump Stage II Modeling and mapping concentration with fire response networks By Mike Price, Entrada/San Juan, Inc. The article Priming the Pump Preparing data for concentration modeling with

More information

LORI COLLINS, RESEARCH ASSOCIATE PROFESSOR CONTRIBUTIONS BY: RICHARD MCKENZIE AND GARRETT SPEED, DHHC USF L IBRARIES

LORI COLLINS, RESEARCH ASSOCIATE PROFESSOR CONTRIBUTIONS BY: RICHARD MCKENZIE AND GARRETT SPEED, DHHC USF L IBRARIES LORI COLLINS, RESEARCH ASSOCIATE PROFESSOR CONTRIBUTIONS BY: RICHARD MCKENZIE AND GARRETT SPEED, DHHC USF L IBRARIES AERIAL AND TERRESTRIAL SURVEY WORKFLOWS Workflow from project planning applications

More information

Map Algebra Exercise (Beginner) ArcView 9

Map Algebra Exercise (Beginner) ArcView 9 Map Algebra Exercise (Beginner) ArcView 9 1.0 INTRODUCTION The location of the data set is eastern Africa, more specifically in Nakuru District in Kenya (see Figure 1a). The Great Rift Valley runs through

More information

Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics

Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics Operations What Do I Need? Classify Merge Combine Cross Scan Score Warp Respace Cover Subscene Rotate Translators

More information

Introduction to GIS & Mapping: ArcGIS Desktop

Introduction to GIS & Mapping: ArcGIS Desktop Introduction to GIS & Mapping: ArcGIS Desktop Your task in this exercise is to determine the best place to build a mixed use facility in Hudson County, NJ. In order to revitalize the community and take

More information

Spectral Classification

Spectral Classification Spectral Classification Spectral Classification Supervised versus Unsupervised Classification n Unsupervised Classes are determined by the computer. Also referred to as clustering n Supervised Classes

More information

RASTER ANALYSIS GIS Analysis Fall 2013

RASTER ANALYSIS GIS Analysis Fall 2013 RASTER ANALYSIS GIS Analysis Fall 2013 Raster Data The Basics Raster Data Format Matrix of cells (pixels) organized into rows and columns (grid); each cell contains a value representing information. What

More information

Lab 10: Raster Analyses

Lab 10: Raster Analyses Lab 10: Raster Analyses What You ll Learn: Spatial analysis and modeling with raster data. You will estimate the access costs for all points on a landscape, based on slope and distance to roads. You ll

More information

Submerged Aquatic Vegetation Mapping using Object-Based Image Analysis with Lidar and RGB Imagery

Submerged Aquatic Vegetation Mapping using Object-Based Image Analysis with Lidar and RGB Imagery Submerged Aquatic Vegetation Mapping using Object-Based Image Analysis with Lidar and RGB Imagery Victoria Price Version 1, April 16 2015 Submerged Aquatic Vegetation Mapping using Object-Based Image Analysis

More information

Soil texture: based on percentage of sand in the soil, partially determines the rate of percolation of water into the groundwater.

Soil texture: based on percentage of sand in the soil, partially determines the rate of percolation of water into the groundwater. Overview: In this week's lab you will identify areas within Webster Township that are most vulnerable to surface and groundwater contamination by conducting a risk analysis with raster data. You will create

More information

How to Create Metadata in ArcGIS 10.0

How to Create Metadata in ArcGIS 10.0 How to Create Metadata in ArcGIS 10.0 March 2012 Table of Contents Introduction... 1 Getting Started... 2 Software Requirements... 2 Configure ArcGIS Desktop to View FGDC Metadata... 2 Other Thoughts...

More information

Choropleth Mapping with GIS

Choropleth Mapping with GIS Choropleth Mapping with GIS In this lab you will be making 4 choropleth maps of the data you downloaded and processed last week. You will make your maps in ArcGIS using three different methods of classing

More information

APPLICATION OF SOFTMAX REGRESSION AND ITS VALIDATION FOR SPECTRAL-BASED LAND COVER MAPPING

APPLICATION OF SOFTMAX REGRESSION AND ITS VALIDATION FOR SPECTRAL-BASED LAND COVER MAPPING APPLICATION OF SOFTMAX REGRESSION AND ITS VALIDATION FOR SPECTRAL-BASED LAND COVER MAPPING J. Wolfe a, X. Jin a, T. Bahr b, N. Holzer b, * a Harris Corporation, Broomfield, Colorado, U.S.A. (jwolfe05,

More information

Using ArcGIS. Tracking Analyst. GIS by ESRI

Using ArcGIS. Tracking Analyst. GIS by ESRI Using ArcGIS Tracking Analyst GIS by ESRI Copyright 2002 ESRI All Rights Reserved Printed in the United States of America The information contained in this document is the exclusive property of ESRI This

More information

Stream network delineation and scaling issues with high resolution data

Stream network delineation and scaling issues with high resolution data Stream network delineation and scaling issues with high resolution data Roman DiBiase, Arizona State University, May 1, 2008 Abstract: In this tutorial, we will go through the process of extracting a stream

More information

Raster: The Other GIS Data

Raster: The Other GIS Data Raster_The_Other_GIS_Data.Docx Page 1 of 11 Raster: The Other GIS Data Objectives Understand the raster format and how it is used to model continuous geographic phenomena. Understand how projections &

More information

ArcScan for ArcGIS Tutorial

ArcScan for ArcGIS Tutorial ArcGIS 9 ArcScan for ArcGIS Tutorial Copyright 00 008 ESRI All rights reserved. Printed in the United States of America. The information contained in this document is the exclusive property of ESRI. This

More information

Using GIS to Site Minimal Excavation Helicopter Landings

Using GIS to Site Minimal Excavation Helicopter Landings Using GIS to Site Minimal Excavation Helicopter Landings The objective of this analysis is to develop a suitability map for aid in locating helicopter landings in mountainous terrain. The tutorial uses

More information

Sharing GIS Content Using ArcGIS STUDENT EDITION

Sharing GIS Content Using ArcGIS STUDENT EDITION Sharing GIS Content Using ArcGIS STUDENT EDITION Copyright 2018 Esri All rights reserved. Course version 1.1. Version release date April 2018. Printed in the United States of America. The information contained

More information

COMBINING HIGH SPATIAL RESOLUTION OPTICAL AND LIDAR DATA FOR OBJECT-BASED IMAGE CLASSIFICATION

COMBINING HIGH SPATIAL RESOLUTION OPTICAL AND LIDAR DATA FOR OBJECT-BASED IMAGE CLASSIFICATION COMBINING HIGH SPATIAL RESOLUTION OPTICAL AND LIDAR DATA FOR OBJECT-BASED IMAGE CLASSIFICATION Ruonan Li 1, Tianyi Zhang 1, Ruozheng Geng 1, Leiguang Wang 2, * 1 School of Forestry, Southwest Forestry

More information

MODULE 1 BASIC LIDAR TECHNIQUES

MODULE 1 BASIC LIDAR TECHNIQUES MODULE SCENARIO One of the first tasks a geographic information systems (GIS) department using lidar data should perform is to check the quality of the data delivered by the data provider. The department

More information

Introducing ArcScan for ArcGIS

Introducing ArcScan for ArcGIS Introducing ArcScan for ArcGIS An ESRI White Paper August 2003 ESRI 380 New York St., Redlands, CA 92373-8100, USA TEL 909-793-2853 FAX 909-793-5953 E-MAIL info@esri.com WEB www.esri.com Copyright 2003

More information

MAPLOGIC CORPORATION. GIS Software Solutions. Getting Started. With MapLogic Layout Manager

MAPLOGIC CORPORATION. GIS Software Solutions. Getting Started. With MapLogic Layout Manager MAPLOGIC CORPORATION GIS Software Solutions Getting Started With MapLogic Layout Manager Getting Started with MapLogic Layout Manager 2011 MapLogic Corporation All Rights Reserved 330 West Canton Ave.,

More information

Chapter 7. A Quick Tour of ArcGIS Pro

Chapter 7. A Quick Tour of ArcGIS Pro Chapter 7 A Quick Tour of ArcGIS Pro Skills you will learn: This tutorial is intended to get you going using ArcGIS Pro, a new desktop application that is part of ArcGIS Desktop. A separate tutorial gives

More information

USING CCCR S AERIAL PHOTOGRAPHY IN YOUR OWN GIS

USING CCCR S AERIAL PHOTOGRAPHY IN YOUR OWN GIS USING CCCR S AERIAL PHOTOGRAPHY IN YOUR OWN GIS Background: In 2006, the Centre for Catchment and Coastal Research purchased 40 cm resolution aerial photography for the whole of Wales. This product was

More information

ArcScan. for ArcGIS. GIS by ESRI

ArcScan. for ArcGIS. GIS by ESRI ArcScan for ArcGIS GIS by ESRI Copyright 2002 ESRI All rights reserved Printed in the United States of America The information contained in this document is the exclusive property of ESRI This work is

More information

GST 105: Introduction to Remote Sensing Lab 5: Unsupervised Classification

GST 105: Introduction to Remote Sensing Lab 5: Unsupervised Classification GST 105: Introduction to Remote Sensing Lab 5: Unsupervised Classification Objective Perform an unsupervised classification Document Version: 2014-07-15 (Beta) Author: Richard : Smith, Ph.D. Texas A&M

More information

Lab 10: Raster Analyses

Lab 10: Raster Analyses Lab 10: Raster Analyses What You ll Learn: Spatial analysis and modeling with raster data. You will estimate the access costs for all points on a landscape, based on slope and distance to roads. You ll

More information

Conservation Applications of LiDAR. Terrain Analysis. Workshop Exercises

Conservation Applications of LiDAR. Terrain Analysis. Workshop Exercises Conservation Applications of LiDAR Terrain Analysis Workshop Exercises 2012 These exercises are part of the Conservation Applications of LiDAR project a series of hands on workshops designed to help Minnesota

More information

GGR 375 QGIS Tutorial

GGR 375 QGIS Tutorial GGR 375 QGIS Tutorial With text taken from: Sherman, Gary E. Shuffling Quantum GIS into the Open Source GIS Stack. Free and Open Source Software for Geospatial (FOSS4G) Conference. 2007. Available online

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Data for the exercise are in the L12 subdirectory.

More information

Procedure for Development of Crop Mask for Major Seasonal Crops in Punjab & Sindh Provinces of Pakistan

Procedure for Development of Crop Mask for Major Seasonal Crops in Punjab & Sindh Provinces of Pakistan [Type text] Procedure for Development of Crop Mask for Major Seasonal Crops in Punjab & Sindh Provinces of Pakistan Preface Agriculture sector contributes around 21% to GDP annually. Major contributing

More information

How to Set Workspace Environments for Project Work

How to Set Workspace Environments for Project Work How to Set Workspace Environments for Project Work An ESRI Short Tutorial January 2006 ESRI 380 New York St., Redlands, CA 92373-8100, USA TEL 909-793-2853 FAX 909-793-5953 E-MAIL info@esri.com WEB www.esri.com

More information

Feature Analyst Quick Start Guide

Feature Analyst Quick Start Guide Feature Analyst Quick Start Guide Change Detection Change Detection allows you to identify changes in images over time. By automating the process, it speeds up a acquisition of data from image archives.

More information

The Reference Library Generating Low Confidence Polygons

The Reference Library Generating Low Confidence Polygons GeoCue Support Team In the new ASPRS Positional Accuracy Standards for Digital Geospatial Data, low confidence areas within LIDAR data are defined to be where the bare earth model might not meet the overall

More information

Session 3: Cartography in ArcGIS. Mapping population data

Session 3: Cartography in ArcGIS. Mapping population data Exercise 3: Cartography in ArcGIS Mapping population data Background GIS is well known for its ability to produce high quality maps. ArcGIS provides useful tools that allow you to do this. It is important

More information

Data Import and Quality Control in Geochemistry for ArcGIS

Data Import and Quality Control in Geochemistry for ArcGIS Data Import and Quality Control in Geochemistry for ArcGIS This Data Import and Quality Control in Geochemistry for ArcGIS How-To Guide will demonstrate how to create a new geochemistry project, import

More information

Raster Suitability Analysis: Siting a Wind Farm Facility North Of Beijing, China

Raster Suitability Analysis: Siting a Wind Farm Facility North Of Beijing, China Raster Suitability Analysis: Siting a Wind Farm Facility North Of Beijing, China Written by Gabriel Holbrow and Barbara Parmenter, revised by Carolyn Talmadge 11/2/2015 INTRODUCTION... 1 PREPROCESSED DATA

More information

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS WATS 4930/6920 WHERE WE RE GOING WATS 6915 welcome to tag along for any, all or none WEEK FIVE Lecture VECTOR ANALYSES Joe Wheaton HOUSEKEEPING

More information

RESEARCH ON THE VISUALIZATION SYSTEM AND APPLICATIONS OF UNCERTAINTY IN REMOTE SENSING DATA CLASSIFICATION

RESEARCH ON THE VISUALIZATION SYSTEM AND APPLICATIONS OF UNCERTAINTY IN REMOTE SENSING DATA CLASSIFICATION RESEARCH ON THE VISUALIZATION SYSTEM AND APPLICATIONS OF UNCERTAINTY IN REMOTE SENSING DATA CLASSIFICATION YanLiu a, Yanchen Bo b a National Geomatics Center of China, no1. Baishengcun,Zhizhuyuan, Haidian

More information

GEOG 487 Lesson 4: Step-by-Step Activity

GEOG 487 Lesson 4: Step-by-Step Activity GEOG 487 Lesson 4: Step-by-Step Activity Part I: Visually Explore Trends In Part I, we will explore several tools and technique to make it easier to visually interpret patterns in your data using ArcGIS.

More information

Graded Project. Microsoft Excel

Graded Project. Microsoft Excel Graded Project Microsoft Excel INTRODUCTION 1 PROJECT SCENARIO 2 CREATING THE WORKSHEET 2 GRAPHING YOUR RESULTS 4 INSPECTING YOUR COMPLETED FILE 6 PREPARING YOUR FILE FOR SUBMISSION 6 Contents iii Microsoft

More information

LAB 1: Introduction to ArcGIS 8

LAB 1: Introduction to ArcGIS 8 LAB 1: Introduction to ArcGIS 8 Outline Introduction Purpose Lab Basics o About the Computers o About the software o Additional information Data ArcGIS Applications o Starting ArcGIS o o o Conclusion To

More information

ArcGIS 9. Using ArcGIS Tracking Analyst

ArcGIS 9. Using ArcGIS Tracking Analyst ArcGIS 9 Using ArcGIS Tracking Analyst Copyright (c) 2004-2005 TASC, Inc. and its licensor(s). All Rights Reserved. Printed in the United States of America. The information contained in this document is

More information

ENVI. Get the Information You Need from Imagery.

ENVI. Get the Information You Need from Imagery. Visual Information Solutions ENVI. Get the Information You Need from Imagery. ENVI is the premier software solution to quickly, easily, and accurately extract information from geospatial imagery. Easy

More information